
The VLDB Journal
https://doi.org/10.1007/s00778-023-00802-3

REGULAR PAPER

Coalition-based task assignment with priority-aware fairness in spatial
crowdsourcing

Yan Zhao1 · Kai Zheng2 · Ziwei Wang3 · Liwei Deng3 · Bin Yang1 · Torben Bach Pedersen1 ·
Christian S. Jensen1 · Xiaofang Zhou4

Received: 13 July 2022 / Revised: 15 May 2023 / Accepted: 19 June 2023
© The Author(s) 2023

Abstract
With the widespread use of networked and geo-positioned mobile devices, e.g., smartphones, Spatial Crowdsourcing (SC),
which refers to the assignment of location-based tasks to moving workers, is drawing increasing attention. One of the critical
issues in SC is task assignment that allocates tasks to appropriate workers. We propose and study a novel SC problem, namely
Coalition-based Task Assignment (CTA), where the spatial tasks (e.g., home improvement and furniture installation) may
require more than one worker (forming a coalition) to cooperate to maximize the overall rewards of workers. We design a
greedy and an equilibrium-based CTA approach. The greedy approach forms a set of worker coalitions greedily for performing
tasks and uses an acceptance probability to identify high-value task assignments. In the equilibrium-based approach, workers
form coalitions in sequence and update their strategies (i.e., selecting a best-response task), to maximize their own utility (i.e.,
the reward of the coalition they belong to) until a Nash equilibrium is reached. Since the equilibrium obtained is not unique
and optimal in terms of total rewards, we further propose a simulated annealing scheme to find a better Nash equilibrium.
To achieve fair task assignments, we optimize the framework to distribute rewards fairly among workers in a coalition based
on their marginal contributions and give workers who arrive first at the SC platform highest priority. Extensive experiments
demonstrate the efficiency and effectiveness of the proposed methods on real and synthetic data.

Keywords Coalition · Task assignment · Spatial crowdsourcing · Priority-aware fairness

B Kai Zheng
zhengkai@uestc.edu.cn

Yan Zhao
yanz@cs.aau.dk

Ziwei Wang
ziwei@std.uestc.edu.cn

Liwei Deng
deng_liwei@std.uestc.edu.cn

Bin Yang
byang@cs.aau.dk

Torben Bach Pedersen
tbp@cs.aau.dk

Christian S. Jensen
csj@cs.aau.dk

Xiaofang Zhou
zxf@cse.ust.hk

1 Department of Computer Science, Aalborg University,
Aalborg, Denmark

1 Introduction

SpatialCrowdsourcing (SC) enables people tomove asmulti-
modal sensors that collect and share instantaneously various
types of high-fidelity spatio-temporal data. Specifically, task
requesters can issue spatial tasks, which require the presence
of workers at specified physical locations, to an SC server
that then assigns workers carrying smart devices to travel to
the specified locations and perform the tasks. This is referred
to as task assignment.

2 Yangtze Delta Region Institute (Quzhou), School of
Computer Science and Engineering, Shenzhen Institute for
Advanced Study, University of Electronic Science and
Technology of China, Chengdu, China

3 School of Computer Science and Engineering, University of
Electronic Science and Technology of China, Chengdu, China

4 The Hong Kong University of Science and Technology, Hong
Kong, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-023-00802-3&domain=pdf
http://orcid.org/0000-0002-0242-3707

Y. Zhao et al.

A number of existing studies place their focus on “single”
task assignment, where a task is assigned to a single worker
[7, 15, 27, 29, 38, 42, 44]. However, SC applications exist
in which a single worker cannot efficiently perform a task,
e.g., home improvement, furniture installation, or performing
entertainment at an event [2, 3, 34]. Instead, workers have to
form a coalition to jointly complete these complex tasks that
exceed the capabilities of an individual worker. Moreover,
a worker may prefer to collaborate with other workers for
reputation or economic purposes.

We investigate SC task assignment in this problem setting,
namely Coalition-based TaskAssignment (CTA). Given a set
of workers and a set of tasks, the objective is to assign a sta-
ble worker coalition to each task to achieve the highest total
reward. The proposed coalition-based task assignment can be
applied in real-world scenarios such as home improvement,
furniture installation, monitoring of traffic conditions in an
area, organizing an event, or performing entertainment at an
event [2, 3, 34], where workers have to collaborate to jointly
complete complex tasks that exceed the capabilities of an
individual worker. Some recent studies have explored task
assignment approaches that allow each task to be assigned
to multiple workers [16, 18, 19, 37, 43]. But workers can
conduct tasks independently and without cooperating, which
is different from our problem. The most related study [2]
concerns collaboration-aware task assignment, where work-
ers are required to cooperate and accomplish tasks jointly
for achieving high total cooperation quality scores. How-
ever, this approach assumes that workers always conduct
tasks voluntarily, which may be unrealistic unless workers
are rewarded for doing so. Further, this study aims to find a
single Nash equilibrium point and does not consider whether
more optimal equilibrium points exist. We target instead a
setting in which workers are rewarded if they cooperate to
complete tasks, and we aim to achieve a Nash equilibrium
with high total reward.

