
The VLDB Journal
https://doi.org/10.1007/s00778-018-0499-4

REGULAR PAPER

Go slow to go fast: minimal on-road time route scheduling
with parking facilities using historical trajectory

Lei Li1 · Kai Zheng2 · Sibo Wang1 ·Wen Hua1 · Xiaofang Zhou1,3

Received: 15 October 2017 / Revised: 22 January 2018 / Accepted: 28 February 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
For thousands of years, people have been innovating new technologies to make their travel faster, the latest of which is GPS
technology that is used by millions of drivers every day. The routes recommended by a GPS device are computed by path
planning algorithms (e.g., fastest path algorithm), which aim to minimize a certain objective function (e.g., travel time) under
the current traffic condition. When the objective is to arrive the destination as early as possible, waiting during travel is not
an option as it will only increase the total travel time due to the First-In-First-Out property of most road networks. However,
some businesses such as logistics companies are more interested in optimizing the actual on-road time of their vehicles (i.e.,
while the engine is running) since it is directly related to the operational cost. At the same time, the drivers’ trajectories,
which can reveal the traffic conditions on the roads, are also collected by various service providers. Compared to the existing
speed profile generation methods, which mainly rely on traffic monitor systems, the trajectory-based method can cover a
much larger space and is much cheaper and flexible to obtain. This paper proposes a system, which has an online component
and an offline component, to solve the minimal on-road time problem using the trajectories. The online query answering
component studies how parking facilities along the route can be leveraged to avoid predicted traffic jam and eventually reduce
the drivers’ on-road time, while the offline component solves how to generate speed profiles of a road network from historical
trajectories. The challenging part of the routing problem of the online component lies in the computational complexity when
determining if it is beneficial to wait on specific parking places and the time of waiting to maximize the benefit. To cope
with this challenging problem, we propose two efficient algorithms usingminimum on-road travel cost function to answer the
query. We further introduce several approximation methods to speed up the query answering, with an error bound guaranteed.
The offline speed profile generation component makes use of historical trajectories to provide the traveling time for the online
component. Extensive experiments show that our method is more efficient and accurate than baseline approaches extended
from the existing path planning algorithms, and our speed profile is accurate and space efficient.

Keywords Road network · Shortest path · Trajectory

B Kai Zheng
zhengkai@uestc.edu.cn

B Xiaofang Zhou
zxf@itee.uq.edu.au

Lei Li
l.li3@uq.edu.au

Sibo Wang
sibo.wang@uq.edu.au

Wen Hua
w.hua@uq.edu.au

1 School of ITEE, University of Queensland, Brisbane, QLD
4072, Australia

1 Introduction

With the prevalence of GPS enabled devices and wireless
network, various of navigation systems have been widely
adopted by public transportation systems, logistics compa-
nies, private vehicles and a broad range of location-based
services. These systems first find where we are on planet
earth, then compute a reasonable path to our destinations,
most of which are based on shortest path algorithms [1–3].

2 School of Computer Science and Engineering, University of
Electronic Science and Technology of China, Chengdu, China

3 School of Computer Science and Technology, Soochow
University, Suzhou, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-018-0499-4&domain=pdf
http://orcid.org/0000-0002-1386-767X

L. Li et al.

During the trip, they provide turn-by-turn navigation using
real-time map-matching and real-time path computation.
Some of them even keep users’ trajectories, like O2O taxi
service providers Uber and DiDi. In fact, they are becoming
more and more popular around the world and have obtained
a tremendous amount of trajectories generated by their taxi
drivers every day. However, although these trajectories can
reveal the traffic conditions of different parts of a city at differ-
ent time periods, they are mostly used for behavior analysis
and customer support.

In spite of their popularity, there are still some untreated
shortcomings. First of all, the paths they generated aremostly
based on distance rather than actual travel time [1–3]. Obvi-
ously, shortest path does not necessarily have the shortest
travel time. Thus, it cannot satisfy many users’ needs, i.e.,
arriving the destination earlier. Furthermore, it may even lead
many cars to traffic jams during the rush hour.

Secondly, even though the travel time is considered in
some path planning algorithms [4–9], they still do not allow
waiting during the trip. The common optimization goal of
them is the total travel time, which is the difference between
the departure time and arrival time, and is made up of the
on-road time and waiting time. In a time-dependent road
network where the cost associated with road segment can
change over time, the existing path planning problems make
use of an important observation known as the FIFO prop-
erty, which means a vehicle enters a road segment first will
also reach the end of road segment first in spite of the time-
dependent nature [10]. So for an FIFO road network, there is
no need to consider waiting during travel since waiting can
only increase the total time. However, for many users such
as logistics companies with heavy trucks, the actual on-road
time (i.e., the time when the engine is running) becomes crit-
ical as it directly relates to the fuel consumption which can
be as high as 80% of their operational cost. As long as the
goods can be delivered on time, reducing the actual on-road
time can be more economic than arriving the destination ear-
lier. On the other hand, tourists would also like to reduce
their time spent on road so that they can spend more time on
the tourist attractions. On a bigger view, the more cars that
reduce their on-road time, the better traffic condition there
would be, which would lead to less exhausted emission and a
better environment. This motivates us to study a new kind of
path planning algorithm that optimizes the on-road time by
waiting strategically in certain places along the route to avoid
predictable traffic jams. To better understand how waiting
can shorten the on-road time when traveling, consider a road
network with five vertices as shown in Fig. 1. Three of them
are ordinary vertices, and two of them are parking vertices
that allow waiting. The traveling cost functions are as shown
in Fig. 1b–f. These linear functions simulate the speed pro-
file we generate from trajectories. We choose linear function
rather higher-order ones because it suffers less from overfit-

Fig. 1 A road networking with parking vertices (a) and the
corresponding time-dependent weight for each edge over time domain
(0–150) (b)–(f)

ting and it is easy to handle. In fact, most works in this field
use linear function. Suppose the starting time from v1 is 0 and
the latest arrival time at v5 is 130. The fastest path takes 105
time units (v1 → v2 : 40; v2 → v3 : 70; v3 → v5 : 105),
and its on-road travel time is also 105. However, if we still
start from v1 at 0 and arrive v2 at 40, but travel from v2 to v4
and arrive v4 at 95, the current on-road time is 95. Then, we
wait on v4 and depart on 120, the cost from v4 to v5 reduces
to 5. So the on-road travel time of this path is 100. So by
taking advantages of these parking vertices, we can obtain
a route that has shorter on-road travel time. More applica-
tion scenarios are presented in Sect. 4.4 after the algorithm
is fully described.

Last but not least, it is hard to obtain the travel time infor-
mation of the roads. Currently,most of the systems depend on
sensors deployed throughout the city [11]. Apparently, such
approach is accurate but expensive to cover the city center,
and impossible to cover the entire road network. However,
with the vast amount of historical and real-time trajectory
data at hand, we are able to derive the travel time informa-
tion at a much larger scale with little cost.

123

Go slow to go fast: minimal on-road time route scheduling with parking facilities using…

We distinguish the term path and route by if they are influ-
enced by time or not. Path is used in the scenarios when no
waiting is allowed after departure. Therefore, a path is just
a series of vertices. Once the departure time from the source
vertex is fixed, the arrival time at the destination vertex is
fixed as well. Route is used when some of the vertices allow
waiting. Therefore, we also need to provide corresponding
waiting time or departure time on these waiting vertices. So
a route is a path plus the departure time of each vertex.

In thiswork,wemodel a road network as a time-dependent
graph, where each edge is associated with a function that
returns the time cost of traveling the edge for a given depar-
ture time from the starting vertex, and these functions are
generated from the trajectory database. There are two types
of vertices in this graph: ordinary vertices that do not allow
waiting, and parking vertices that do. This model considers
the phenomenon that some vehicles may choose to stop at
some places to avoid traffic jams. The proposed query, min-
imal on-road time route query (MORT), aims to find a route
that consists of not only a consecutive of edges in the road net-
work, but also a waiting plan that determines the amount of
time to stop at a parking vertex in order to minimize on-road
time. So it is actually a route scheduling algorithm rather than
a path planning problem. This is different from the previous
problems that aim at minimizing the total travel time, which
includes both the on-road time and waiting time. Clearly, a
MORT query is more complicated than traditional path plan-
ning queries that minimize the total travel time. First of all, it
needs to decide whether waiting at certain parking vertices,
or even taking a detour to a parking vertex, can save on-road
time at all. Secondly, if waiting on this parking vertex has
benefit, it needs to further determine the waiting time on it.
Finally, because waiting on any vertex is allowed, the graph
that MORT query runs on does not need to follow FIFO
property, which is the basis of all the existing algorithms.

In fact, the existing path planning algorithms cannot solve
this problem even under FIFO setup. First of all, the shortest
path algorithms [1–3,12] only work on static edge weights.
Thus, it cannot handle the time-dependent costs because the
time-dependent one has many different optimal solutions
during a time interval. Secondly, the single starting-time
fastest path (SSFP) algorithm [10] does not allow waiting
at any vertex. Even though it has the ability to cope with
time-dependent costs, it cannot solve our problem. Finally,
the interval starting-time fastest path (ISFP) algorithms [4,5]
allow waiting on the starting vertex, but they do not allow
waiting on the intermediate vertices since it would simply
result in a longer total travel time. One naive approach to
find an approximateMORT route based on ISFP algorithms
is to select the optimal waiting time on each parking vertex
along the path in a greedy fashion. Firstly, it runs ISFP algo-
rithm on the starting vertex to get the optimal departure time
t∗s on starting vertex vs . Then, it runs ISFP algorithm on the

Fig. 2 MORT route (red dotted), fastest path (blue dashed) and recur-
sive fastest path (pink solid)

first parking vertex vp1 along the path with its arrival time
from vs at time t∗s as the starting time, and gets the optimal
departure time t∗p1 from vp1. After that, it runs the ISFP on
the first parking vertex along the new path from vp1 again
to get its optimal departure time. The procedure runs itera-
tively until the destination vertex is reached. However, this
approach has two problems: Obviously, it runs ISFP multi-
ple times, so its computation time is long. A more serious
problem is that this approach has no guarantee to find the
optimal solution at all as it is a greedy method with no back-
tracking (the first parking site on a route is just an accidental
stop point “from” a path that has not considered parking as an
optimization option). Figure 2 shows an real-life example of
the comparison of our algorithm, ISFP [5] and the naive iter-
ative approach. The example illustrates paths from location
A(31.2414, 121.304) to B(31.2559, 121.386) in Shanghai,
whose shortest distance is 10 km. The starting time interval
is set from 10:00 to 16:00 and the latest arrival time is 19:00.
ISFP finds a path with an on-road travel time of 1385 s, iter-
ative approach finds a path of 1130 s, while our algorithm
finds a route of 986 s.

In this paper, we present a system to answer the minimal
on-road travel route query, as well as all the other existing
time-dependent path queries, using speed profiles generated
from trajectories. The system has an online query answering
component and an offline speed profile generation compo-
nent. The Online Component has two algorithms to find the
minimal on-road travel route accurately and an approxima-
tion algorithm to answer query faster with error bounded.
Both of the accurate algorithms construct and maintain a set
of Minimum Cost Functions to record the minimal on-road
time from the starting vertex to the other vertices at differ-
ent arrival times. The first algorithm builds the minimum
cost functions over the whole query time interval iteratively
in a Dijkstra way, while the second algorithm constructs it
sub-time-interval by sub-time-interval instead. We observe
a non-increasing property for the parking vertices, which
integrates the waiting time benefit into the minimum cost
function. Both of them support user specifying different min-

123

L. Li et al.

imum waiting times when waiting on parking vertices. We
also provide a route retrieval solution to return routing sched-
ule satisfying user’s requirement on the arrival time. It is
worth noting that ourMORT algorithm is more general than
the existing time-dependent path algorithms. First of all, if
we treat the parking vertices as normal vertices, our algo-
rithm can solve the ISFP problem. Moreover, if we further
prohibit waiting on starting vertex, our algorithm can solve
the SSFP problem. In fact, both ISFP and SSFP are the spe-
cial cases of MORT. Furthermore, in order to speed up the
query answering time, we propose an α-MORT approach to
provide approximate result by pruning some of the turning
points in each vertex’s minimum cost function. Because the
error grows exponentially as the route expands, we have to
view the error bound as a pruning power budget and distribute
it along the route. We propose three ways to achieve it: Even
Distribution, Exponential Distribution and Dynamic Expo-
nential Distribution. The Offline Component reads the raw
trajectories from the database and then generates a reliable
speed profile from these trajectories by map matching, speed
data collection, missing value estimation and compression.

In summary, our contributions are listed as follows:

– We propose a system to answer a general form of time-
dependent route scheduling problem MORT using the
historical trajectory.

– The online query answering component solves MORT
problem, which makes use of parking facilities in a road
network to minimize the on-road travel time, instead
of the total travel time. We propose a minimum cost
function and two novel algorithms to solve the MORT
route scheduling problem efficiently and accurately, and
an approximation approach for faster query answering.
Our algorithms can handle real-life road network with
dynamic and complex speed profiles. Both of them are
able to address other existing types of time-dependent
path planning problems if no parking vertices are con-
sidered.

– The Basic MORT algorithm performs theMORT search
for a vertex after each iteration, until the destina-
tion is reached. We show that its time complexity is
O(T |V | log |V |+T 2|E |). The Incremental MORT algo-
rithm visits the vertices starting from a small subinterval
to fill the full time interval incrementally, and its time
complexity is O(L(|V | log |V | +|E |)). Both algorithms
require O(T (|V |+ |E |)) space. T is the average number
of turning points in minimum cost functions, and L > T
is the average number of subintervals during computa-
tion.

– The α-MORT approach can return an approximate result
faster than the exact algorithms, with the worst error
bounded.

– The offline speed profile generation component takes
advantages of trajectory, which is cheaper to deploy and
has a wider covering range. It consists of a series of pro-
cessing: map matching, speed data collection, missing
value estimation and compression.

– Weevaluate the effectiveness and efficiencyof our system
with extensive experiments on road network and trajec-
tory. The offline component can generate accurate and
space-saving speed profiles, and the online component
can answer MORT problems with both the reduction in
the on-road time and the algorithm running time.

This paper extends the work in [13], where we introduced
the MORT problem, proposed two MORT algorithms and
tested the performance on synthetic speed profiles. However,
the running time of the MORT algorithms was long, espe-
cially when the trip length and query time interval are both
long. Therefore, in this paper, we firstly speed up the query
answering by approximating theminimum cost function dur-
ing route expansion. In fact, our approximation approach can
work on all the other time-dependent algorithms. Secondly,
we describe how to generate our speed profile from the tra-
jectory, which was not mentioned in [13]. In this way, our
system is able to answer queries from real-life rather than
only synthetic evaluations.

The rest of the paper is organized as follows. Section 2
discusses the related work. We formally define the minimal
on-road time problem in Sect. 3. Section 4 presents the online
query answering component with twoMORT algorithms and
analysis. The approximation version α-MORT is provided
in Sect. 5. Section 6 describes the offline component with
the whole process to generate speed profiles using histori-
cal trajectories. An empirical study is shown in Sect. 7. Our
conclusions can be found in Sect. 8.

2 Related work

In this section, we first review the previous works on mod-
eling time-dependent road network and position our work
by discussing the difference from the fastest path problems.
Then, we briefly summarize the existing speed profile gen-
eration approaches.

2.1 Time-dependent path problems

The simplestmodel of the time-dependent roadnetwork is the
discrete time-dependent graph (or timetable graph), of which
the existence of each edge is time-dependent. A few path
planning algorithms such as earliest arrival time path, latest
departure time path, shortest path and shortest duration time
path have been proposed on such graphs. Cooke and Halsey
[14] proved that these queries could be solvedwith amodified

123

Go slow to go fast: minimal on-road time route scheduling with parking facilities using…

Fig. 3 Comparison between total travel time and on-road travel time.
Thick bar: waiting time on a parking vertex; circle: no waiting on the
vertex; arrow: travel time from one vertex to another

version of the Dijkstra algorithm. However, it does not scale
well with the size of the network. Several techniques are
proposed to improve the efficiency [15–17], but they only
work on timetable graphs.

Amore preciseway to describe a time-dependent road net-
work is to use the continuous time-dependent cost function.
Fastest path query has been well studied that aims to find a
path with the minimum wTOT including waiting time. Drey-
fus [10] first showed the time-dependent fastest path problem
was solvable in polynomial time if the graph is restricted to
have FIFO property. Other early theoretical works on this
problem include [18] and [19]. However, these algorithms
are very difficult to implement, and no empirical evaluation
results were reported. Most of the recent path planning algo-
rithms on road network share a common assumption that the
travel along a road follows FIFO property, which means a
vehicle starting earlier will not arrive destination later regard-
less of the time cost of edges. Due to this property, waiting
on a vertex always results in longer total travel time. So these
algorithms do not consider waiting on vertices actually. We
briefly discuss some representative fastest path algorithms
below.

Single Starting-Time Fastest Path (SSFP) algorithm does
not allow waiting on the starting vertex. This problem can be
solved in O(|V | log |V | + |E |) time by minor modification
on Dijkstra’s algorithm if FIFO property holds [10]. The
algorithm can answer both Earliest Arrival Path and Latest
Departure Path, with the same computational complexity.

Interval Starting-Time Fastest Path (ISFP) algorithm
allows waiting on the starting vertex in a given starting time
interval. However, once departing, no waiting is allowed
along the path. The difference between ISFP and MORT is
illustrated in Fig. 3. Moreover, ISFP only returns the optimal
departure time from starting vertex vs , while MORT needs
to determine the optimal departure time from each parking
vertex along the path. It is proved in [20] that the theoret-
ical lower-bound of ISFP is "(T (|V | log |V | + |E |)) [20],
where T is the average number of turning points in the result
functions if the weight functions are piecewise linear. Cur-
rently, no existing algorithm can achieve this bound because
T could be large and it is hard to find the departure time points
that would result in the T turning points. Some early works

like DOI [6] and [9,21] select k ≪ T starting time points in
the starting time interval and run SSFP k times. Obviously,
this approach has no guarantee to find the optimal depar-
ture time, and both the running time and accuracy highly
depend on the choice of k. Kanoulas et al. [4] proposed a
path selection and time refinement approach using the heuris-
tic of A*-algorithm. They computed an arrival time function
for each vertex iteratively and used A*-algorithm to reduce
the searching space. However, it is hard to find an appro-
priate heuristic condition on a time-dependent graph. Ding
et al. [5] applied a more precise refinement approach that
expanded the time interval step by step rather than computing
the entire time interval iteratively. It could avoid unneces-
sary computations and achieve better performance, although
time complexity remained the same. It has a complexity of
O(α(T̂)(|V | log |V |+|E |)), where T̂ is the size of the whole
time domain, and α(T̂) is the complexity to maintain the
time-dependent functions. Although it is not pointed out in
their paper, α(T̂) actually has a much larger value than the
turning point number in the final functions. Other works fur-
ther extend the static indexes to time-dependent scenario to
speed up fastest path query, such as time-dependent CH [22]
and time-dependent SHARC [23]. But they are index level
solutions to speed up query answering rather than solving
the problem directly.

Although ISFP is different from MORT, we can adopt
it as our baseline algorithm by invoking the algorithms in
[4,5] recursively to get an approximate result, as described
in Sect. 1. Li et al. [24] and Yang et al. [25] take waiting on
intermediate vertices into consideration in their problems.
However, they allow waiting on any vertex, which does not
make sense in real life. In fact, [24] cannot solve our problem
directly and has a time complexity of O(|V | log |V |+T |V |+
T 2|E |), which means it cannot guarantee the optimal result
actually since each vertex is visited once. As for [25], they
define a time-dependent weight function w(vi , v j , t) and a
cost function c(vi , v j , t) for each edge (vi , v j), and aim to
find the path with minimum cost, not the minimum weight.
But they set the cost functions to linear constants. So rather
than confronting with the complex linear piecewise weight
functions, they only have to deal with a small set of constant
values, which actually simplifies the problem by convert-
ing the complex functions to constant values, even though
the problem description looks more complicated. Thus, their
algorithm cannot find theminimumon-road time (or themin-
imum weight under their scenario).

From the network point of view, the road network with
parking vertices can be treated as a kind of graph with spe-
cial nodes. Electric vehicle shortest walk problem [26,27]
adopt this model but on static road network. In this prob-
lem setting, an electric vehicle has a driving distance limit,
and it has to recharge its battery at a power station before
the electricity runs out. Given a source vertex and a des-

123

L. Li et al.

tination vertex, the problem aims to find the shortest path
that the vehicle is able to travel through it. Both [27] and
[26] build a sub-network of power station first to solve this
problem. It is possible to do this since the network is static
and the driving limit is pre-defined. Essentially, it is a spe-
cial case of Constraint Shortest Path Problem [28,29]. If the
problem is generalized to be independent on driving dis-
tance, the problem becomes NP-H. Blokh et al. [30] and
Juttner et al. [31] use Lagrange Relaxation to find approxi-
mate result. Although network model is similar to ours, they
do not consider time-dependent cost on edges, which makes
it impossible to pre-built a sub-network just as what they do
on a static graph. Tong et al. [32,33] also use time-dependent
road network and find paths. However, they focus on task
assignment based on the existing path algorithms and cannot
solve our problem. In fact, their frameworks can utilize our
algorithm to provide more functionality.

2.2 Speed profile

Nearly, all the speed profiles using real-world data are either
histogram-based [34], or deriving linear functions based on
histogram. Demiryurek et al. [11] uses a large amount of
sensor data collected in 2 years to build up their speed profile.
Since the sensor can work 24 h a day, they are able to collect
data in the time slot of 1 min. Then, they organize them into
a set of linear functions. Due to the large deployment of the
sensor and the long range of collecting time, they do not face
the missing value problem. Bakalov et al. [35] describe their
system developed in ESRI. They store the historical speed
as a value between 0 and 1, and derive the actual speed by
multiply this value with the free-flow speed of that road. Still,
since their data are multi-sources rather than only historical
trajectory, they are able to derive fine grained speed profile
directly without worrying the missing value.

Nevertheless, building a system like the above works is
too expensive and not practicable worldwide, so most of the
other works in this field focus on constructing a speed pro-
file only from trajectory using histogram method. However,
the missing value estimation becomes a big problem. Yang
et al. [36] uses Hidden Markov Models to estimate the miss-
ing values of different time slots. But it is time consuming
to train for a large road network and have big issues with
the training parameters. Shang et al. [37] applies a Matrix-
Factorization-based Collaborative Filtering which we have
tested to perform poorly. Xin et al. [38], Asif et al. [39],
Shan et al. [40], Widhalm et al. [41], and Guo et al. [42,43]
are similar works from machine learning field. They all need
loads of trainings on a massive amount of data. However,
complicated their formulas are and accurate they claim to
be, as we mentioned above, there are actually no real ground
truth of a speed profile, so their performances are all based
on their own objectives. As long as the error is not too sig-

nificant and follows FIFO property, it is practical to be used
in real life.

There are some similar research lines that use trajectory
to predict traffic conditions. The first one is called trajectory
regression [44–46], that aims to find the cost of trajectory
based on the existing ones. However, their main purposes are
estimating the cost of a given trajectory rather than producing
a speed profile on each single road for later route scheduling
tasks. The second one is region-based inflow/outflow pre-
diction [47] using deep learning. It can generate the speed
profiles on a much coarser granularity, because a region can
have hundreds of thousands of roads. Therefore, it cannot
help to generate speed profile on each single road.

3 Preliminary

Our problem is twofold: The first one is the minimal on-
road time route scheduling, and the second one is related
to the speed profile generation from historical trajectories.
In this section, we first present the overview of the system
framework and then dig into theMORT problem definitions.

3.1 Framework overview

Our system has an offline component for speed profile gener-
ation and an online component for query answering. Figure 4
gives an overview of it.

In the offline component, historical trajectories are con-
verted into speed profiles by a series of processes. Firstly,
trajectories are matched to map such that the speeds on roads
are obtained. Then, the speeds are categorized by days and
collected by different time slots (for example, 5 min long
per slot). Obviously, some slots have no values at all. So we
apply missing value estimation methods to fill in the missing
speeds. Finally, we compress the raw speed profile to reduce
its size while preserving its accuracy.

In the online component, our MORT algorithms read the
speed profile and answer users’ queries. Since the MORT
algorithm is general in route scheduling, they are able to

Fig. 4 Framework overview

123

Go slow to go fast: minimal on-road time route scheduling with parking facilities using…

answer not only theMORT queries but also other path plan-
ning queries.

3.2 Minimal on-road time route scheduling

A time-dependent road network can be represented as a
directed graph G(V , E), where V is a set of vertices and
E ⊆ V ×V is a set of ordered pairs of vertices, with a weight
function w : (E, t) → R mapping edges to time-dependent
real-valued weights. The weight of an edge e(u, v) ∈ E at
time t in a time domain T is w(u, v, t), which represents
the amount of time required to reach v starting from u at
time t . In this paper, we only consider the case where the
weight of an edge can change over time, but not the case
where the structure of a graph can change over time (i.e., V
and/or E remain to be static over time). This is a reasonable
assumption, as the structure of a road network changes much
less frequently compared with the traffic situations. We also
define w(u, v, t) = ∞ if (u, v) /∈ E .

A route from u to v in G can be represented as p =<

v0, v1, . . . , vk >, where v0 = u, vk = v, and (vi−1, vi) ∈ E
for any 1 ≤ i ≤ k. Let α(vi) and β(vi) be the arrival and
departure time at vi ∈ p, the time-dependent cost of p is
the sum of the time-dependent weights of its edges w(p) =∑k

i=1w(vi−1, vi ,β(vi−1)). This cost is ∞ by definition if
there is no route from u to v in G.

Now let us differentiate two different types of cost for a
route: the total travel timewTOT(p) = α(vk)−β(v0) and the
on-road travel timewORT(p) =

∑k
i=1 w(vi−1, vi ,β(vi−1)).

AlthoughwORT(p) looks identical tow(p) above, the differ-
ence here is that for a vertex vi ∈ p, it is no longer necessary
to have α(vi) = β(vi). In other words, the traveler can stop
at a vertex if that can help reduce the on-road travel time. It
is trivial to see that α(vi) = β(vi−1)+w(vi−1, vi ,β(vi−1))

for i > 0, and β(v0) is the selected departure time by a path
planning algorithm.

The problem to find shortest/fastest path from u to v is
to find such a path p(u, v) with minimum cost w(p). Most
existing works on this topic have an implicit assumption that
for any vertex v ∈ p, α(v) = β(v) (e.g., a traveler can-
not stop at any vertices along the path). These algorithms
focus on wTOT cost. In that case, a traveler who departs ear-
lier will always get to the destination earlier (known as the
FIFO property [10]). With this setting, travelers always keep
β(v) = α(v) for any vertex v on a path to achieve optimal
wTOT. Some recent works have noticed that, in order to opti-
mize wORT instead of wTOT, it can be beneficial to delay the
departure time at the starting vertex [4,5]. However, there are
more vertices than just the source vertex in a road network
where a vehicle can stop for a period of time. Let V ′ ⊆ V
be a set of parking vertices in G where a vehicle can wait
voluntarily for a minimum amount of time tmin before trav-
eling again. In other words, β(v)− α(v) ≥ v.tmin if v ∈ V ′,

and β(v) = α(v) if v ∈ V − V ′. The minimum waiting
time v.tmin is aimed to avoid useless short waiting time or
meet user’s minimum staying time requirement by providing
a user pre-defined lower bound. If they are all set to 0, then
the waiting time could be arbitrary on each waiting vertices.
This should not be confused with the case that a vehicle stops
in a traffic jam or in front of a traffic light; these forced stops
are captured by the weight function of w(u, v, t) already.

We are ready to define the problem we address in this
paper as follows.

Definition 1 (Minimal On-Road Time Route Scheduling
Problem) Given a directed graph G = (V , E) with a set of
parking vertices V ′ ⊆ V , each of which has aminimum stay-
ing time vi .tmin and a time-dependent edge weight function
w, a query QMORT (vs, vd , ts1, ts2, td) is to find a route from
vs to vd , represented as p =< v0, v1, . . . vk >, such that: (1)
vs = v0 and vd = vk ; (2) β(vi) = α(vi) if vi ∈ V − V ′ and
β(vi) − α(vi) ≥ vi .tmin if vi ∈ V ′; (3) ts1 ≤ β(vs) ≤ ts2;
(4) α(vd) ≤ td ; and (5) w(p) = ∑k

i=1w(vi−1, vi ,β(vi−1))

is minimal among all possible routes meeting the previous
conditions.

Condition (1) means that p is a route from vs to vd , and
condition (2) allows the traveler to stop and wait only at
a parking node for a minimum period of time. Conditions
(3) and (4) define that the traveler must depart vs during
the specified time interval and must arrive at vd before the
given latest arrival time td . If there does not exist a route
meeting these four conditions, the cost to travel from vs to
vd is defined as ∞. Condition 5 requires the route to have
the minimal on-road travel time.

If the edge weight is not time dependent (i.e., the weight
for each edge is static), aMORT query reduces to traditional
shortest path queries in a static road network [1]. Besides,
the time-dependent query studied in [4,5] is a special case of
theMORT query where parking node set V ′ = {vs}.