We illustrate the CTA problem through the example in
Fig. 1, which involves seven workers ({w0, ..., w6}) and five
tasks ({s0, ..., s4}). Each worker has a current location and a
reachable distance (marked as w.r). A task is published at a
time instance and expires at a time instance, and it is labeled
with a workload (s.wl) and reward information (i.e., penalty
rate s.pr and maximum reward s.maxR). The reward for
completing a task is obtained using a reward pricing model,
to be covered in Sect. 2. The problem is to assign tasks to
workers so as to maximize the total reward. For the sake of
simplicity, we assume that all workers share the same speed
(1) in this example and that their travel times between loca-
tions can be estimated using Euclidean distances. We also
assume that the online time of workers are 0. In SC, it is
intuitive to assign nearby workers to tasks greedily (in order
to obtain the maximal actual reward for each task) with-
out violating the spatio-temporal constraints (i.e., assigned

s3

s1

s2

(7, 2)
w4.r = 3

w4

w0

w1

w2w3 (3, 3)
w0.r = 3.2

(6, 4)
w1.r = 2

(6, 3)
w2.r = 3

(1, 3), w3.r = 2.5

Basic greedy strategy

(9, 3)
w5.r = 2

w5

1

2

3

4

5

6

82 3 41 5 6 7 9

s4
(2, 5)

w6.r = 2

w6

s s.p s.e s.d s.wl s.pr maxR

s1

s2

0 1 2 1 0.5 3

0 1 7 3 1 7
s3 0 3 6 4 2 6
s4 0 2 3 1 1 1

s0

s0 0 3 4 1.5 1 2

Optimal strategy
Equilibrium-based strategy
Priority-aware equilibrium-based
strategy

Fig. 1 Running example

tasks should be located in the reachable ranges of the corre-
spondingworkers, andworkersmust arrive at the locations of
assigned tasks before the deadline of tasks), referred to as the
basic greedy algorithm. With this algorithm, we obtain the
assignment, {(s0, {w0, w3}), (s1, {w1, w2, w4}), (s4, {w6})}
(shown with blue arrows in Fig. 1), with the overall reward
of 5.76. This assignment leaves s2 and s3 (that have high
rewards) unassigned, which decreases the overall reward.
Applying the optimal strategy, we can achieve the assign-
ment, {(s1, {w4}), (s2, {w1, w2}), (s3, {w0, w3}), (s4, {w6})}
(shown with yellow arrows in the figure), the total reward of
which is 12.26. However, existing optimal task assignment
algorithms have high computational costs and do not scale
to support practical applications [30, 42].

In the setting we study, workers must form coalitions with
sufficient cumulative time or capabilities across the coalition
members to accomplish the tasks. To enable this, we propose
two novel coalition-based task assignment algorithms, i.e.,
greedy and equilibrium-based algorithms that aim to achieve
high total rewards. Specifically, the greedy algorithm is a non-
reducing reward allocation strategy that incentivizes workers
to enlarge a coalition to achieve a higher total reward. By
considering the time utilization ratio (measured by workers’
workload and travel time) of workers and the rate of return
(measured by tasks’ actual rewards and maximal reward) of
tasks, the greedy algorithm adopts an acceptance probability
to find high-value task assignments (i.e., task assignments
ensuring high time utilization ratios for workers and high
rates of return for tasks). However, the greedy approach can-
not guarantee the stability of formed coalitions. Therefore,
we propose a task assignment method with a game-theoretic
basis.We convert the CTA problem into amulti-player game,
prove that it is an exact potential game that has multiple pure
Nash equilibriums (cf. Definition 7 and Lemmas 3–4) and
develop an equilibrium-based algorithm that applies the best-
response method with sequential and asynchronous updates

123

Coalition-based task assignment with priority-aware fairness...

of workers’ strategies to reach a pure Nash equilibrium. The
benefit is that ifworkers are all in aNash equilibrium, they are
closely inter-connected, and the formed coalitions are stable,
i.e., noworker can improve their utility by a unilateral change
to a different coalition if otherworkers stay in their coalitions.
The task assignment generated by the best-response method
is locally optimal, and there may exist multiple Nash equi-
libriums since the CTA game is an exact potential game.
We therefore propose a simulated annealing optimization
strategy that can coordinate workers to obtain a better Nash
equilibrium. In Fig. 1, the overall reward generated by the
equilibrium-based algorithm (red arrows) is 12.26, which is
the maximal reward. This is so because there is only one
equilibrium in this small-scale example.

Although the above algorithms achieve effect task assign-
ment, they ignore the aspect of fairness in task assignments.
Fairness, which is crucial in SC, is measured in terms of
the correlation between the contribution and the reward of
a worker. In a fair assignment, a worker should receive a
reward proportional to the worker’s (non-negative) contribu-
tion to the coalition. The rationale is that if a worker is not
compensated for their contribution then this worker is being
“underpaid” or not recognized. Also, an “unfair” compensa-
tion may incentivize a worker to leave the coalition, in which
case the reward of the entire coalition may decrease. More-
over, workers may recognize unfair treatment and may avoid
such cases. Further, if a worker is treated unfairly, the worker
will lose trust in the SC platform and may refuse further
participation. To address this issue, we optimize the orig-
inal framework by take fairness into account. Specifically,
we first introduce the marginal contribution-based value to
explore the reward distributionmechanisms for workers with
varying marginal contributions (that are used to measure
the contributions of workers in a coalition). The marginal
contribution-based value distributes rewards fairly among
workers due to its relevant interpretation of marginal con-
tributions. When the workloads and assignment orders of
workers in a coalition differ, the marginal contributions of
workers change, and so do the rewards of workers. In addi-
tion,we propose the concept of priority-aware fairness giving
workers who arrive first at the SC platform highest priority,
where a priority-aware utility (PAU) is used to improve the
greedy and equilibrium-based task assignment approaches
to achieve their optimization goal of maximizing the total
reward with priority-aware fairness as a constraint. In Fig. 1,
the priority-aware equilibrium-based strategy can generate
the assignment, {(s1, {w2, w4}), (s2, {w1}),
(s3, {w0, w3}), (s4, {w6})}. The total reward is 11.51, which
is 93.89%of that achievedby theoptimal and the equilibrium-
based strategies. However, the payoff difference (see Eq. 22)
among workers generated by the priority-aware equilibrium-
based strategy is only 0.11 while the payoff difference of the
optimal and the equilibrium-based strategies is 0.14. Appar-

ently, it is more fair if the payoff difference among workers
is smaller, and the priority-aware equilibrium-based strategy
can achieve more fair task assignment.