3.3 Speed profile generation from trajectory

A trajectory tri =< (xi1, y
i
1, t

i
1), . . . , (x

i
m, y

i
m, t

i
m) > is

series of GPS points, where each point (xi1, y
i
1, t

i
1) con-

tains a longitude x , a latitude y and a timestamp t . Given
a set of trajectories Tr = (tr1, tr2, . . . , trn) and a directed
graph G = (V , E), speed profile generation is to derive
the time-dependent edge weight function w(u, v, t) for each
(u, v) ∈ E using Tr . Such a process involvesmap-matching,
speed collection, missing value estimation and compression.

The first step is converting the trajectories to road
speeds using map-matching. For a trajectory tri =<

(xi1, y
i
1, t

i
1), . . . , (x

i
m, y

i
m, t

i
m) >, we can derive a consecu-

tive series of edges Ei =< e1, . . . , em >where e j e j+1 ̸= φ,
with each point (xij , y

i
j , t

i
j) is attached to some edge ek ∈ Ei .

Therefore, with the information of the road network distance,

123

L. Li et al.

the sequence of roads and time difference between any two
consecutive points, it is trivial to get the speeds of their cor-
responding roads at different times during a day.

The second step is categorizing the speed data and orga-
nizing them into time slots. We start with categorizing the
speed data by weekdays and weekends, because they follow
different traffic patterns. After that, we collect them in differ-
ent time slots. If we set the slot size to 5 min, then we have
288 time slots of a day. Or if we set the size to half an hour,
then we have 48 slots. With the data collected in each slot,
we prune out the outlier data and compute the average speed
of the remaining as the speed for this time slot.

The third step is missing value estimation. Obviously,
quite a number of time slots of many roads may not have
speed data at all, especially when the slot size is small. For
example, in the 5 min one, 85% of the slots have no data. In
order to cope with it, we use several approaches to estimate
the missing values.

The last step is compression. The speed profile generated
by the previous steps is histogram-based and has a fixed size
of K×|E |, where K is the slot size and |E | is number edges in
G. However, many of the speed values are close or even equal
to each other, or follow some function distribution. Such a
speed profile is space consuming. To reduce the size while
preserving the accuracy, we use linear piecewise aggregation
to convert the histogram data to linear function, because the
speed data can be viewed as time series data. In this way, we
can get an weight function w(u, v, t) for each edge (u, v).

For the ease of exposition, we first explain our query algo-
rithm in Sect. 4 and approximation approaches in Sect. 5,
assuming that the linear piecewise function is given. Then,
in Sect. 6, we will elaborate on how the linear piecewise
function is derived.

4 MORT algorithms

In this section, we describe our MORT algorithms in detail.
The key idea is that we define and maintain a variational
piecewise Minimum Cost Function Ci (t) for each vertex vi .
Ci (t) returns different minimal on-road travel time from vs
to vi given different arrival time t , so it has the potential
to model traffic tendency more accurately. Based on the new
cost function, we design two algorithms to expand theMORT
route step by step in a Dijkstra way: (1) the Basic MORT
algorithm constructs Cd(t) by updating Ci (t) of each visited
vertex over the whole time interval, and finishes expanding
until Cd(t) is stable; (2) the Incremental MORT algorithm
decomposesCd(t) into different parts according to the query
time subintervals, and finishes expanding until each part of
Cd(t) is complete. Both of these algorithms do not require the
graph to follow FIFO property. Although our route expand-
ing algorithms are able to find the MORT time, its result

does not contain a schedule, which is the expected output
of MORT problem. To address that, route retrieval is intro-
duced to generate the final results. Considering scalability is
important for route scheduling, we present the correctness
and complexity analysis at the end of each subsection.

4.1 Algorithm outline

Given a time-dependent graph G(V , E) and aMORT query
QMORT (vs, vd , ts1, ts2, td), the proposed algorithm gener-
ates the minimal on-road time Rp∗

s,d
and the corresponding

route with traveling schedule p∗
s,d . The whole process can be

divided into three parts as below:

1. Active Time Interval Profiling (ATI) computes the active
time interval Ti for each vertex vi , which is bounded by
a pair of earliest arrival time vi .tE A and latest departure
time vi .tLD .

2. Route Expansion finds the route with minimum on-road
travel time in a Dijkstra way and produces theMinimum
Cost Functions of the visited vertices.

3. Route Retrieval returns the actual route schedule with
user-specified arrival time.

In the following subsections, we will introduce each part
of the proposed algorithm thoroughly except for the route
expansion part. The full details of the route expansion which
are the major contributions in this work will be presented in
Sects. 4.2 and 4.3, respectively. We further explain how to
apply our algorithms to different scenarios in Sect. 4.4.

4.1.1 Active time interval computation (ATI)

The MORT query specifies a departure interval [ts1, ts2] on
vs and a latest arrival time td on vd . With these constraints,
the route schedule is roughly outlined but loose for other ver-
tices. If the graph does not follow FIFO, we have to use this
loose time interval. Otherwise, we could reduce the compu-
tation load by computing an active time interval (ATI) for
each vertex in the proposed algorithms. An active time inter-
val (ATI) of a vertex vi is denoted as Ti = [vi .tE A, vi .tLD],
which is bounded by a earliest arrival time vi .tE A (we cannot
arrive vi any earlier) and a latest departure time vi .tLD (we
will never arrive vd before td if it departs from vi any later). It
models a vehicle’s possible occurrence interval on the corre-
sponding vertex under the query constraints (ts and td). ATI
is very important for the proposed algorithm since it is the
basis of the other parts. In the following, we will introduce
how the ATI is computed for each vertex.

ATI, as well as all the following calculations, is computed
from speed profile. In a speed profile, each edge (vi , v j)

is associated with a function w(vi , v j , t) whose parameter

123

Go slow to go fast: minimal on-road time route scheduling with parking facilities using…

is t and output is time cost. Compared to [25], function
w(vi , v j , t) is a combination of consecutive linear func-
tions rather than constant values. It obeys the FIFO and
serves in the route expansion. Notice that when t is given,
we use w(vi , v j , t) to represent the time cost of traveling
from vi to v j at time t . The speed profile is then instanti-
ated as {(t0, w(vi , v j , t0)), . . . , (tk, w(vi , v j , tk))}, and the
intermediate values between points are computed linearly.
Figure 1b–f illustrates an example of speed profile.

Given the proposed speed profile, the earliest arrival time
of each vertex is computed by performing SSFP from vs at
ts1. As for the latest departure time, we have to compute from
vd at td reversely, both in time and in vertex order. After two
rounds of SSFP, each vertex obtains its active time interval,
and all the future computations will be based on the active
time intervals. The ATI has the same time complexity as
Dijkstra, which is O(|V | log |V | + |E |).

We use the road network in Fig. 1 and query QMORT
(v1, v5, 0, 30, 130) as an example. AT I (v1, v5, 0, 30, 130)
generates the following active time intervals: T1 = [0, 25],
T2 = [40, 65], T3 = [70, 95], T4 = [95, 125] and T5 =
[105, 130].

4.1.2 Minimum cost function

In order to model the correlations between time and cost, we
construct a minimum cost function whose value varies with
arrival time for each vertex, instead of defining the minimum
cost which is constant over time in [25]. Accordingly, the
output of route expansion in our work is the minimal of vd ’s
minimum cost function. Since the minimum cost function is
the basis of the two proposed route expansion algorithms, we
present the definition and construction of the minimum cost
function in this part.

The minimum cost function, denoted as Ci (t), monitors
the minimum on-road cost of traveling from vs to vi that
arrives on time t . The minimum value of Ci (t) is equivalent
to the minimum on-road time (MORT) from vs to vi . For
example, Ci (300) = 50 means when it starts traveling from
vs at ts and arrives on vi at time 300, the minimum on-road
travel time (MORT) is 50. Accordingly, for the destination
vertex vd , theMORT ismin(Cd(t)). In addition, for a parking
vertex v p

i , the value of dependent variable ofC
p
i (t) has a non-

increasing property:

Lemma 1 ∀vi ∈ V ′ and ∀vi .tE A ≤ ta < tb ≤ vi .tLD,
C p
i (ta) ≥ C p

i (tb)

The non-increasing property reveals a natural fact: If one
route schedule arriving at tb takes higher cost than another
arriving at ta , we should choose the latter one andwait from ta
to tb, which reduces the on-road time from C p

i (tb) toC
p
i (ta).

The non-increasing property indicates that waiting is neces-
sary to decrease the on-road travel time (Table 1).

Table 1 Important notations

Notation Description

v.tmin Minimum waiting time on v

Ti Active time interval of vi
Ii [vi .tE A, τi] ⊆ Ti
τi Upper bound of Ii
Ci (t) Minimum cost function of vi
g f ,i (t) C f (t)+ w(v f , vi , t)

g′
f ,i (t) Non-increasing version of g f ,i (t)

C ′
i (t) min(Ci (t), g f ,i (t))

C∗
d (t) Optimal result on destination min(Cd (t))

Ai (t) Approximate minimum cost function

Ê Edges along a route

|Ê | Number of edges along Ê

||Ê || Length of Ê

α Pruning budget such that A∗
d (t) ≥ αC∗

d (t)

SPi, j Speed of edge ei at time slot t j
SPi Speed vector of edge ei

Ci (t) is linear piecewise because it is constructed from
the speed profile which is also linear piecewise. Thus, a min-
imum cost functionCi (t) equals a set of consecutive discrete
linear functions. These functions share the end points and
are maintained in the ascending order of time. Based on that,
the cost function of a vertex is denoted as an ordered point
set Si = {(t0,Ci (t0)), . . . , (tk,Ci (tk))}. The update of Si is
achieved bymerge. For instance, supposeC ′

i (t) is the current
minimum cost function of vi , and C ′′

i (t) is another minimum
cost function provided by another route to vi , the newCi (t) is
formed by merging the smaller parts of these two functions:
min(C ′

i (t),C
′′
i (t)).

4.1.3 Route retrieval

The route retrieval generates the route schedule based on the
user-specified arrival time using theminimum cost functions.
For each turning point in the ordinary vertices’ minimum
cost functions, we store its predecessors. For the parking
vertices, apart from the predecessors for the turning points,
we also need to store the points that happen to have the same
value as the current cost (no turning point added because it
is not smaller). This predecessor cache has the same space
complexity as the minimum cost functions.

Suppose t is a user-specified arrival time. We can traverse
the vertices back from vd at time t . Suppose we are visiting
vi at ti . Firstly, if vi is an ordinary vertex, we find the latest
turning point (t ′i ,Ci (t ′i)) in Ci (t) such that t ′i ≤ ti , and use
its predecessor as the next visiting vertex. The arrival time
is the same as ti . Secondly, if vi is a parking vertex, we also
find the latest turning point (t ′i ,Ci (t ′i)) in Ci (t) with t ′i ≤ ti .

123

L. Li et al.

Fig. 5 Minimum cost function update. a g f ,i (t) and Ci (t) for ordi-
nary vertex vi . b Result of min(g f ,i (t),Ci (t)) for ordinary vertex vi . c
g f ,i (t) andCi (t) for parking vertex vi ,Ci (t) is non-increasing.d g f ,i (t)
applies non-increasing. e Result ofmin(g f ,i (t),Ci (t)) for parking ver-
tex vi

However, the arrival time is t ′i rather than ti . If the turning
point has more than one predecessor, or the parking vertex
has more than one points with the same cost, we can traverse
the graph in a DFS way to output more than one routes for
users to choose. Obviously, this approach takes O(k) time,
where k is the number of vertices along the route.

4.2 Basic MORT algorithm

The Route Expansion in Basic MORT algorithm uses aDijk-
stra way to find theMORT from vs to other vertices. Instead
of using the shortest distance as the sorting key, we use the
minimum value of each vertex’s min(Ci (t)). Each time we
visit a vertex, we update its neighbors’ Ci (t) over their ATI,
until Cd(t) is guaranteed stable. We first describe how to
update the minimum cost function Ci (t) in Sect. 4.2.1 and
then present route expansion in Sect. 4.2.2. The correctness
and complexity analysis are provided in Sects. 4.2.3 and
4.2.4.

4.2.1 Minimum cost function update (MCFU)

Each time we visit a vertex, we update its out-neighbor’s
Ci (t). From vi ’s point of view, its Ci (t) can only be updated
by its in-neighbors. Suppose v f is vi ’s in-neighbor, C f (t) is
v f ’s minimum cost function and w(v f , vi , t) is the weight
function on edge (v f , vi). We use g f ,i (t ′) = C f (t) +
w(v f , vi , t), t ′ = t+w(v f , vi , t) to denote the cost to travel
from vs to vi via v f . Depending on whether vi is a parking
vertex or not, we update Ci (t) differently.

The update of ordinary Ci (t) has two steps as shown in
Fig. 5a, b. We first calculate g f ,i (t)(dot line). Then, we com-
pare g f ,i (t)with originalCi (t) (dash line) anduse the smaller
parts of the two functions as the new minimum cost function

C ′
i (t) (solid line).We use the line segment intersection detec-

tion technique to compute C ′
i (t) = min(Ci (t), g f ,i (t)).

However, if vi is a parking vertex, we cannot use g f ,i (t)
directly since the result of min(Ci (t), g f ,i (t)) may not fol-
low non-increasing property. So we convert g f ,i (t) to its
non-increasing version g′

f ,i (t) first before computing C ′
i (t).

Figure 5c shows the non-increasing Ci (t) and a ordinary
g f ,i (t). We convert g f ,i (t) into its non-increasing version
g′
f ,i (t) in Fig. 5d, and then compute C ′

i (t) in Fig. 5e. The
correctness is guaranteed by the following lemma.

Lemma 2 If both Ci (t) and g′
f ,i (t) are non-increasing, then

C ′
i (t) = min(Ci (t), g′

f ,i (t)) is also non-increasing.

Proof ∀ta < tb ⇒ Ci (ta) ≥ Ci (tb), g f ,i (ta) ≥ g f ,i (tb). (1)
If min(Ci (ta), g f ,i (ta)) = Ci (ta) and min(Ci (tb), g f ,i (tb)
= Ci (tb), Ci (ta) ≥ Ci (tb), non-increasing holds. (2) Ifmin(
Ci (ta), g f ,i (ta)) = g f ,i (ta) and min(Ci (tb), g f ,i (tb) =
Ci (tb), g f ,i (ta)¬g f ,i (tb)¬Ci (tb), non-increasing holds. The
remaining two situations are similar. ⊓0

In order to guarantee the minimum staying time on the
parking vertices, we attach a user-specified value vi .tmin on
each vi ∈ V ′. When computing g f ,i (t) from a parking vertex
v f to vi , the departure time from v f is changed to t ′ =
t + v f .tmin . Thus, the arrival time on vi further grows to
t ′′ = t ′+w(v f , vi , t ′). So g f ,i (t ′′) ← C f (t ′)+w(v f , vi , t ′).

The details ofMCFU are shown in Algorithm 1. Suppose
v f is the current visiting vertex and vi is v f ’s out-neighbor.
MCFU computes the updated C ′

i (t) using C f (t) and the
edge weight w(v f , vi , t). It works in a sweeping-line way.
Lines 2–6 compute the cost to vi via v f . If v f is a park-
ing vertex, then minimum staying time is applied. If vi is
a parking vertex, a non-increasing version g′

f ,i (t) is gen-
erated (Lines 7–8). Then, it visits the line segments in the
Ci (t) and g′

f ,i (t) together one by one. Initially, it retrieves
the first line segments in Ci (t) and g′

f ,i (t) (Lines 9–10),
and their corresponding end points (p1, p2) and (p′

1, p
′
2)

(Lines 12–13). Lines 14–17 use the line segment intersec-
tion technique, which tells the position relation of two lines
by computing d1, d2, d3 and d4, as illustrated in Fig. 6. If
d1 > 0, d2 < 0, d3 < 0 and d4 > 0 (Line 18), it is
guaranteed that the line segments has an intersection point
p′ and line segment (p1, p′) should appear in C ′

i (t). If
d1 < 0, d2 > 0, d3 > 0 and d4 < 0 (Line 22), the line
segment (p′

1, p
′) should appear in C ′

i (t). Then, the corre-
sponding points are updated in Line 21 or Line 25. The loop
recurs until it reaches the last end points. Suppose the active
time interval has T time units. In the worst case, there are T
end points in the cost function.Within the update of each line
segment, it only costs constant time. So the time complexity
of the Algorithm 1 is O(T).

123

Go slow to go fast: minimal on-road time route scheduling with parking facilities using…

(a) (b)

Fig. 6 Line segment intersection

Algorithm 1: Minimum Cost Function Update
(MCFU)
Input: vi ’s minimum cost function Ci (t), v f ’s minimum cost

function C f (t), the cost function from v f to vi :
w(v f , vi , t) and minimum staying time v f .tmin on v f

Output: vi ’s new minimum cost function C ′
i (t)

1 begin
2 if v f ∈ V ′ then
3 g f ,i (t ′′) ← C f (t ′)+ w(v f , vi , t ′)
4 t ′ ← t + v f .tmin , t ′′ ← t ′ + w(v f , vi , t ′)
5 else
6 g f ,i (t ′) ← C f (t)+ w(v f , vi , t), t ′ ← t + w(v f , vi , t)

7 if vi ∈ V ′ then
8 g′

f ,i (t) ← Non − I ncrease((g f ,i (t))

9 t1 ← Si [0], t ′1 ← Si [1] //Si : time points in Ci (t)
10 t2 ← S f [0], t ′2 ← S j [1] //S f : time points in g′

f ,i (t)
11 while t1 ̸= Si .end and t2 ̸= S j .end do
12 p1 ← (t1,Ci (t1)), p2 ← (t2,Ci (t2))
13 p′

1 ← (t ′1, g
′
f ,i (t

′
1)), p

′
2 ← (t ′2, g

′
f ,i (t

′
2))

14 d1 ← Direction(p′
1, p

′
2, p1)

15 d2 ← Direction(p′
1, p

′
2, p2)

16 d3 ← Direction(p1, p2, p′
1)

17 d4 ← Direction(p1, p2, p′
2)

18 if d1 > 0 and d2 < 0 and d3 < 0 and d4 > 0 then
19 (t ′,Ci (t ′)) ← intersection point
20 C ′

i (t).insert(t
′,Ci (t ′))

21 t1 ← t ′, t ′1 ← t ′2, t
′
2 ← S j .next

22 else if d1 < 0 and d2 > 0 and d3 > 0 and d4 < 0 then
23 (t ′,Ci (t ′)) ← intersection point
24 C ′

i (t).insert(t
′,Ci (t ′))

25 t ′1 ← t ′, t1 ← t2, t2 ← Si .next

26 return C ′
i (t)

27 Function Direction(pi , p j , pk)
28 return (pk − pi) × (p j − pi)

4.2.2 Basic route expansion algorithm

Route expansion algorithmmaintains a priority queue Q that
uses min(Ci (t)) as keys to store all the vertices. Each time
we pop out the top vertex and update its out-neighbors’Ci (t).
This procedure runs on until Cd(t) is guaranteed stable. The
details are described in Algorithm 2. Lines 2–5 initialize the
minimum cost function of each vertex by adding the two end
points (vi .tE A, vi .tE A− ts1) and (vi .tLD,∞). Obviously, the

source vertex’s cost is always 0. Then, these minimum cost
functions are organized into a priority queue Q ordered by
their min(Ci (t)). Each time we pop up the vertex vi with
the smallest min(Ci (t)) value in Q and use it to update the
minimum cost functions of its out-neighbors v j using algo-
rithm 1 (Line 12). If C j (t) has changed and v j is out of Q,
we insert the new function back to Q. If it is changed but still
in Q, we just update its key (Lines 13–17). The algorithm
terminates either when Q becomes empty (Line 7) or when
the top function’s smallest value is larger than vd ’s minimum
on-road cost (Lines 9–10).

Algorithm 2: Route Expansion Algorithm
Input: G(V , E), QMORT (vs , vd , ts1, ts2, td)
Output: Rp∗

s,d
1 begin
2 for vi ∈ V do
3 Ci (vi .tE A) ← vi .tE A − ts1
4 Ci (vi .tLD) ← ∞
5 Let Q be a priority queue initially containing pairs

(min(Ci t), vi), ordered by min(Ci t) in ascending order
6 Q.insert(min(Cs (t)), vs)
7 while Q is not empty do
8 vi ← Q.pop()
9 if min(Ci (t)) ≥ min(Cd (t)) then

10 break

11 for v j ∈ vi ’s out-neighbors do
12 C ′

j (t) = MCFU (C j (t),Ci (t), w(vi , v j , t))

13 if C ′
j (t) ̸= C j (t) then

14 if v j ∈ Q then
15 Q.Update(min(C j (t)), v j)

16 else
17 Q.insert(min(C j (t)), v j)

18 return min(Cd (t))

4.2.3 Correctness

Theorem 1 Algorithm 2 finds the MORT.

Proof Initially, the topofQ ismin(Cs(t)),which is 0 because
vs is the starting vertex. Then, its out-neighbors can all get
theirMORT after updated from vs . Suppose vi is the current
top item of Q and v j is vi ’s out-neighbor. If min(C j (t)) <
min(Ci (t)), then ∀∆ > 0,min(Ci (t)) + ∆ > min(C j (t)).
So vi cannot update C j (t)’s minimum value. In fact, v j has
already found its MORT that no vertex in Q can reduce
it. But the other parts of C j (t) could be changed. So if
C j (t) is changed, it is inserted back to Q. If min(Ci (t)) <
min(C j (t)), v j might find a better route via vi and gets
updated. And since min(Ci (t)) < min(Ck(t)),∀vk ∈ Q,
it is ensured that min(Ci (t)) < min(C j (t)) + ∆,∀∆ > 0.
Thus, vi has found itsMORT that no vertex in Q can reduce
it. Finally, after themin(Ci (t)) > min(Cd(t)) pops out from

123

L. Li et al.

Q, it is guaranteed that novertex inQ canupdatemin(Cd (t)).
Thus, vd has found itsMORT. ⊓0

4.2.4 Complexity analysis

As mentioned previously, the time complexity of the ATI
algorithm is O(|V | log |V | + |E |). As for the Route Expan-
sion algorithm, we use Fibonacci Heap [48] to implement
the priority queue. T is used to denote the average num-
ber of turning points in Ci (t), which indicates the average
number of times a vertex’s minimum cost function would be
updated among all the vertices. So on average, Ci (t) could
be updated T times, which means vi is visited T times. The
maximumnumber of elements in Q is |V |, and it takes log |V |
time to pop out the top element. So it takes O(T |V | log |V |)
time in total to retrieve the top elements in Q. Each edge
might be visited T times to update the corresponding min-
imum cost function, and MCFU also takes O(T) time.
So the update part of the algorithm takes O(T 2|E |) time.
Thus, the total time complexity of Basic MORT Algorithm is
O(T |V | log |V | + T 2|E |).

As for the space complexity, the speed profile takes
O(T |E |) space, the minimum cost function takes O(T |V |)
space, and the graph itself takes O(|V |+ |E |) space. Hence,
the total space complexity is O(T (|V | + |E |)).

4.3 Incremental MORT algorithm

Unlike Basic MORT which updates the minimum cost func-
tion on thewhole active time interval repeatedly, Incremental
MORT Algorithm uses Incremental Route Expansion to
build the minimum cost function for each vertex vi in its
Ti = [vi .tE A, vi .tLD] subinterval by subinterval incremen-
tally, which could reduce unnecessary computations.

4.3.1 Incremental route expansion algorithm

Suppose for a subinterval Ii = [vi .tE A, τi] ⊆ Ti = [vi .tE A,

vi .tLD] , we have already computed its minimum cost func-
tion Ci (Ii). Then, we extend Ii to a larger subinterval I ′

i =
[vi .tE A, τ

′
i] ⊆ Ti where τ ′

i > τi and make sure Ci (I ′) is
refined. It should be noted that the currentCi (t) is constructed
by vi ’s in-neighbors, and refinement means specifying a
larger subinterval within which the minimum cost function
is stable. After that, we update vi ’s out-neighbor v j ’s C j (t)
in its corresponding time interval [τ 1j , τ 2j]. v′

j s C j (t) will be
refined when we visit them. When τi reaches vi .tLD , Ci (t)
is guaranteed to be refined over Ti . When τd reaches td , the
algorithm terminates. The details are shown in Algorithm 3.
It is made up of two main parts: Arrival Time Interval Exten-
sion to determine the next subinterval to refine, andMinimum
Cost Function Update.

Algorithm3: Incremental Route ExpansionAlgorithm
Input: G(V , E), QMORT (vs , vd , ts1, ts2, td)
Output: Rp∗

s,d
1 begin
2 Cs (ts) ← 0, Cs (vs .tLD) ← 0, τs ← ts
3 for vi ∈ V /{vs } do
4 Ci (vi .tE A) = vi .tE A − ts , τi ← vi .tE A

5 Let Q be a priority queue initially containing pairs (τi ,Ci (t)),
ordered by τi in ascending order

6 while |Q| ≥ 2 do
7 (τi ,Ci (t)) ← Q.pop()
8 (τk ,Ck (t)) ← Q.top()
9 τ ′

i ← τk + min{w(v f , vi , τk)|v f is vi ’s in-neighbor}
10 for v j is vi ’s out-neighbor do
11 if vi ∈ v′ then
12 C ′

j (t
′′) ← Ci (t ′)+ w(vi , v j , t ′)

13 t ′ ← t + w(vi , v j , t), t ′′ ← t ′ + vi .tmin

14 else
15 C ′

j (t
′) ← Ci (t)+ w(vi , v j , t)

16 t ′ ← t + w(vi , v j , t)

17 t ∈ [τi , τ ′
i]

18 if v j ∈ V ′ then
19 C ′

j (t) ← Non − I ncrease(C ′
j (t))

20 τ1j = τi + w(vi , v j , τi)

21 τ2j = τ ′
i + w(vi , v j , τ

′
i)

22 C j (t) ← min(C j (t),C ′
j (t), t ∈ [τ1j , τ2j]

23 Q.update(τ j ,C j (t))

24 τi ← τ ′
i

25 if vi = vd and τi ≥ td then
26 return min(Ci (t))

27 else if τi < vi .tLD then
28 Q.insert((τi ,Ci (t)))

29 Rp∗
s,d

= min(Cd (t))

Initially, we set vs’s cost function to 0 in its active time
interval and set τs to the query’s starting time (Line 2). Then,
we set the other vertices’ cost functions to their earliest arrival
timeminus ts and the corresponding τi to their earliest arrival
time vi .tE A (Lines 3–4). At this stage, the subintervals of the
vertices are empty. So, all cost functions are refined. We use
a priority queue Q to organize the information. The elements
we insert into Q are pairs of (τi ,Ci (t)) ordered by τi . The
while loop (Lines 6–28) updates the minimum cost functions
and refines the subintervals. For each element in Q, it is
ensured that its minimum cost function is well refined in its
subinterval [vi .tE A, τi].

Arrival Time Interval Extension (Lines 7–9): Each time
we pop out the top pair (τi ,Ci (t)) from Q. As defined, Ci (t)
is well refined within subinterval [vi .tE A, τi]. Then, we need
to expand this subinterval to a later arrival time such that its
well-refined claim still holds. Recall that the elements in Q
are sorted by τ which is the arrival time of each vertex. It is
obvious that τi is no bigger than any τ in Q, and the current
top pair (τk,Ck(t)) has the smallest τ in Q. Thus, for any vi ’s
in-neighbor v f , its refined time interval’s upper bound τ f ≥
τk . If Ci (t) needs to be updated by v f , it would be later than

123

Go slow to go fast: minimal on-road time route scheduling with parking facilities using…

τ f + w(v f , vi , τk). Suppose v f has the smallest travel cost
at τk among all vi ’s in-neighbors, then no vertex can change
Ci (t) before τk +w(v f , vi , τk)). That is to say, Ci (t) is well
refined in subinterval [τi , τ ′

i], where τ ′
i = τk +w(v f , vi , τk)

(Line 9).
Minimum Cost Function Update (Lines 10–23): For each

out-neighbor v j of vi , we compute itsC j (t) that departs from
vi within [τi , τ ′

i]. This part is similar to Basic MORT ’s but
it works on a smaller time interval. If vi is a parking vertex,
we apply minimum staying time on it (Line 11–13). If its
neighbor v j is a parking vertex, we apply the non-increasing
property on it. Then, we compute the corresponding new
subinterval: lower bound τ 1j is τi + w(vi , v j , τi) and upper
bound τ 2j is τ ′

i +w(vi , v j , τ
′
i). Finally, we compare the new

C ′
j (t) with the existing C j (t) and use the smaller one as the

newly computed C j (t), and update v j ’s function in Q. It
should be noted that although we have updated C j (t) in a
new subinterval, it is still not well refined within it. It is only
when we actually visit v j as the top element in Q that its
refined subinterval can be expanded.

After updating, we go back to see vi itself. We first set τi
to its new value τ ′

i (Line 24). If τi has already reached its
latest departure time, then Ci (t) is fully refined and we will
not need it anymore. Otherwise, it is still not well refined and
thus we insert it back to Q with the new τi as the sorting key
(Line 28). If vd is fully refined within its active time interval,
the algorithm terminates. As for theminimumvalue ofCd(t),
it is trivial to maintain.

4.3.2 Running example

We continue with the example used in Sect. 4.1.1. After
running AT I (v1, v5, 0, 30, 130), we can get the correspond-
ing initial τ values (earliest arrival times): τ1 = 0, τ2 =
40, τ3 = 70, τ4 = 95 and τ5 = 105. Thus, the initial ele-
ments in Q are < (τ1 = 0,C1(t)), (τ2 = 40,C2(t)), (τ3 =
70,C3(t)), (τ4 = 95,C4(t)), (τ5 = 105, C5(t)) >. C0(t)
has two points (0, 0) and (25, 0), and the other Ci (t) only
has one point (τi , τi).