The contributions can be summarized as follows:

1) We formulate a novel task assignment in SC, namely
Coalition-based Task Assignment (CTA), where workers
need to interact with others by forming worker coalitions
to conduct the corresponding tasks.

2) A greedy approach is developed to efficiently assign
tasks, in which an acceptance probability is introduced
to find the high-value task assignments.

3) We develop an equilibrium-based solution, wherein the
Nash equilibrium is found based on the best-response
approach. Inspired by the success of simulated annealing
in finding a better Nash equilibrium in the best response
dynamic [21], we use a simulated annealing strategy to
further improve the assignmentwhenmultipleNash equi-
libriums exist.

4) We introduce the marginal contribution-based value to
compute each worker’s reward in a coalition fairly and
formalize the concept of priority-aware fairness. We
redesign the greedy and equilibrium-based task assign-
ment approaches to achieve the optimization goal of
maximizing the total reward with priority-aware fairness
as a constraint.

5) Extensive experiments are conducted to study the impact
of the key parameters and the effectiveness of the
proposed algorithms. The remainder of this paper is orga-
nized as follows. Preliminary concepts and the Reward
Pricing Model are introduced in Sect. 2. We then present
the greedy task allocation algorithm and the equilibrium-
based algorithm in Sect. 3 and Sect. 4, respectively, fol-
lowed by the fairness extension in Sect. 5. We report
the experimental results in Sect. 6. Section7 surveys the
related work, and Sect. 8 offers conclusions.

2 Problem statement

We proceed to first introduce a set of preliminary concepts
in the context of reward-based multiple task assignment,
where a task can be assigned to multiple workers who will
each receive a reward for the task, in spatial crowdsourcing.
Then, we present the reward pricing model for tasks and for-
mulate our problem. Table 1 lists notation used throughout
the paper.

Definition 1 (Spatial Task) A spatial task, denoted as s =
(l, p, e, d, wl, maxR, pr), has a location s.l, a publication
time s.p, an expected completion time s.e, and a deadline
s.d. Each task is also labeled with a required workload s.wl
incurred in order to finish the task (we simply use the time

123

Y. Zhao et al.

Table 1 Summary of notation

Symbol Definition

s Spatial task

s.l Location of spatial task s

s.p Publication time of spatial task s

s.e Expected completion time of spatial task s

s.d Deadline of spatial task s

s.wl Workload of spatial task s

s.maxR Maximum reward of spatial task s

s.pr Penalty rate of spatial task s

w Worker

w.l Location of worker w

w.on Online time of worker w

w.sp Speed of worker w

w.r Reachable distance of worker w

AW(s) Available worker set of task s

tnow The current time

t(a, b) Travel time from location a to b

d(a, b) Travel distance from location a to b

RS(w) Reachable task set of worker w

WC(s) Worker coalition for task s

RWC(s) Reward of WC(s) by finishing s

RMWC(s) Reward of MWC(s) by finishing s

s.te The completion time of s

s.ts Assignment time of task s

TWC(s) The duration of task s given WC(s)

TMWC(s) The duration of task s given MWC(s)

w.wl(WC(s)) The workload of w performing s inWC(s)

MWC(s) Minimal worker coalition for task s

A A spatial task assignment

A.R Total reward for task assignment A

A A spatial task assignment set

required to finish a task to denote s.wl in our work). Next,
s.maxR is the maximum reward that the task requester can
provide, and s.pr is a penalty rate, which establishes a cor-
relation between the completion time and the actual reward.

It is practical and reasonable to use the time required to
finish a task s to denote s.wl since the required time is often
directly proportional to theworkload of the task. Itmeans that
a task with more workload needs more time to be finished.
The task workload depends on tasks. For example, a task of
distributing leaflets includes 500 leaflets to be distributed.
We can say that the workload of this task is 500 leaflets to be
distributed, and distributing all the leaflets requires about one
hour (that can be estimated by the spatial crowdsourcing plat-
form or specified by the task requester). In this case, we can
also use the number of leaflets to be distributed to denote the

workload and estimate the time of distributing these leaflets.
Thus, our algorithms are still applicable in such a case.

Definition 2 (Worker) A worker, denoted as w = (l, on, sp,
r), is a person who is willing to perform spatial tasks only
if the worker is paid. A worker can be in an either online or
offline mode. A worker is online when being ready to accept
tasks and the worker is offline when being unavailable to
perform tasks. An online worker is associated with a current
location w.l, a recent online time w.on, a speed w.sp, and a
reachable circular range withw.l as the center andw.r as the
radius, in which w can accept assignments of tasks.

A worker is able to handle only one task at a time, which
is reasonable in practice. A worker can be assigned a task
only when being online and not performing any tasks. Once
a task is assigned to a worker, the worker is considered as
being offline until the task is completed.

Due to the constraint of workers’ reachable ranges and
tasks’ expiration times, each task can be completed only by
a subset of workers, called the available worker set.

Definition 3 (AvailableWorker Set) The available worker set
for a task s, denoted as AW(s), is a set of workers that satisfy
the following two conditions: ∀w ∈ AW(s),

1) worker w is able to arrive at the location of task s before
its deadline, i.e., tnow + t(w.l, s.l) < s.d, and

2) task s is located in the reachable range of worker w,
i.e., d(w.l, s.l) ≤ w.r , where tnow is the current time,
t(a, b) = w.sp ∗ d(a, b) is the travel time from location
a to location b, and d(a, b) is the travel distance from
location a to location b. The above two conditions guar-
antee that workers in an available worker set can travel
from their origins to the location of their reachable task
s directly before it expires. If worker w is available for
task s, i.e., w ∈ AW(s), we say s is a reachable task of w

and denote the reachable task set of w as RS(w).

Definition 4 (WorkerCoalition) Given a task s to be assigned
and its available worker set AW(s), the worker coalition for
task s, denoted as WC(s), is a subset of AW(s) such that all
the workers in WC(s) have enough time to complete task
s together before it expires, i.e.,

∑
w∈WC(s)(s.d − (tnow +

t(w.l, s.l))) ≥ s.wl.

Taking Fig. 1 as a use case, the available worker set of task
s1 is {w1, w2, w4, w5}, where all the available workers can
arrive at s1.l before s1.d, and s1 is reachable for them. {w2},
{w1, w2}, and {w1, w2, w5} are worker coalitions for task s1
since all the workers in each coalition can cooperate together
to finish task s1 before s1.d.

As for task reward, taking longer time for completing
a task (including waiting time for its assignment and task

123

Coalition-based task assignment with priority-aware fairness...

Fig. 2 Task reward pricing model

duration, i.e., from a task’s publication time to its comple-
tion time) increases the probability of task failure in an SC
environment, and thus reduces the rewards for workers. Con-
sidering the constraints on the tasks’ expected completion
time, deadline, required workload, and budget (i.e., the max-
imum reward the task requester can offer), we adopt the
Reward Pricing Model (RPM) [34], which can effectively
quantify the temporal constraints of tasks and is an impor-
tant incentive mechanism to motivate workers to finish the
assigned tasks on time. Specifically, RPM takes a single task
s and one of its worker coalition into account, focusing on
the task completion time and real reward (i.e., the requester’s
actual payment for the task), as depicted in Fig. 2.

With the main temporal constraints of the task (i.e.,
task’s publication time s.p, expected completion time s.e,
and deadline s.d), penalty rate s.pr, and maximum reward
s.maxR, the RPM can be expressed as a formula shown as
follows:

RWC(s) =
⎧
⎨

⎩

s.maxR s.p ≤ s.te ≤ s.e
s.maxR − s.pr ∗ (s.te − s.e) s.e < s.te ≤ s.d
0 s.te > s.d,

(1)

where RWC(s) represents the actual reward of task s when
being completed by workers in WC(s), and s.te denotes the
completion time of s given the worker coalition WC(s).
From Eq. 1 we can see, if a task can be completed before
its expected completion time, workers will obtain the max-
imum reward. Without loss of generality, Eq. 1 models the
penalty rate linearly when the task cannot be finished before
its expected completion time but can be finished before its
deadline. For example, in a house removal scenario, the task
requester is happy to pay the maximum rewards to workers
if the job can be finished before 17:00. After 17:00, the task
requester may be a little bit disappointed but still would like
to pay the reduced reward based on a penalty rate. However,
this task requester will be too unsatisfied to pay any reward
if the task cannot be completed by the hard deadline, e.g., by
midnight today.

To compute the completion time s.te of task s, we denote
s.ts as the start time (i.e., time of assignment) of s, TWC(s) as

the task duration of s (i.e., elapsed time from assignment to
completion), andw.wl(WC(s)) > 0 as the workload contri-
bution (measured by time) of w when task s is performed by
WC(s). From Fig. 3, which illustrates the workload alloca-
tion of worker coalition {w1, w2} for task s1 (where workers
and tasks are from the running example in Fig. 1), it is easily
understandable that, ∀w ∈ WC(s), the task duration is equal
to w’s travel time plus the workload contribution, i.e.,

TWC(s) = t(w.l, s.l) + w.wl(WC(s)),

∀w ∈ WC(s), w.wl(WC(s)) > 0.
(2)

By summing up the right side over all workers in coalition
WC(s), we have

TWC(s)

=
∑

w∈WC(s) t(w.l, s.l) + ∑
w∈WC(s) w.wl(WC(s))

|WC(s)| .

(3)

Given the fact that s.wl = ∑
w∈WC(s) w.wl(WC(s)), it

comes to

TWC(s) =
∑

w∈WC(s) t(w.l, s.l) + s.wl

|WC(s)| . (4)

Finally, s.te can be calculated as s.te = s.ts +TWC(s), and
eachworker’sworkload canbe calculated asw.wl(WC(s)) =
TWC(s) − t(w.l, s.l). From the perspective of worker coali-
tion, we assume that the goal of a worker joining a coalition
is to increase the total reward of the coalition, which will
accordingly lead to a satisfying reward for this worker.

Since we require that w.wl(WC(s)) > 0, if a worker’s
travel time exceeds the task duration, i.e., t(w.l, s.l) ≥
TWC(s), then the worker w has no contribution to task s and
should be removed from WC(s). Additionally, as shown in
the RPM in Fig. 2, when a worker coalitionWC(s) can coop-
erate to finish a task s before its expected completion time
s.e, which means they obtain the maximum reward (s.maxR)
of this task, adding more workers into WC(s) cannot lead
to a higher reward. It means that more workers in WC(s)
might not lead to earlier completion time or a higher total
reward. This observation motivates the notion of minimal
worker coalition.

Definition 5 (MinimalWorker Coalition) Aworker coalition
WC(s) for task s is minimal (denoted by MWC(s)) if none
of its subsets can obtain a reward that is equal to RWC(s).

In Fig. 1, although {w2}, {w1, w2} and {w1, w2, w5} are
all worker coalitions for task s1, {w1, w2, w5} is not a min-
imal worker coalition since {w1, w2} can generate the same
reward with {w1, w2, w5}, i.e., R{w1,w2} = R{w1,w2,w5}. For
task s4, both {w6} and {w0, w6} are its worker coalitions, but

123

Y. Zhao et al.

Fig. 3 Workload allocation of worker coalition {w1, w2} for Task s1

only {w6} is its minimal worker coalition. This is becausew6

can obtain the maximum reward of s4 when conducting s4
without the need of others’ collaboration.