In the first iteration, v1 has the smallest τ in Q, so we pop
v1 out of Q. The current top element in Q is (τ2 = 40,C2(t)),
which has the earliest refined arrival time in Q. Thus, we
use τ2 = 40 as the base time. v1 has no in-neighbor, so
min(w(v f , v1, 40)) = ∞ > v1.tLD . Then, v1 is well refined
in its active time interval. Now, we update v1’s out-neighbors
in the refined time interval [0,25]. Because v2 is v1’s only out-
neighbor and the edge cost function of (v1, v2) isw(v1, v2, t),
we compute C2(t) on time interval [0 + w(v1, v2, 0), 25 +
w(v1, v2, 25)] = [40, 65]. It should be noted that although
C2(t) is newly computed, τ2 remains 40, which means the
C2(t) from t = 40 is still unrefined and might be changed
by other vertices.

In the second iteration, the current Q is < (τ2 =
40,C2(t)), (τ3 = 70,C3(t)), (τ4 = 95,C4(t)), (τ5 = 105,
C5(t)) >. We pop out the top element v2 and visit it. The cur-
rent top element is τ3 = 70, so none of the in-queue vertices’
refined latest arrival time is earlier than 70, which means all
the vertices’s time interval before 70 has been used to update
their out-neighbors. For v2’s in-neighbor v1, if it departs at
t = 70, it will arrive v2 at 70+w(v1, v2, 70) = 97.5. So it is
guaranteed that no vertices can change C2(t) in time interval
[40, 97.5]. Thus,C2(t) is refined in [40, 97.5], and its new τ2
is extended to 97.5. However, since 97.5 > v2.tLD , v2 is also
well refined in its active time interval. Then, we update v2’s
out-neighbors (v3 and v4). First we consider v3. The new time
interval for v3 is [40+w(v2, v3, 40), 65+w(v2, v3, 65)] =
[70, 95]. Since the previousC3(t) has no value in [70,95], we
use the new one directly. Then, we update v4 in time inter-
val [40+w(v2, v4, 40), 65+w(v2, v4, 65)] = [95, 138.75].
However, since v4 is a parking vertex, it has to follow the
non-increasing property.

In the third iteration, Q becomes < (τ3 = 70,C3(t)),
(τ4 = 95,C4(t)), (τ5 = 105,C5(t)) >. We pop out top
element and visit v3. The current top is τ4 = 95 and
w(v2, v3, 95) = 30. So v3’s refined time interval is extended
to [70, 95+ 30] = [70, 125], which is larger than v3’s active
time interval. So v3 is also well refined. v3’ out-neighbor
v5’s minimum cost function will be computed in time inter-
val [70 + w(v3, v5, 70), 95 + w(v3, v5, 95)] = [105, 130].
τ5 remains 105. The current Q is < (τ4 = 95,C4(t)), (τ5 =
105,C5(t)) >.

In the fourth iteration, we visit v4 and the top element
is τ5 = 105. w(v2, v4, 105) = 100 and it extends τ4 to
205, which exceeds v4’s active time interval, so v4 is also
well refined. We update v4’s out-neighbor v5 in time interval
[95+w(v4, v5, 95), 125+w(v4, v5, 125)] = [108.75, 130].
The new C ′

5(t) has some lower values compared with the
previous one, so we take the lower one as the C5(t). Finally,
the Q has only one element, and we can guarantee that no
vertex can update v5 now. So the minimum on-road travel
time from v1 to v5 is 100.

4.3.3 Correctness

Before we prove the correctness of Incremental MORT Algo-
rithm in Theorem2,wefirst prove theminimumcost function
is correctly computed. Lemma 3 proves Lines 7–9 is correct,
and Lemma 4 proves Lines 10–23.

Lemma 3 When vi is popped out and visited, it is guaranteed
that Ci (t) will not change in [τi , τ ′

i].
Proof Suppose τ j is the current top τ in Q. Thus, ∀τk ∈
Q, τk ≥ τ j ⇒ Ck(t) is well refined before τk , which means
∀vk → vo,Co(t)has beenupdated fromvk before τk . In other
words, no update before time τ j is possible from now on. The

123

L. Li et al.

earliest possible time to update from vk to vo is τ j . Suppose
v f → vi , so the earliest possible time to update from v f to
vi is also τ j . If we depart from v f at τ j , the earliest arrival
time at vi is τ j +w(v f , vi , τ j). Suppose w(v f , vi , τ j) is the
smallest amongall in-neighbors ofvi , then the earliest change
of Ci (t) will not happen before τ ′

i = τ j + w(v f , vi , τ j). So
Ci (t) will not change in [τi , τ ′

i]. ⊓0
Lemma 4 Ci (t), where t ∈ [τi , τ ′

i], has been updated before
it is refined.

Proof τi = min{τ j + w(v f , vi , τ j)|∀vi }. If v f is not in Q,
then C f (t) is already refined. So when we finish refining
C f (t), we will update Ci (t) from v f . If v f is in Q, then
τ f ≥ τ j ≥ τi . Otherwise, we should have visited v f earlier
than vi . Thus, v f ’s refinement lower bound is no earlier than
τ j , so Ci (t) has been updated from v f at τ f , which leads to
τ f + w(v f , vi , τ f) ≥ τ ′

i . Hence, Ci (t) has been updated in
subinterval [τi , τ ′

i]. ⊓0
Theorem 2 Algorithm 3 finds the MORT.

Proof Lemma 4 guarantees each Ci (t) is fully updated, and
Lemma 3 ensures the final Ci (t) is validated incrementally.
When vd ’s τd reaches the latest arrival time td , vd ’s minimum
cost function Cd(t) is fully refined and will not be changed
even if the while loop runs on. All the Ci (t) are updated
by its in-neighbors, so they are the same as Basic MORT ’s
minimum cost functions. Therefore, the minimum value of
Cd(t) is the minimal on-road travel time. ⊓0

4.3.4 Complexity analysis

The ATI takes O(|V | log |V | + |E |) time. The initialization
phase (Lines 2–5) takes O(V) time. We use Fibonacci Heap
[48] to implement the priority queue. The size of Q is at most
|V |, so the extract-min operation on Q takes O(log |V |) time.
Since each vertex vi ’s minimum cost function is constructed
incrementally, we use Li to denote the number of its subinter-
vals. Therefore, Li is actually the number of times vi would
be extracted from Q, which takes Li log |V | time. The update
and insert on Fibonacci Heap take O(1) time, so the main-
taining of Q takes O(Σ

|V |
i=0Li log |V |) = O(L(|V | log |V |))

time, where L is the average number of subintervals. On the
other hand, during the update, we visit all vi ’s in-neighbors,
which is the same as in-edges Ein

i . So if we visit all the in-
neighbors of all the vertices, we actually visit every edge.
Thus, Σ

|V |
i=0|Ein

i | = |E |. So the total time complexity is
O(Σ

|V |
i=0Li (log |V | + |Ein

i |)) = O(L(|V | log |V | + |E |)).
Now let’s analyze the lower-bound of Li . Firstly, suppose

τ
j
i is the topvalue inQ and τk is the headvalue, τ

j
i ≤ τk . Then

τk +min(w(v f , vi , τk)) = τ
j+1
i , so τk < τ

j+1
i . Eventually,

we can have a Li such that τ
Li
i ≥ vi .td . Next, we define

η0i = vi .ts and η
j+1
i = η

j
i +min(w(v f , vi , η

j
i)). Eventually,

we can get a Ji such that η
Ji
i ≥ vi .td . Since for the same j , τ j

i

is always smaller than η
j
i , so we can get Li > Ji . If we use

J to denote the average number of Ji , then the lower-bound
of L is J . Obviously, J > T , so L is also bigger than T .

For the space complexity, the time-dependent parking
graph takes O(|V |+T |E |) space. Each minimum cost func-
tion Ci (t) takes O(T) space. Q has at most |V | elements, so
the size of Q is O(T |V |). Hence, the overall space complex-
ity is O(T (|V | + |E |)).

4.4 Application scenarios

In this section, we provide three examples to explain how
our algorithmworks in different scenarios. It should be noted
that the graph structure and time-dependent information are
crucial for finding the desired results. Meanwhile, the set of
parking vertices and their corresponding minimum waiting
time v.tmin can also be specified by user depending on dif-
ferent needs.

Firstly, suppose a commuter wants to arrive office faster
and depart later. In fact, this is an ISFP problem, so we can
run our algorithm on a road network that only allows waiting
on the departure vertex. Therefore, the departure vertex is
the only vertex in the waiting vertex set, and its minimum
waiting time is set to 0.

Secondly, suppose a scenario for a truck driver who needs
a forced rest every period of time at the service stations along
the highway. In this case, the graph is a network of highway,
and the parking vertices are some service stations, each has
a pre-defined minimum staying time to ensure the rest is
sufficient. The traveling time between these stations roughly
equals the driver’s maximum driving time. Therefore, the
force waiting is included in the computation and minimum
rest time is guaranteed.

Finally, suppose a traveler is planning a journey from one
city to another in several weeks time and wants to visit some
of the national parks along his route. In this case, the graph
should only contain the national parks as vertices and allows
waiting on all of them, which is another extreme case of our
model. The graph structure should express the rough travel-
ing order. In this case, it could be organized into a layered
graph, and we only visit one of the vertices (national parks)
on the same layer. The edges only exist between the vertices
in neighboring layers. In an extreme case when the traveler
wants to visit every park, the graph should be organized as
a linear line. It should be noted the graph structure can also
reflect the distribution ofwaiting schedule.We can set the dis-
tribution of parking vertex manually to meet users’ waiting
requirement (e.g., set the corresponding minimum waiting
time to ensure a forced rest every period of timeor aminimum
visiting time). Next, we should not use the traffic condition as
the only parameter to determine the time-dependent weight

123

Go slow to go fast: minimal on-road time route scheduling with parking facilities using…

functions. In fact, the functions should take both travel cost
anddrivers’willingness into account. For instance, it is a jour-
ney rather than a hurrying on the way, so we should avoid
the unsafe night driving. Thus, the weights during night time
should be set much higher even though the traffic condi-
tion is good. In fact, all the weights for the time that are
not suitable for driving, either due to bad traffic condition or
due to travelers’ preference, should be set higher. After that,
our algorithm could find aMORT traveling schedule on this
time-dependent graph.

5 α-MORT approximation

In this section, we present several approximation methods
to solve the MORT problem faster with a guaranteed lower
bound α. As analyzed in Sect. 4.2.4, the time complexity
is significantly affected by the number of turning points in
Ci (t). What is worse, it grows larger as the expansion grows,
which makes the computation slower and slower. So the key
to speed up is decreasing the number of turning points, espe-
cially the useless ones. However, we cannot determine if one
turning point will end up with the optimal result until the
final Cd(t) is constructed. Therefore, we design an approx-
imation approach that can guarantee the final result is no
less than αC∗

d (t), α ∈ (0, 1]. Section 5.1 introduces the
approximation error α and how the error grows as the route
grows. Sections 5.2–5.4 describe three approximate methods
in detail.

5.1 Error bound α and turning point pruning

Given an input approximation ratio α, we aim to compute
a route whose MORT time A∗

d(t) ≥ αC∗
d (t). However, the

approximation cannot be applied on each edge along the route
directly.

Suppose a route ismade up of a series of consecutive edges
Ê =< e1, e2, . . . , en > and ||Ê || is the length of Ê . If we
apply an approximation factor α1 on e1, α2 on e2 and so on,
the error of the final result does not grow linearly, as shown
below:

||Ê ||′ = ((((e1α1 + e2)α2)+ e3)α3 + · · · en)αn

= α1α2α3 · · ·αn e1 + α2α3 · · ·αne2 + · · · + αnen

=
n∏

j=1

α j e1 +
n∏

j=2

α j e2 + · · · +
n∏

j=n

α j en

=
n∑

i=1

n∏

j=i

α j ei

To achieve ||Ê ||′ ≥ α||Ê ||, we have to guarantee∏n
j=1 α j ≥ α. In another word, we can view α as a total

budget of pruning power along the route, the larger the bud-
get assigned to a vertex, the stronger pruning power it has to
reduce the turning points. Because the turning point numbers
of the earlier visited vertices are much smaller than those of
the latter visited ones, we concentrate the pruning power to
the latter vertices by setting a global turning point number
thresholdρ:Only those verticeswhose turningpoint numbers
are larger than ρ will be pruned. Because in the ATI compu-
tation we already have two functions of earliest arrival path
and latest departure path, we use min(|E A(vd)|,|LD(vs)|)

3 as a
heuristic threshold value, where |E A(vd)| and |LD(vs)| are
the turning point numbers of those two paths. The details of
how to assign pruning power α j are discussed fromSects. 5.2
to 5.4.

Algorithm 4: Ci (t) Pruning Algorithm
Input: Ci (t) = (p1, p2, ..., pn), pruning power αi
Output: αi -approximate Ai (t)

1 begin
2 i ← 2
3 while i ≤ |Ci (t)| − 1 do
4 Point List .insert(pi)
5 for p j ∈ Point List do
6 //compute p j ,i+1 on (pi−1, pi+1)
7 p j,i+1 ← Compute(pi−1, pi+1, p j)
8 if p j,i+1 ≥ αi p j and p j ≥ p j ,i+1 then
9 i ← i + 1

10 Point List .clear()
11 break

12 Ci (t).prune(pi)

13 return Ai (t) ← Ci (t)

At this stage, we assume |Ci (t)| > ρ and it has a pruning
powerαi . The pruning process visits the turning points one by
one in a sliding window way, as shown in Algorithm 4. Each
timewevisit a turningpoint pi ,weput it into aPointList (Line
4). It can be pruned only if all the points p j in PointList can
be safely represented by point p j,i+1 on line (pi−1, pi+1)

(Line 7). The safe representation has two conditions (Line
8). Firstly, p j,i+1 has to be no smaller than αi p j , as required
by approximation bound. Secondly, p j is no smaller than
p j,i+1, because the smaller value has a higher possibility to
result in the final optimal result. If any p j does not satisfy
these two conditions, pi cannot be pruned and we empty
the PointList. When all the points are visited, we return the
remaining points as the approximate function Ai (t). Since
p j,i+1 ≥ αi p j is strictly required, Ai (t) ≥ αiCi (t). In the
worst case when all the points within Ci (t) is pruned, the
testing in line 8 has to run O(|Ci (t)|2) times. However, it has
a near linear running time in practice.

Figure 7 shows a pruning example. It should be noted that
although the pruning procedure looks similar to the trajectory
compression/segmentation, it does not run on the final Ci (t)
for each vertex because we cannot get them until the expan-

123

L. Li et al.

Fig. 7 Ci (t)Turning points pruning example. p2 can be pruned because
its new point p2,3 represented by line (p1, p3) is larger than αi p2. p3
can be pruned because p2,4 > αi p2 and p3,4 > αi p3. But p4 cannot be
pruned because their new values on the new approximate line (p1, p5)
are smaller than αi p2,αi p3 and αi p4

sion finished. The true contribution of the approximation lies
in the pruning power distribution approaches, as described
in the following sections.

5.2 Even distribution

The first way to assign pruning power is distributing them
evenly. Suppose |Ê | is number of edges in route Ê . The most

straightforward way is to assign αi = α
1
|Ê | , as shown below:

n∑

i=1

n∏

j=i

α j ei =
n∑

i=1

n∏

j=i

α
1
|Ê | ei =

n∑

i=1

α

∑n
j=i

1
|Ê | > α

n∑

i=1

ei

However, pruning power α
1
|Ê | becomes weaker when |Ê |

is larger, whichmakes the pruning insufficient. Therefore, we
restrict the pruning powerα shared by only ˇ|E | vertices along
the route, where ˇ|E | ≪ ˆ|E |. Thus, the vertices has larger
pruning power when their turning point numbers surpass the
threshold ρ.

5.3 Exponential distribution

The secondway to distribute pruning power is decreasing the
power exponentially. In this way, the first pruning vertex can
have amuch larger power than those in then even distribution.

We assign α1 = α
1
2 , α2 = α

1
22 and so on. In this way, the

approximate bound is guaranteed, as proved below:

||Ê ||′ = α1α2α3 · · ·αn e1 + α2α3 · · ·αne2 + · · · + αnen

= α
1
2 α

1
22 · · ·α 1

2n e1 + α
1
22 · · ·α 1

2n e2 + · · · + α
1
2n en

= α
∑n

i=1
1
2i e1 + α

∑n
i=2

1
2i e2 + · · · + α

∑n
i=n

1
2i en

> αe1 + α
1
2 e2 + · · · + α

1
2n en > α

n∑

i=1

ei = α||Ê ||

Although the pruning is large in the beginning, it decreases
fast as the pruned vertices grows. So similar to the Even
Distribution, we also set a small upper bound of n to avoid
useless pruning.

5.4 Dynamic exponential distribution

The previous two methods assign fixed pruning power to
each vertex and do not care whether the power is fully uti-
lized or not. In fact, most of the vertices only use part of
their power, which is a waste of the precious budget. In
order to take the most advantages of the precious pruning
budget, we propose the Dynamic Exponential Distribution
method.

Like the Exponential Distribution, the pruning power also
decreases exponentially. However, instead of dividing the
previous pruning power’s logarithm by 2, we divide the
remaining pruning power’s logarithm by 2. Initially, the algo-
rithm keeps pruning power’s logarithm ∆i for each vertex
and set them to 1. The first pruning vertex vk has the pruning

budget α
∆k
2 = α

1
2 . During the pruning, we can get its actual

pruning usage by β = max(pi, j/pi), where pi is the pruned
point. Then, the remaining pruning power logarithm for v′

ks
out-neighbor v j is δk − logαβ. If v j is to be pruned, its prun-

ing budget is α
δk−logαβ

2 . We also set a lower bound for αi to
avoid the useless pruning.

The proof of bound guarantee is similar to Exponential
Distribution.

6 Speed profile generation

In this section, we explain how we derive the speed profile
from the trajectory data. We first talk about how to obtain the
road speed from the trajectory. Then, we present our obser-
vations on the effects of different granularities of the speed
collections. After selecting an appropriate time slot size, we
use several approaches to estimate missing values. Finally,
we test three compression algorithms on our speed profiles
in order to reduce the storage space.

6.1 From trajectory to road speed

First of all, we match the trajectory tri =< (xi1, y
i
1, t

i
1), . . . ,

(xim, y
i
m, t

i
m) > to the graph G. There are several meth-

ods [49–51] in this field. After that, we obtain a sequence
of consecutive edges Ei =< e1, . . . , em >, with ∀1 ≤
j ≤ m, (xij , y

i
j , t

i
j) is on some edge ek ∈ Ei . It should be

noted that an edge could have several points attached to it,
while some edges might have no attaching points. For any
consecutive pair of points pij = (xij , y

i
j , t

i
j) and pij+1 =

(xij+1, y
i
j+1, t

i
j+1), we can retrieve a set of edges Ei

j =<

123

Go slow to go fast: minimal on-road time route scheduling with parking facilities using…

ek, ek+1, . . . , en > between them. We assume the travel
between pij and pij+1 keeps an even speed. The distance
dij, j+1 between them is the sum of corresponding traveled
edge length. Thus, the speed is vij = dij, j+1/(t

i
j+1 − t ij).

Then, we attach this speed to the corresponding edges in Ei
j ,

with time proportional to the distance to p j
j . By repeating

this procedure from the first GPS point to the last, we can get
all the roads’ speeds along this trajectory, together with their
corresponding time.

6.2 Speed data collection

Before collecting the data into time slots, we first categorized
them into weekday and weekend, or by date. Then, for each
edge ei in one specific category, it has a set of speed data
< (vi1, t

i
1), . . . , (v

i
n, t

i
n) >. The next step is converting it into

a usable speed profile.
The most straightforward method is to use these speed

data directly, which would result in a set of linear piecewise
speed functions. However, it is not practical for the following
reasons. Firstly, some speeds are eithermuch smaller than the
others because the driver maywait for the traffic light or even
stop to wait for a passenger, or bigger than the average due
to some emergency cases. If we line up these speed points
directly, we will get a zigzag speed profile that apparently
cannot describe the road network’s actual traffic condition. In
fact, it falls into the terrible situation of overfitting. Secondly,
a speed profile with a random bunch of functions is both hard
to use and compress. Another approach is approximating the
speed data using some regressionmethods [52,53]. Although
it can represent the speed profile as functions, it is unable to
deal with missing value since it estimates the missing speed
only by the values on each edge itself, which is highly inac-
curate.

To address the problems mentioned above, we use a
histogram-based approach to collect the speed data. Specif-
ically, we divide one day’s time into T- slots with the same
length. Then, the speed data that fall into the same slot will be
added up together to get an average speed. Thus, the influence
of the outliers is reduced dramatically. However, the granu-
larity of the histogram is another important issue to consider.
If T- is small, it cannot reflect the difference of traffic condi-
tions during different time of a day. While if T- is big, there
will be not enough speed data within each time slot and the
size of the speed profile will soar up at the same time.We test
the granularity of 1-day, 1-h, 30, 15 and 5-min in Sect. 7.4.1.
Based on the experiment results, we choose the 5-min time
slot, whose number is 288 for each edge in a day, to collect
the speed.

6.3 Missing value estimation

Even though the GPS-based trajectory data has a higher cov-
erage of the road network than other approaches, it is still
hardly possible to cover every edge. So, it also faces the
sparsity problem. Tomake thematter worse, the data become
even sparer as the number of time slots grows. In our test,
although the 5-min granularity is not too small to produce
too many void time slots, there are still 85% of them have no
value. In this section, we propose two approaches to estimate
the missing values in the histogram data: Cosine Similarity
and Spatial-Temporal Neighboring Average.

6.3.1 Cosine similarity

This approach compares the similarity between an edge
and its neighbors and uses the similar ones’ data to fill
its missing values. Each road ei ’s speed profile can be
viewed as a speed vector SPi with T- values: SPi =<

SPi,0, SPi,1, . . . , SPi,T-−1 >, where SPi, j is the speed of
edge ei at time slot j . If there is a missing value, we just use
0 to denote it. |SPi | denotes the number of time slots with-
out missing values. Thus, the similarity between the speed
profiles of two edges ei , e j can be evaluated by the cosine
similarity:

Coorelation (SPi , SPj) =
SPi · SPj

∥ SPi ∥∥ SPj ∥

=

T-−1∑
k=0

SPi,k × SPj,k

√
T-−1∑
k=0

(SPi,k)2 ×
√

T-−1∑
k=0

(SPj,k)2

Weuse SPi∩SPj = {k|SPi,k ̸= 0∧SPj,k ̸= 0} to denote the
time slots that are not empty on both edges. Furthermore, in
order to eliminate the bias from the edges with sparse speed
profile, we calculate the similarity only when |SPi ∩ SPj | >
25%×T-. For each edge, we compute its similarities between
its 3-hop neighboring edges and find the top-3 similar ones.
Then, it uses the speed in these three profiles to fill its missing
speeds. For a specific time slot, if the most similar one is also
empty, then we check the second most similar one. If still
empty, then check the third.

The computation works iteratively from the edges with
higher |SPi | to lower ones. As the process proceeds, the |SPi |
changes at the same time. Eventually, the edges with |SPi |
larger than 25% × T- would get fully filled. For those sparse
ones, we apply the Spatial-Temporal Neighboring Average
approach described in Sect.6.3.2.

123

L. Li et al.

6.3.2 Spatial-Temporal Neighboring Average

This is the simple approach that averages the speed of a road’s
neighbor and its neighboring time slots.

SPi, j = Avg(SPk, j , SPi, j−1, SPi, j+1), ∀ek ∩ ei ̸= φ

where SPi, j is edge ei ’s speed at its j th time slot. If its
neighbors are also empty at certain time slots, we extend
the search to the 3-hop neighbors and 3-hop time slots. The
computation also computes iteratively starting from the roads
that have fewer missing values. This is because these roads
always link to roads that have a relatively complete speed
profile. Then, it propagates all the roads in the road network
eventually.

6.4 Speed profile compression

As mentioned previously, the smaller the time slot size, the
less space-efficient the speed profile is, especially when the
neighboring slots have the same or similar speeds. To save the
space for storing the speed profiles on disk and inmemory,we
propose an adaptive speed profile. The term adaptive means
this speed profile is derived from the histogram-based profile
and adapts the occasions where the nearby time slots have
similar speed values. In this subsection, we aim to reduce
the speed profile size from the perspective of each road. We
test three different kinds of Piecewise Linear Approxima-
tion [54,55] algorithms to convert the 5-min-histogram-based
speed profile to a set of piecewise linear functions. The actual
speed of each road at different time can be computed by the
corresponding function.

The histogram-based speed profile can be viewed as a
type of Time Series Data [56], and building the adaptive
speed profile from the histogram-based speed profile falls
into the category of Time Series Segmentation and is defined
as below:

Definition 2 (Speed Profile Segmentation) Given a speed
time series SPi =< SPi,0, SPi,1, . . . , SPi,T-−1 >, construct
a model ˆSPi =< SPi,0, . . . , SPi,d̂ > of reduced dimension-

ality d̂, (d̂ ≪ T- − 1) such that R(ˆSPi , SPi) < ε, where R is
a reconstruction function and ε is a given error threshold.

The reconstruction function R calculates the difference of
speed value between adaptive speed profile and the origi-
nal one. It serves as the evaluation method of compression
quality. We choose the residual error as the reconstruction
function, which adds up the square of the differences. PLA
(Piecewise Linear Approximation) [54] is the compression
approach which aims at transferring the original SPi into a
set of approximate lineswhile retaining the essential features.
There are two ways of approximation:

– Linear InterpolationUsea line connecting the twoending
points to approximate.

– Linear Regression Use the linear regression algorithms
to find the best fitting line.

Apparently, linear interpolation has a smooth look, while
linear regression produces a set of dis-joint segments. We
choose linear interpolation approachbecause of the following
reasons. Firstly, it is obviously faster to implement and com-
pute. Secondly, it is more space saving than linear regression.
Linear interpolation only needs to store the turning points,
while linear regression has to store all the end points of the
segments, which is twice larger. Moreover, since the speeds
in profile are all approximate, the more accurate algorithm
in this step cannot promise a better approximation.

There are three basic categories of PLA: sliding window
[54], top-down [57] and bottom-up [58]. They are described
in the following sections:

6.4.1 Sliding window algorithm

The sliding window algorithm is a fast online algorithm
whose time complexity is O(n), where n is the speed pro-
file length of an edge. It keeps expanding the approximate
line from the left starting point to the right until the error
surpasses a user-specified threshold ε. Then, it uses the end
point of the last generated segment as the next starting point
and repeats until all the points are visited. Since each point
in the speed profile is visited only once, it has a linear com-
plexity. The detail is shown in Algorithm 5. SPi, j,k denotes
the speed profile segment of edge ei from its j th speed point
to kth speed point.

Algorithm 5: Sliding Window Algorithm
Input: The speed profile of an edge SPi =< SPi,0, ..., SPi,T-−1 >,

error threshold ε
Output: The adaptive speed profile of a road

ˆSPsw
i =< SPi,0, ..., SPi,d̂ >

1 begin
2 ˆSPsw

i .insert(SPi,0)
3 for j f rom 0 to T- − 1 do
4 for k f rom j + 1 to T- − 1 do
5 if R(SPi, j,k ˆSPsw

i, j,k) > ε then
6 ˆSPsw

i .insert(SPi,k)
7 j = k − 1
8 break

9 if SPi,T-−1 not in ˆSPsw
i then

10 ˆSPsw
i .insert(SPi,T-−1)

11 return ˆSPsw
r

123

Go slow to go fast: minimal on-road time route scheduling with parking facilities using…

6.4.2 Top-down algorithm

The top-down algorithm finds the best speed point that splits
the original speed profile into to segments each time (i.e.,
where the two resulting segments have the smallest combined
error). If the any of the two resulting segment’s error is larger
than threshold ε, the algorithm repeats recursively to find the
best splitting speed points in it. The algorithm terminates
when all the speed profile segments’ errors are smaller than
ε.

It breaks the search space into two pieces each time and
calls for itself recursively at most twice. At the same time, the
R function calculates the difference between the result speed
profile segment and the original one,which takes O(n) times.
So the overall time complexity of the top-down algorithm
is O(n log n). As the threshold ε grows, less recursion is
needed, and the overall running time decreases.

Algorithm 6: Top-down algorithm
Input: The speed profile of an edge SPi =< SPi,0, ..., SPi,T-−1 >,

error threshold ε
Output: The adaptive speed profile of a road

ˆSPtd
i =< SPi,0, ..., SPi,d̂ >

1 begin
2 Function TDFindBreakPoint(int low, int high)
3 best_so_ f ar = in f
4 for j f rom low + 1 to high − 1 do
5 BestTmp = R(SPi,low, j , ˆSPtd

i,low, j)+
R(SPi, j,high , ˆSPtd

i, j,high)

6 if BestTmp < best_so_ f ar then
7 best_so_ f ar = BestTmp
8 k = j

9 ˆSPtd
i .insert(SPi,k)

10

11 if R(SPi,low,k , ˆSPtd
i,low,k) > ε then

12 T DFindBreakPoint(low, k)

13 if R(SPi,k,high , ˆSPtd
i,k,high) > ε then

14 T DFindBreakPoint(k, high)

6.4.3 Bottom-up algorithm

The bottom-up algorithm is reverse to the top-down algo-
rithm. In the initial step, it connects the points in the original
speed profile, so errors are all 0. After that, it merges con-
secutive lines, by erasing the intermediate point, with the
smallest error iteratively until the smallest error exceeds the
threshold ε. In the worst case, we have to erase all the inter-

mediate points, which runs
n(n − 1)

2
times. Therefore, the

time complexity of bottom-up algorithm is O(n2). The detail
is shown in Algorithm 7.