Definition 6 (Spatial Task Assignment) Given a set of work-
ersW and a set of tasks S, a spatial task assignment, denoted
by A, consists of a set of (task,MWC) pairs in the form of
(s1,MWC(s1)), (s2,MWC(s2)), ..., (s|S|,MWC(s|S|)),where
MWC(s1)

⋂
MWC(s2)

⋂
...

⋂
MWC(s|S|) = ∅.

Let A.R denote the total reward for task assignment A,
i.e., A.R = ∑

s∈S,(s,MWC(s))∈A RMWC(s) (where RMWC(s) can
be calculated by Eq. 1), and A denote all the possible ways
of assignments.

ProblemStatement: Given a set of online workersW and
a set of tasks S at a time instance, the CTA problem aims to
find the global optimal assignment Aopt , such that the total
reward can be maximized, i.e., ∀Ai ∈ A, Ai .R ≤ Aopt .R.

Lemma 1 The CTA problem is NP-hard.

Proof The lemma can be proved through a reduction from
the 0-1 knapsack problem, which can be described as fol-
lows: given a set C with n items, in which each item ci ∈ C
is labeled with a weight mi and a value vi , the 0-1 knap-
sack problem is to identify a subset C ′ of C that maximizes∑

ci∈C ′ vi subjected to
∑

ci∈C ′ mi ≤ M , where M is a max-
imum weight capacity.

Considering the following instance of the CTA problem.
We are given a task set S with n tasks, in which each task
si ∈ S is associated with the publication time si .p = 0, the
expected completion time si .e = 1, the deadline si .d = 1,
the workload si .wl = mi (corresponding to the weight mi

of the 0-1 knapsack problem), and the maximum reward
si .maxR = vi (corresponding to the value vi of the 0-1
knapsack problem). Additionally, we are given a worker set
W withM workers, where eachworkerwi is allowed to com-
plete one workload only. All the workers and the tasks are in
the same location. Therefore, the CTA problem is to identify
a task subset S′ of S that maximizes

∑
si∈S′ vi subjected to∑

si∈S′ mi ≤ M .
If we can solve the CTA problem instance efficiently (i.e.,

in polynominal time), we can solve a 0-1 knapsack prob-

lem by transforming it to the corresponding CTA problem
instance and then solve it efficiently. This contradicts the fact
that the 0-1 knapsack problem is NP-hard [31], and so there
cannot be an efficient solution to the CTA problem instance
that is then NP-hard. Since the CTA problem instance is NP-
hard, the CTA problem is also NP-hard.

3 Greedy approach

In this section, we design a greedy approach, which encour-
ages worker coalitions to obtain more reward. This approach
is based on the consensus that the nearby workers selected to
perform a task can generate higher reward since the reward is
non-increasing over time (i.e., it keeps stable with the max-
imum reward offered by the task requester at first and then
gets lower, as shown in the Reward PricingModel in Sect. 2),
and the nearby workers are able to deal with more workloads
to obtain more reward. In the following, we first introduce
the concept of acceptance probability, based on which the
greedy approach and its complexity analysis are given.

Acceptance Probability. Considering that the time uti-
lization ratio (measured by workers’ workload and travel
time) of workers and rate of return (measured by the actual
reward andmaximal reward) of tasks, we introduce an accep-
tance probability to find the high-value task assignments (i.e.,
the task assignments ensuring high time utilization ratio of
workers and high rate of return of tasks). Specifically, after
assigning a worker coalition MWC(s) to task s, we can cal-
culate the acceptance probability APMWC(s) (that means the
probability that a task assignment (s,MWC(s)) is accepted)
by Eq. 5.

APMWC(s) =α

∑
w∈MWC(s) w.wl(MWC(s))

∑
w∈MWC(s)

(
t(w.l, s.l) + w.wl(MWC(s))

)

+ (1 − α)
RMWC(s)

s.maxR
, (5)

where α is a parameter controlling the contribution of the

time utilization ratio (i.e.,
∑

w∈MWC(s) w.wl(MWC(s))
∑

w∈MWC(s)

(
t(w.l,s.l)+w.wl(MWC(s))

))

of workers and the rate of return (i.e., RMWC(s)
s.maxR) of the task, and

0 ≤ α ≤ 1. Next, w.wl(MWC(s)) denotes the workload con-
tribution (measured by time) of w when task s is performed
byMWC(s), and t(w.l, s.l) denotes the travel time from loca-
tion w.l to location s.l. Further, RMWC(s) is the actual reward
thatMWC(s) can obtain by performing task s, and s.maxR is
the maximal reward of s. Note that the acceptance probabili-
ties among different tasks and worker coalitions are mutually
independent, i.e., they are independently distributed.

123

Coalition-based task assignment with priority-aware fairness...

Lemma 2 0 ≤ APMWC(s) ≤ 1.

Proof Considering thatw.wl(MWC(s)) ≥ 0, t(w.l, s.l) ≥ 0,
w.wl(MWC(s)) ≥ 0, and α ≥ 0, we have:

0 ≤ α

∑
w∈MWC(s) w.wl(MWC(s))

∑
w∈MWC(s)

(
t(w.l, s.l) + w.wl(MWC(s))

)

= α

∑
w∈MWC(s) w.wl(MWC(s))

∑
w∈MWC(s) t(w.l, s.l) + ∑

w∈MWC(s) w.wl(MWC(s))

≤ α

∑
w∈MWC(s) t(w.l, s.l) + ∑

w∈MWC(s) w.wl(MWC(s))
∑

w∈MWC(s) t(w.l, s.l) + ∑
w∈MWC(s) w.wl(MWC(s))

≤ α (6)

Similarly, since RMWC(s) ≥ 0, s.maxR ≥ 0, 1 − α ≥ 0,
and the actual reward RMWC(s) obtained by workers is not
more than the maximal reward s.maxR of s, the following
inequality always holds:

0 ≤ (1 − α)
RMWC(s)

s.maxR
≤ 1 − α (7)

By summing upEqs. 6 and 7,we have 0 ≤ APMWC(s) ≤ 1.