Algorithm 7: Bottom-Up Algorithm
Input: The speed profile of an edge SPi =< SPi,0, ..., SPi,T-−1 >,

error threshold ε
Output: The adaptive speed profile of a road

ˆSPbu
i =< SPi,0, ..., SPi,d̂ >

1 begin
2 ˆSPbu

i =< SPi,0, ..., SPi,T-−1 >
3 do
4 minError = in f
5 for j f rom 1 to T- − 1 do
6 errorTmp = R(SPi, j−1, j+1, SP

bu
i, j−1, j+1)

7 if errorTmp < minError then
8 minError = errorTmp
9 bp = SPi, j

10 if minError < ε then
11 ˆSPbu

i .erase(bp)

12 while minError ! ε

7 Experiments

In this section, we first describe the experiment setup in terms
of datasets, online query setup and speed profile evaluation
metrics. After that, we present the result of a comprehen-
sive performance study to demonstrate the effectiveness and
efficiency of our MORT algorithms. Finally, we show the
experiment results of the offline speed profile generation.

7.1 Experiment setup

7.1.1 Datasets

We first describe the map datasets we use for the whole sys-
tem. Then, we present the trajectory data we use for the speed
profile generation.

We get two maps of Beijing and Shanghai from Nav-
info.1 The Beijing map consists of 302,364 intersections and
387,588 roads, which covers a 184 km×185 km spatial range
andhas a total length of 51,666kmof roads.The roadnetwork
of Shanghai has 243,842 intersections and 310,058 roads. It
covers a 120 km×143 km spatial range. The total length of
road segments is 42,930 km. As for the parking vertices, we
attach them on maps randomly to test its influence on the
algorithms.

We obtain our trajectory data from DiDi.2 It has the
trajectory data of five consecutive days from 2015.4.1 to
2015.4.5, collected from taxis in Beijing and Shanghai,
respectively. The total data set has 2,171,882 trajectories and
74,948,829 GPS points in Beijing, and 1,402,047 trajectories
and 40,203,623 GPS points in Shanghai. The average sam-
pling rate is 5 s. 89% of the roads in Beijing and 75% of the
road in Shanghai are covered by the trajectory. The details

1 http://www.navinfo.com/.
2 http://www.xiaojukeji.com/news/newslisten.

123

http://www.navinfo.com/
http://www.xiaojukeji.com/news/newslisten

L. Li et al.

Table 2 Trajectory data sets City Num 4.1 4.2 4.3 4.4 4.5

Beijing Traj 532,868 143,998 541,650 310,976 642,390

GPS 17,698,668 5,164,315 17,069,156 11,402,483 23,614,206

Shanghai Traj 389,733 103,411 378,968 180,670 349,265

GPS 10,747,519 2,949,734 10,039,956 5,519,847 10,946,567

Fig. 8 Trajectory starting time and length distribution

of each day’s basic information are shown in Table 2. The
trajectory’s length distribution of each city on each day is
present in Fig. 8a, b. It shows that the number of trajectory
decreases as the length grows, so most of our trajectories are
not too long. As for the last value point that soars up, that is
because it is the accumulation of the all the trajectories that
have length no shorter than 10 km. The starting time distri-
bution along 24 h is shown in Fig. 8c, d. Except for 2015.4.2,
which lacks some data, most trajectories are collected dur-
ing daytime and few trajectory appears after midnight. This
distribution corresponds to the people daily behavior, and we
build our test speed profile on daily basis.

7.1.2 MORT experiment setup

We test the algorithms under four variations. The first one
is the distance of two vertices on road network. The second
one varies the starting time interval size from 1, 2, 3 to 4 h.
The next one tests the performance under different speed
profiles (50, 100, 200, 400 turning points), and the last one
varies the percentage of parking vertices (5, 10, 50, 100%).
Except for the third test, which uses synthetic speed profile,
all the experiments use the speed profiles generated from the
trajectory data.

7.1.3 Speed profile evaluation metrics

We use 80% of the trajectories that are selected randomly
to build the speed profiles and test them on the remaining
20% trajectories. In the evaluation, we re-travel the test-
ing trajectories using the speed from the generated speed
profile since these trajectories are the only ground truth
we have. For any trajectory Tri , we first match it on map
and convert it into a sequence of consecutive edges like
< Tri .e0, Tri .e1, . . . , Tri .ek >, which starts on time t0 and
stops on tk+1, its average speed along this trajectory is

Tri .speed =
Σk

j=0Len(Tri .e j)

tk+1 − t0
(1)

Then, we re-travel this trajectory by following exactly the
same roads in the same order from t0 using the testing speed
profile, and it will finish traveling Tr j .ek on t ′k+1. The new
average speed is

Tri .speed′ =
Σk

j=0Len(Tri .ei)

t ′k+1 − t0
(2)

Then we can calculate the mean absolute error (MAE) of
each speed profile as

MAE =
∑N

i=0 |Tri .speed − Tri .speed′|
|Tr |

(3)

where |Tr | is the number of testing trajectories. The smaller
the MAE, the better the speed profile. The unit of MAE is
m/s. During the test, we omit those trajectories that are short
since they are more easily affected by the abnormal driving
behavior, while the longer ones suffer less from it.

7.1.4 Experiment environment

We ran all the experiments on a Dell R720 PowerEdge Rack
Mount Server which has twoXeon E5-2690 2.90GHzCPUs,
192 GB memory, 1 TB hard disk, and runs Ubuntu Server
14.04 LTS operating system.

123

Go slow to go fast: minimal on-road time route scheduling with parking facilities using…

Fig. 9 Results of minimal on-road time

7.2 MORT algorithms evaluation

7.2.1 Comparison with existing algorithms

In this section, we compare the minimal on-road time routes
computed by our algorithmwith paths generated by the other
path planning algorithms under different configurations. We
compared our methods with the following algorithms: (1) SP
(Shortest Path) which computes the shortest path between
two vertices. We set the departure time randomly within
the time interval. (2) EAP (Earliest Arrival Path) and LDP
(Latest Departure Path), which are two bypass results when
computing the minimal on-road time. (3) FP (Fastest Path)
[5]. (4) IFP (Iterative Fastest Path) which uses the FP
(Fastest Path) algorithm iteratively to get the approximate
minimal on-road time route, as described in Sect. 1. The
results achieved by our algorithms are labeled with MORT.
We do not distinguish the two versions of our algorithms in
this experiment since they produce the same on-road travel
time.

In the first test, we change the distance between vs and
vd . We randomly select four sets of vertex pairs with the
approximate distance of around 10, 20, 30, and 50 km in the
two maps. The starting time interval is set to be 4 h. 10% of
the vertices are selected as parking vertices. The results are
shown in Fig. 9a, b. It is obvious that our algorithms always
produce the shortest on-road travel time, followed by IFP
and FP. As for the other three algorithms, they do not have
a chance to achieve a shorter on-road time by changing the
departure or waiting time, so their performance is unstable
and worse than the previous algorithms in average.

The second test varies the length of starting time interval
from 1 to 4 h. The distance is set to be 20, speed profile is 100,
and parking vertex is 10%. Figure 9c, d shows the results. As
the length of the time interval grows, more possible starting

time emerge, so the on-road time of FP and IFP decreases.
As forMORT, it also decreases because it has a longer time to
wait for a faster route on the parkingvertices.And it decreases
faster than FP because it can get more benefits. As for the
other algorithms, they do not change much correspondingly
due to the same reason as the previous test.

The third test evaluates the influence of the speed profile
granularity, whose turning point numbers are 50, 100, 200
and 400. The distance is also 20, parking vertex is 10%, and
the starting time interval is 4 h.We can see fromFig. 9e, f that
as the total number of turning points grows, the number of the
turning points that have smaller traveling cost also increases.
So, there is a higher chance for FP and IFP to find routes
with smaller on-road time. AndMORT also decreases more
distinctly for the same reason.

The last test studies the influence of the park vertex per-
centage, which varies from 5, 10, 50 to 100%. The distance is
20, the speed profile has 100 turning points, and time interval
is 4 h. Figure 9g, h only shows the on-road time of MORT
because the results of all the other methods do not change
along with the percentage of parking vertices. It is easy to
draw the conclusion that as the percentage rises, the on-road
time drops accordingly since it has more vertices able to wait
for a shorter on-road time.

7.2.2 Algorithm running time

In this section, we compare the running time of our algo-
rithms on the three graphs under the same setting of the
previous experiments. Apart from the running time of our
Basic and Incremental algorithms, we also show the perfor-
mance of IFP in the first test, and Fastest Path in the second
and third tests.

Firstly, Fig. 10a, b shows the results under different dis-
tances. As the distance grows, the numbers of the visited

123

L. Li et al.

Fig. 10 Algorithm running time

vertices and edges also grow, so the running time increases.
Not surprisingly, the running time of IFP soars up, so we
demonstrate it in exponential step. Secondly, the impact of
time interval is illustrated in Fig. 10c, d. As the interval grows
longer, the active time interval also grows, which makes the
minimum cost function longer. Both algorithms run slower
because more turning points appear in the minimum cost
functions.

Furthermore, we demonstrate the running time on differ-
ent speed profiles in Fig. 10e, f. If the density of the speed
profile rises, the number of the turning points in the mini-
mum cost function also increases. However, different from
the growth of the time interval, which increases the turning
points linearly, the growth of time points in speed profile
raises the point number in minimum cost functions more
dramatically. And the Basic algorithm has higher cost on
maintaining larger cost function, so it becomes slower than
the Incremental algorithm. In addition, as shown in Fig. 10c,
f, FP is always slower than MORT. The reason is that FP
cannot apply non-increasing, so it always has more turning
points in the minimum cost functions.

Finally, we present the influence of the percentage of park-
ing vertices in Fig. 10g, h. Since the minimum cost function
of a parking vertex is non-increasing, the number of its turn-
ing point is smaller than the ordinary vertices. Therefore,
as the percentage of the parking vertices increases, the total
number of the turning points decreases. So the running time
drops correspondingly. We do no present the running time of
FP because its running time is not affected by the parking
vertices.

Even if our algorithms are faster than the state-of-art
fastest path algorithm, it is still slow for the long distance
query. So we will present an index to answer the time-
dependent path queries under a second in the future work.
But algorithms in this paper are the basis for the index.

Fig. 11 Running time and accuracy of α-MORT

7.3 Approximation algorithm

In this section, we test the running time and accuracy of our
approximation algorithms on two road networks. The results
are shown in Fig. 11. As analyzed in Sect. 5.1, the error
decreases as the route grows longer. In fact, we can still get
a good approximation result even if the initial error bound
is small. We show the results of α = 0.2 in this test. First
of all, as the distance grows, the approximation performs
better. For example, the running time is nearly half of the
original algorithm in the 50 km test, while the accuracy is
around 97%. This is because the longer routes have much
more turning points than the short ones, and pruning those
points could lead to more benefit. And the pruning power
are the same for all the routes regardless of their lengths,
so the longer routes have higher accuracy. Secondly, even
though the Even Distribution can reduce the running time
dramatically, the Exponential Distribution has an even better
performance, while theDynamic Exponential Distribution is

123

Go slow to go fast: minimal on-road time route scheduling with parking facilities using…

Fig. 12 MAE of speed profiles under different granularity and using
different missing value estimation

only slightly better the Exponential Distribution. The reason
of it is that although Dynamic Exponential makes better use
of the pruning budget, its dynamic mechanism takes extra
costs. Finally, the percentage of parking vertices also affects
the approximation performance. The no parking tests have
higher accuracy and speedup. The reason is the same as the
distance: less parking vertices along the route results in more
turning points.

7.4 Speed profile generation evaluation

7.4.1 Granularity

We compare the MAE of speed profiles under granularities
of 1-day (Universal), 1-h, 30, 15 and 5-min on 5 days in
Beijing and Shanghai, respectively. The results are shown
in Fig. 12a, b. We can observe clearly that the 5-min speed
profile outperforms the others. TheMAE increases as the time
slot size grows. The universal granularity, which is actually
a static graph, has the largestMAE obviously. So for the rest
of the tests, we only present the results of the 5-min speed
profile.

7.4.2 Missing value estimation

We compare three missing value estimation approaches in
this test:Cosine Similarity,Matrix-Factorization-based Col-
laborative Filtering (MF-CF) [37] and Spatial-Temporal
Neighboring. The MAE of these three missing value esti-
mation approaches is shown in Fig. 12c, d. It is clear that
the MF-CF approach is much worse than the other two. In
the Beijing road network, the spatial–temporal approach has
a better performance, while in the Shanghai road network,
the cosine similarity approach is better. The best missing
value estimation method of each day has a MAE around 1.

Fig. 13 Compression performance on Beijing map 2015.4.1

Table 3 Size of speed profiles under different granularities

1 day
(MB)

1 h
(MB)

30 min
(MB)

15 min
(MB)

5 min
(MB)

Beijing 4.9 68 135 369 861

Shanghai 4.1 56 112 223 718

It means that in a travel of an hour, our speed profile has a
travel distance difference about 3 km, which is quite accept-
able because different drivers have different driving behavior.

7.4.3 Speed profile compression

We compare three compression algorithms on Beijing Map
2015.4.1 in this test: Sliding Window (SW), Top-Down (TD)
and Bottom-Up (BU). The compression result is shown in
Fig. 13. We compare the error MAE, compression time and
the storage size of each algorithm under error threshold ε of
0.1, 0.5, 1, 2 and 5. As shown in Fig. 13a, the MAE of the
three algorithms is nearly the same, while the Bottom-up is
always slightly better than the other two, and it is almost as
good as the original one. As expected, the accuracy becomes
worse as the compression error threshold ε grows. When it
comes to the construction time and space consumption shown
in Fig. 13b, c, the sliding window algorithm is the fastest to
compute and its compression rate is not bad. The top-down
algorithm is slow and has the worst takes the largest space.
The bottom-up algorithm takes the longest time to compute,
but its compression is the best. In fact, it only takes 18% of
original space. So if the compression time is not a problem,
we can use the bottom-up algorithm to compress. Otherwise,
the sliding window algorithm is a better choice (Table 3).

123

L. Li et al.

8 Conclusion

In this paper, we have proposed a route scheduling sys-
tem that can answer the MORT query using the historical
trajectories. Our system has an offline speed profile genera-
tion component and an online query answering component.
On the one hand, different from the previous works that
apply their algorithms on synthetic speed profile, our sys-
tem uses the offline component to generate an accurate and
space-efficient speed profile from real-life trajectory. Such
an approach involves map matching, speed data collection,
missing value estimation and compression. It is cheaper
than the traffic monitoring system, and it can cover a larger
range of the road network. On the other hand, the online
query answering component solves a new route scheduling
problem called MORT query that aims to minimize on-
road time on road networking with parking facilities.MORT
query further generalizes the path planning problem stud-
ied before on road network from allowing the traveler to
choose the optimal departure time tominimize on-road travel
time that allows multiple stops at parking vertices. From the-
oretical point of view, MORT is the most general type of
time-dependent route scheduling problem, which covers all
previous problems in terms of both problem formulation and
also algorithms. From practical point of view, MORT query
is useful in many applications, to name a few, minimizing
fuel consumption for trucks and advising people to stop and
do other things to avoid getting stuck in heavy traffic. From
algorithm design and database query processing points of
view, MORT queries are significantly more complex than
the other time-dependent shortest/fastest path queries. We
have proposed two algorithms to doMORT route scheduling.
The Basic MORT Algorithm computes aminimum cost func-
tion directly and takes O(T |V | log |V | + T 2|E |) time. The
Incremental MORT Algorithm reduces the time complex-
ity by computing the minimum cost function incrementally
and takes O(L(|V | log |V | + |E |)) time. An approximate
approach α-MORT further speeds up the query answering
by allowing a guaranteed error bound. Our extensive stud-
ies in real-life road networks and trajectories have confirmed
that our system could generate accurate and space-saving
speed profiles and find minimal on-road time routes more
efficiently.

Acknowledgements This research is partially supported by Natural
Science Foundation of China (Grant Nos. 61232006, 61502324 and
61532018) and the Australian Research Council (LP130100164 and
DP170101172).

References

1. Dijkstra, E.W.: A note on two problems in connexion with graphs.
Numer. Math. 1(1), 269–271 (1959)

2. Goldberg, A.V., Harrelson, C.: Computing the shortest path: a
searchmeets graph theory. In: Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 156–165.
Society for Industrial and Applied Mathematics (2005)

3. Wu, L., Xiao, X., Deng, D., Cong, G., Zhu, A.D., Zhou, S.: Short-
est path and distance queries on road networks: an experimental
evaluation. Proc. VLDB Endow. 5(5), 406–417 (2012)

4. Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding fastest paths on
a road network with speed patterns. In: Proceedings of the 22nd
International Conference on Data Engineering, ICDE’06, p. 10.
IEEE (2006)

5. Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths
over large graphs. In: Proceedings of the 11th International Con-
ference on ExtendingDatabase Technology: Advances in Database
Technology, pp. 205–216. ACM (2008)

6. Chabini, I.: Discrete dynamic shortest path problems in transporta-
tion applications: complexity and algorithmswith optimal run time.
Transp. Res. Rec. J. Transp. Res. Board 1645, 170–175 (1998)

7. Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms
in networks with time-dependent edge-length. J. ACM (JACM)
37(3), 607–625 (1990)

8. Demiryurek,U.,Banaei-Kashani, F., Shahabi,C.,Ranganathan,A.:
Online computation of fastest path in time-dependent spatial net-
works. In: Pfoser, D., et al. (eds.) Advances in spatial and temporal
databases, pp. 92–111. Springer, Berlin (2011)

9. Cai, X., Kloks, T., Wong, C.: Time-varying shortest path problems
with constraints. Networks 29(3), 141–150 (1997)

10. Dreyfus, S.E.:An appraisal of some shortest-path algorithms.Oper.
Res. 17(3), 395–412 (1969)

11. Demiryurek, U., Pan, B., Banaei-Kashani, F., Shahabi, C.: Towards
modeling the traffic data on road networks. In: Proceedings of the
Second International Workshop on Computational Transportation
Science, pp. 13–18. ACM (2009)

12. Zheng, B., Su, H., Hua, W., Zheng, K., Zhou, X., Li, G.: Efficient
clue-based route search on road networks. IEEE Trans. Knowl.
Data Eng. 29, 1846 (2017)

13. Li, L., Hua, W., Du, X., Zhou, X.: Minimal on-road time route
scheduling on time-dependent graphs. Proc.VLDBEndow. 10(11),
1274–1285 (2017)

14. Cooke, K.L., Halsey, E.: The shortest route through a network with
time-dependent internodal transit times. J.Math.Anal.Appl. 14(3),
493–498 (1966)

15. Geisberger, R.: Contraction of timetable networks with realistic
transfers. In: Festa, P. (ed.) Experimental algorithms, pp. 71–82.
Springer, Berlin (2010)

16. Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., Xu, Y.: Path problems
in temporal graphs. Proc. VLDB Endow. 7(9), 721–732 (2014)

17. Wang, S., Lin,W.,Yang,Y.,Xiao,X., Zhou, S.: Efficient route plan-
ning on public transportation networks: a labelling approach. In:
Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pp. 967–982. ACM (2015)

18. Halpern, J.: Shortest route with time dependent length of edges and
limited delay possibilities in nodes. Z. Oper. Res. 21(3), 117–124
(1977)

19. Orda, A., Rom, R.: Minimum weight paths in time-dependent net-
works. Networks 21(3), 295–319 (1991)

20. Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-
dependent shortest paths. Algorithmica 68(4), 1075–1097 (2014)

21. Cai, X., Kloks, T., Wong, C.: Shortest path problems with time
constraints. In: International Symposium on Mathematical Foun-
dations of Computer Science, pp. 255–266. Springer (1996)

22. Batz, G.V., Delling, D., Sanders, P., Vetter, C.: Time-dependent
contraction hierarchies. In: Proceedings of the Meeting on Algo-
rithm Engineering and Experiments, pp. 97–105. Society for
Industrial and Applied Mathematics (2009)

123

Go slow to go fast: minimal on-road time route scheduling with parking facilities using…

23. Delling, D.: Time-dependent sharc-routing. Algorithmica 60(1),
60–94 (2011)

24. Li, L., Zhou, X., Zheng, K.: Finding least on-road travel time on
road network. In: Australasian Database Conference, pp. 137–149.
Springer (2016)

25. Yang, Y., Gao, H., Yu, J.X., Li, J.: Finding the cost-optimal path
with time constraint over time-dependent graphs. Proc. VLDB
Endow. 7(9), 673–684 (2014)

26. Adler, J.D., Mirchandani, P.B., Xue, G., Xia, M.: The electric
vehicle shortest-walk problem with battery exchanges. Netw. Spat.
Econ. 16(1), 155–173 (2016)

27. Ichimori, T., Ishii, H., Nishida, T.: Routing a vehicle with the lim-
itation of fuel. J. Oper. Res. Soc. Jpn. 24(3), 277–281 (1981)

28. Xiao, Y., Thulasiraman, K., Xue, G., Jüttner, A.: The constrained
shortest path problem: algorithmic approaches and an algebraic
study with generalization. AKCE Int. J. Graphs Comb. 2(2), 63–
86 (2005)

29. Wang, S., Xiao, X., Yang, Y., Lin, W.: Effective indexing for
approximate constrained shortest path queries on large road net-
works. Proc. VLDB Endow. 10(2), 61–72 (2016)

30. Blokh, D., Gutin, G.: An approximate algorithm for combinatorial
optimization problems with two parameters. Australas. J. Comb.
14, 157–164 (1996)

31. Juttner,A., Szviatovski,B.,Mécs, I., Rajkó,Z.: Lagrange relaxation
based method for the QoS routing problem. In: Proceedings of the
Twentieth Annual Joint Conference of the IEEE Computer and
Communications Societies, INFOCOM 2001, vol. 2, pp. 859–868.
IEEE (2001)

32. Tong, Y., Wang, L., Zhou, Z., Ding, B., Chen, L., Ye, J., Xu, K.:
Flexible online task assignment in real-time spatial data. Proc.
VLDB Endow. 10(11), 1334–1345 (2017)

33. Tong, Y., Chen, Y., Zhou, Z., Chen, L., Wang, J., Yang, Q., Ye,
J., Lv, W.: The simpler the better: a unified approach to predicting
original taxi demands based on large-scale online platforms. In:
Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 1653–1662. ACM
(2017)

34. Dai, J., Yang,B.,Guo,C., Jensen, C.S.,Hu, J.: Path cost distribution
estimation using trajectory data. PVLDB 10(3), 85–96 (2016)

35. Bakalov, P., Hoel, E., Heng, W.-L.: Time dependent transportation
network models. In: 2015 IEEE 31st International Conference on
Data Engineering (ICDE), pp. 1364–1375. IEEE (2015)

36. Yang, B., Guo, C., Jensen, C.S.: Travel cost inference from sparse,
spatio temporally correlated time series using Markov models.
Proc. VLDB Endow. 6(9), 769–780 (2013)

37. Shang, J., Zheng, Y., Tong, W., Chang, E., Yu, Y.: Inferring gas
consumption and pollution emission of vehicles throughout a city.
In: Proceedings of the 20th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 1027–1036.
ACM (2014)

38. Xin, X., Lu, C., Wang, Y., Huang, H.: Forecasting collector road
speeds under high percentage ofmissing data. In: AAAI, pp. 1917–
1923 (2015)

39. Asif, M.T., Mitrovic, N., Garg, L., Dauwels, J., Jaillet, P.: Low-
dimensional models for missing data imputation in road networks.
In: 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 3527–3531. IEEE (2013)

40. Shan, Z., Zhao, D., Xia, Y.: Urban road traffic speed estimation
for missing probe vehicle data based on multiple linear regres-
sion model. In: 16th International IEEE Conference on Intelligent
Transportation Systems-(ITSC), pp. 118–123. IEEE (2013)

41. Widhalm, P., Piff, M., Brändle, N., Koller, H., Reinthaler, M.:
Robust road link speed estimates for sparse or missing probe vehi-
cle data. In: 15th International IEEE Conference on Intelligent
Transportation Systems (ITSC), pp. 1693–1697. IEEE (2012)

42. Guo, C., Jensen, C.S., Yang, B.: Towards total traffic awareness.
SIGMOD Rec. 43(3), 18–23 (2014)

43. Guo, C., Yang, B., Andersen, O., Jensen, C.S., Torp, K.: Ecomark
2.0: empowering eco-routing with vehicular environmental models
and actual vehicle fuel consumption data. GeoInformatica 19(3),
567–599 (2015)

44. Idé, T., Sugiyama, M.: Trajectory regression on road networks. In:
AAAI (2011)

45. Zheng, J., Ni, L.M.: Time-dependent trajectory regression on road
networks via multi-task learning. In: AAAI (2013)

46. Yang, B., Kaul,M., Jensen, C.S.: Using incomplete information for
complete weight annotation of road networks. IEEE Trans. Knowl.
Data Eng. 26(5), 1267–1279 (2014)

47. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual
networks for citywide crowd flows prediction. In: AAAI, pp. 1655–
1661 (2017)

48. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in
improved network optimization algorithms. J. ACM(JACM) 34(3),
596–615 (1987)

49. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.:
Map-matching for low-sampling-rate GPS trajectories. In: Pro-
ceedings of the 17th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pp. 352–361.
ACM (2009)

50. Yuan, J., Zheng, Y., Zhang, C., Xie, X., Sun, G.-Z.: An interactive-
voting based map matching algorithm. In: Proceedings of the 2010
Eleventh International Conference on Mobile Data Management,
pp. 43–52. IEEE Computer Society (2010)

51. Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-
matching algorithms for transport applications: state-of-the art and
future research directions. Transp. Res. Part C Emerg. Technol.
15(5), 312–328 (2007)

52. Cox, D.R.: The regression analysis of binary sequences. J. R. Stat.
Soc. Ser. B (Methodol.) 1, 215–242 (1958)

53. Seal, H.L.: TheHistoricalDevelopment of theGauss LinearModel.
Yale University, New Haven (1968)

54. Shatkay, H., Zdonik, S.B.: Approximate queries and representa-
tions for large data sequences. In: Proceedings of the Twelfth
International Conference on Data Engineering, pp. 536–545. IEEE
(1996)

55. Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series:
a survey and novel approach. Data Min. Time Ser. Databases 57,
1–22 (2004)

56. Esling, P., Agon, C.: Time-series data mining. ACMComput. Surv.
(CSUR) 45(1), 12 (2012)

57. Li, C.-S., Yu, P.S., Castelli, V.: Malm: A framework for mining
sequence database at multiple abstraction levels. In: Proceedings of
the Seventh International Conference on Information and Knowl-
edge Management, pp. 267–272. ACM (1998)

58. Keogh, E .J., Pazzani, M .J.: An enhanced representation of time
series which allows fast and accurate classification, clustering and
relevance feedback. KDD 98, 239–243 (1998)

123

View publication statsView publication stats

https://www.researchgate.net/publication/323929322

	Go slow to go fast: minimal on-road time route scheduling with parking facilities using historical trajectory
	Abstract
	1 Introduction
	2 Related work
	2.1 Time-dependent path problems
	2.2 Speed profile

	3 Preliminary
	3.1 Framework overview
	3.2 Minimal on-road time route scheduling
	3.3 Speed profile generation from trajectory

	4 MORT algorithms
	4.1 Algorithm outline
	4.1.1 Active time interval computation (ATI)
	4.1.2 Minimum cost function
	4.1.3 Route retrieval

	4.2 Basic MORT algorithm
	4.2.1 Minimum cost function update (MCFU)
	4.2.2 Basic route expansion algorithm
	4.2.3 Correctness
	4.2.4 Complexity analysis

	4.3 Incremental MORT algorithm
	4.3.1 Incremental route expansion algorithm
	4.3.2 Running example
	4.3.3 Correctness
	4.3.4 Complexity analysis

	4.4 Application scenarios

	5 α-MORT approximation
	5.1 Error bound α and turning point pruning
	5.2 Even distribution
	5.3 Exponential distribution
	5.4 Dynamic exponential distribution

	6 Speed profile generation
	6.1 From trajectory to road speed
	6.2 Speed data collection
	6.3 Missing value estimation
	6.3.1 Cosine similarity
	6.3.2 Spatial-Temporal Neighboring Average

	6.4 Speed profile compression
	6.4.1 Sliding window algorithm
	6.4.2 Top-down algorithm
	6.4.3 Bottom-up algorithm

	7 Experiments
	7.1 Experiment setup
	7.1.1 Datasets
	7.1.2 MORT experiment setup
	7.1.3 Speed profile evaluation metrics
	7.1.4 Experiment environment

	7.2 MORT algorithms evaluation
	7.2.1 Comparison with existing algorithms
	7.2.2 Algorithm running time

	7.3 Approximation algorithm
	7.4 Speed profile generation evaluation
	7.4.1 Granularity
	7.4.2 Missing value estimation
	7.4.3 Speed profile compression

	8 Conclusion
	Acknowledgements
	References