The acceptance probability APMWC(s) is a probability
ranging from 0 to 1, which considers the time utilization
ratio of workers in MWC(s) and the rate of return of task s.
Apparently, the higher the time utilization ratio and the rate
of return are, the more reward workers can obtain. There-
fore, a higher acceptance probability means that workers in
MWC(s) can obtain more reward, which indicates that the
task assignment (s, MWC(s)) is more likely to be accepted.
Given the fact that s.wl = ∑

w∈WC(s) w.wl(WC(s)) and for
convenience of calculation, Eq. 5 can be represented in the
following:

APMWC(s) = α
s.wl

|MWC(s)|TMWC(s)
+ (1 − α)

RMWC(s)

s.maxR
, (8)

where |MWC(s)| denotes the number of worker coalition
MWC(s), and TMWC(s) is the task duration of s (i.e., elapsed
time from assignment to completion).

The Process of Greedy Approach. Algorithm 1 outlines
the major procedure of the greedy approach, which takes a
worker set W , a task set S, and an acceptance threshold η

as input and outputs a task assignment result A. The algo-
rithm starts with the calculation of the available worker set
AW(s) for each task s (line 3). After initialization of the
current worker coalition (i.e.,WC(s) ← ∅), the correspond-
ing reward obtained by WC(s) (i.e., RWC(s) ← 0, RWC(s) is
also the total reward of s), and a temporary variable (i.e.,
R′ ← 0, line 4), for each task s ∈ S, the algorithm gener-
ates the minimal worker coalition MWC(s) by choosing the
closest workers who can contribute a higher overall reward

Algorithm 1: Greedy Approach
Input: Worker set W , task set S, acceptance threshold η

Output: Task assignment: A
1 A ← ∅;
2 for each s ∈ S do
3 Obtain the available worker set AW(s) from W ;
4 WC(s) ← ∅; RWC(s) ← 0; R′ ← 0;
5 for the nearest worker w ∈ AW(s) do
6 R′ ← RWC(s)∪{w};
7 /*RWC(s)∪{w} is computed based on Eq. 1.*/
8 AW(s) ← AW(s) − {w};
9 if R′ = 0 and AW(s) = ∅ then

10 break;

11 if R′ = 0 and AW(s) �= ∅ then
12 WC(s) ← WC(s) ∪ {w};
13 if R′ > RWC(s) then
14 WC(s) ← WC(s) ∪ {w};
15 RWC(s) ← R′;
16 else
17 MWC(s) ← WC(s);
18 RMWC(s) ← RWC(s);
19 A ← A ∪ (s,MWC(s));
20 break;

21 Calculate the acceptance probability APMWC(s) based on
Eq. 8;

22 if APMWC(s) < η then
23 A ← A − (s,MWC(s));
24 S ← S − {s};
25 else
26 W ← W − MWC(s);
27 S ← S − {s};
28 return A;

for s and assigns the worker coalitionMWC(s) to s (lines 5–
20). Specifically, by adding the closest worker w ∈ AW(s)
into the current worker coalitionWC(s), we can compute the
reward obtained by coalition WC(s) ∪ {w} based on Eq. 1,
i.e., RWC(s)∪{w} (line 6). Then, we judge whether adding
worker w can increase the total actual reward of s by per-
forming the following actions:

1) if task s cannot be completed by workers in coalition
WC(s) ∪ {w} (i.e., R′ = 0), and there are no available
workers (i.e., AW(s) = ∅), task s cannot be assigned to
a suitable coalition (lines 9–10);

2) if task s cannot be completed by workers in coalition
WC(s)∪{w} (i.e., R′ = 0), but there are enough available
workers (i.e., AW(s) �= ∅), we add worker w into the
current worker coalition WC(s) (lines 11–12);

3) if adding worker w into WC(s) can increase the reward
obtained byWC(s) (i.e., R′ > RWC(s)), worker w can be
added intoWC(s), and the reward obtained byWC(s) can
be accordingly updated, i.e., RWC(s) ← R′ (lines 13–15);

4) otherwise (i.e., when R′ �= 0 and adding worker w into
WC(s) cannot increase the reward obtained by WC(s)),

123

Y. Zhao et al.

we can obtain the minimal worker coalitionMWC(s), the
corresponding rewardRMWC(s) for s, and the updated task
assignment, i.e., A ← A ∪ (s,MWC(s)) (lines 16–20).
Next, we calculate the acceptance probability APMWC(s)

based on Eq. 8 (line 21). In case that the acceptance prob-
ability of task assignment (s,MWC(s)) is less than a
given threshold η (0 ≤ η ≤ 1), i.e., APMWC(s) < η,
Algorithm 1 will quit performing task s, which means
task s fails to be assigned (lines 22–24). Further, η

can be specified by task requesters or SC platforms.
Otherwise (i.e., APMWC(s) ≥ η), the task assignment
(s,MWC(s)) is regarded as high-value, and workers in
MWC(s) are assigned to perform task s. As a result,
workers inMWC(s) and task s can be removed from the
worker setW to be assigned and task set S to be assigned
(lines 25–27). Finally, Algorithm 1 will obtain a suit-
able task assignment result (line 28). For the example in
Fig. 1, the greedy algorithm will yield a task assignment,
{(s1, {w1, w2, w4}),(s3, {w0, w3}), (s4, {w6})}, with the
reward of 8.53 (that is 69.58% of the maximal reward),
in which we set α as 0.5 and η as 0.4.

Time Complexity. It is easy to see the time complexity
of Algorithm 1 is O(|S| · |W | · |maxAW |), where |S| is the
number of tasks, |W | is the number of workers, and |maxAW |
is the maximum number of available workers among all the
tasks, i.e., |maxAW | = maxs∈S |AW(s)|.

4 Equilibrium-based approach

Although the greedy algorithm can find a task assignment
efficiently, it cannot guarantee the stability of the formed
worker coalitions. The fundamental nature of the CTA prob-
lem is that each worker needs to choose a task to conduct by
interacting with other workers during the task assignment,
suggesting that the task selection for a worker depends on the
decisions taken by the other workers. Such interdependent
decisions can be modeled by game theory, where workers
can be treated as independent players involved in a game.
The proposed CTA system aims to assign a worker coalition
to each task, so this is a process of coalition formation. Such
a process can be considered to be a non-cooperative multi-
player game, where eachworker is a player that aims to find a
suitable coalition (i.e., a suitable strategy) to achieve the opti-
mal utility conditioned on the strategies of the other players
in amyopicmanner. Coalition formation is a non-cooperative
game since it studies and models conflict situations among
workers (players); that is, it studies situations where the util-
ity of each worker depends not only on the strategy of the
worker but also on the strategies of the other workers. Each
worker will try to maximize the utility given the strategies
of the other workers, and the outcome of the game depends

on the strategies of all the workers. We aim to achieve sta-
ble coalitions so that no worker can improve their utility by
a unilateral change to a different coalition if other workers
stay in their coalitions. We adopt a best-response method to
reach a pure Nash equilibriumwithin such a non-cooperative
multi-player game.

To be more specific, our problem can be modeled as an
exact potential game, which has at least one Nash equilib-
rium in pure strategy (a.k.a. pure Nash equilibrium) [22].
Then, we employ a best-response algorithm, one of the
most basic tools in exact potential games as it is efficient in
addressing the conflicts arising among players [6]. With the
best-response dynamics, players are required to have their
strategies updated sequentially and asynchronously on the
basis of their best-response utility functions conditioned on
the strategies of the other players in a myopic manner, which
finally achieves a pureNash equilibrium.ANash equilibrium
represents a state of the game where any single worker is
incapable to improve their utility by making a unilateral shift
from the assigned coalition to other coalitions when other
workers stay in their assigned coalitions. This suggests that
workers will voluntarily select the assigned tasks when they
have freedom to do so. In such situation, the formed worker
coalitions are regarded as stable coalitions. Nevertheless, this
Nash equilibrium achieved by the best-response algorithm
may be far from optimum as there can be many equilib-
rium points. In order to resolve this problem, we introduce
a Simulated Annealing (SA) strategy into the best-response
dynamics, which finds a better Nash equilibrium. With the
help of the SA strategy, the updating process has a better
chance to realize a better Nash equilibrium with higher total
rewards. Finally, we analyze the feasibility of our solutions.

4.1 Gamemodeling and nash equilibrium

We first formulate our CTA problem as an n-player strategic
game, G = (W ,ST,U), which is comprised of players, strat-
egy spaces, and utility functions. It is specified as follows:

1) W = {w1, ..., wn} (n ≥ 2) represents a finite set of work-
ers playing the roles as the game players. In the rest of
the paper, we will use player and worker interchangeably
when the context is clear.

2) ST = {STi }ni=1 is the overall strategy set of all the
players, i.e., the strategy space of the game. STi is the
finite set of strategies available to worker wi , which con-
tains wi ’s reachable task set and null task (that means
wi does not choose any tasks to conduct), denoted as
STi = {RS(wi), null} (whereRS(wi) indicates the reach-
able task set of worker wi and null represents the null
task).

3) U = {Ui }ni=1 denotes the utility functions of all the play-
ers, and Ui : ST → R is the utility function of player

123

Coalition-based task assignment with priority-aware fairness...

wi . For every joint strategy st ∈ ST, Ui (st) ∈ R repre-
sents the utility of player wi , which can be calculated as
follows:

Ui (st) =RMWC(s)∪{wi } − RMWC(s)

− (RMWC(s0) − RMWC(s0)−{wi }),
(9)

where RMWC(s)∪{wi } is the total reward obtained by coalition
MWC(s) ∪ {wi }, MWC(s) ∪ {wi } is the new worker coali-
tion including MWC(s) and {wi },MWC(s0) − {wi } denotes
the worker coalition (where wi is removed fromMWC(s0)),
s0 denotes the task that is currently assigned to worker wi ,
MWC(s) andMWC(s0) are worker coalitions that wi is will-
ing to join and currently staying in, respectively. When the
context of st is clear, we use Ui to denote Ui (st).

In a strategic game, a policy profile π∗ = (π∗
1 , ..., π∗

n)

(where π∗
i : STi → [0, 1] is a probability distribution over

STi) is called aNash equilibriumwithmixed strategies (a.k.a.
mixed Nash equilibrium) if and only if for any wi ∈ W , it
holds that:

Ui
(
π∗) ≥ max

π ′
i∈Σi

Ui
(
π∗
1 , . . . , π∗

i−1, π
′
i , π

∗
i+1, . . . , π

∗
n

)
, (10)

where Σi denotes the policy space of player wi . For
any given policy profile π = (π1, ..., πn), Ui (π) =∑

st∈ST πi (st)Ui (st). The Nash equilibrium is a pure Nash
equilibrium (i.e., Nash equilibrium with pure strategy) only
when players play deterministic strategies, which means the
probability of one strategy worker wi can choose from STi

is 1 while the rest strategies from STi are 0.
As proved by Nash et al. [24], a game with a finite number

of players and a finite strategy set has a mixed Nash equi-
librium, which only implies stable probability distributions
over profiles rather than the fixed play of a particular joint
strategy profile. This uncertainty is unacceptable in our sce-
nario where each worker needs to have a definite strategy,
i.e., selecting a task to conduct or doing nothing. Therefore,
we show that our CTA game has pure Nash equilibriums,
wherein each player can choose a strategy in a deterministic
manner.

Given a joint strategy st = (st1, ..., stn) ∈ ST, sti
(i.e., s ∈ RS(wi) or null) represents the strategy chosen
by player wi (0 < i ≤ n). As for player wi , a joint strat-
egy sti ∈ ST can also be denoted by (sti , st−i), where
st−i = (st1, ..., sti−1, sti+1, ..., stn) ∈ ST−i is the joint
strategies of all the other players.

Lemma 3 The CTA game has pure Nash equilibriums.

Proof ToproveLemma3,weprove theCTAgame is anExact
Potential Game (EPG) that has a global potential function
onto which the incentive of all the players can be mapped.
For an EPG that has at least one pure Nash equilibrium, the

best-response framework always converges to a pure Nash
equilibrium for countable strategies [22].

In the following part, we introduce the definition of EPG
and show that the CTA game is an EPG.

Definition 7 (Exact Potential Game) A strategic game, G =
(W ,ST,U), is an Exact Potential Game (EPG) if there exists
a function, Φ : ST → R, such that for all sti ∈ ST, it holds
that,

∀wi ∈ W
(
Ui (st

′
i , st−i)−Ui (sti , st−i)=Φ(st ′i , st−i)−Φ(sti , st−i)

)
,

(11)

where st ′i and sti are the strategies that can be selected by
worker wi , st−i is the joint strategy of the other workers
except for worker wi , and the function Φ is called an exact
potential function for game G.
Lemma 4 CTA is an Exact Potential Game (EPG).

Proof According to Definition 7, to prove that CTA is an
exact potential game, we need to find an exact potential
function satisfying Eq. 11. Therefore, we define a function,
Φ(st) = ∑

s∈S RMWC(s), representing the total rewards for
all tasks in S, where RMWC(s) is calculated by Eq. 1 that
depends on the strategy sti (i.e., the selected task) of each
worker wi in coalition MWC(s). In other words, RMWC(s)

depends on whether worker wi selects task s or not. Then, it
can be obtained that

Φ(st ′i , st−i) − Φ(sti , st−i)

=
⎛

⎝RMWC(sk)∪{wi } + RMWC(sg) +
∑

s∈S−sk−sg

RMWC(s)

⎞

⎠

−
⎛

⎝RMWC(sk) + RMWC(sg)∪{wi } +
∑

s∈S−sk−sg

RMWC(s)

⎞

⎠

=(
RMWC(sk)∪{wi } − RMWC(sk)

)

− (
RMWC(sg)∪{wi } − RMWC(sg)

)

=
(
RMWC(sk)∪{wi } − RMWC(sk)

− (
RMWC(s0) − RMWC(s0)−{wi }

))

−
(
RMWC(sg)∪{wi } − RMWC(sg)

− (
RMWC(s0) − RMWC(s0)−{wi }

))

=Ui (st
′
i , st−i) −Ui (sti , st−i),

(12)

where the tasks selected in strategies st ′i and sti are sk and
sg , respectively. In accordance with Definition 7, Φ(st) is an
exact potential function satisfying Eq. 11, and the strategic

123

Y. Zhao et al.

CTA game is an exact potential game. Since an EPG has at
least one pure Nash equilibrium [22], the CTA game has pure
Nash equilibriums.

Let st∗i denote the best strategy that player wi can make
response to the strategy combination st−i of others. There-
fore, the utility Ui (st∗i , st−i) is maximized for a given st−i .
A pure Nash equilibrium is reached by the joint strategy
st∗ = (st∗1 , ..., st∗n), as a result of which no player can have
any gain in their utility by making change to their strategy
unilaterally [23].

4.2 Best-response approach

As our CTA game has pure Nash equilibriums, we adopt a
best-response approach to solve it, which generates a number
of stable worker coalitions to perform the tasks by reach-
ing a pure Nash equilibrium. Since it is impossible for a
crowdsourced worker to know the strategy space of the other
players and the resulting utility function, we assume that
the Spatial Crowdsouring (SC) platform has access to such
information to updateworkers’ strategies (for selecting tasks)
sequentially and asynchronously in order to reach a pure
Nash equilibrium. This is a common assumption in SC stud-
ies [2, 32]. The benefit is that if all workers are in a Nash
equilibrium, they are closely inter-connected, and the formed
coalitions are stable, i.e., no worker can improve their utility
by a unilateral change to a different coalition if other workers
stay in their coalitions. The designed best-response algorithm
consists of players taking turns to adapt their strategies (i.e.,
find their best-response strategies) based on the most recent
known strategies of the others, which ends up reaching a
Nash equilibrium that is a locally optimal task assignment.
In the following, we first introduce the best-response strategy
and then give the details of the best-response approach and
its time complexity.

Best-response Strategy. For each worker wi ∈ W , the
best-response strategy is to find the best-response task to
maximize the reward increase in the coalition that the worker
is staying in. The best-response task s∗ with the maximal
reward increase can be calculated in Eq. 13.

s∗ = argmaxs∈RS(wi)Ui (st)

= argmaxs∈RS(wi)

(
RMWC(s)∪{wi } − RMWC(s)

− (RMWC(s0) − RMWC(s0)−{wi })
)

(13)

The Process of Best-response Approach. A general
framework of the best-response approach is illustrated in
Algorithm 2.

Given a worker set W and a task set S to be assigned,
the task assignment A is initialized as ∅ (line 1). The algo-
rithm first randomly chooses an available worker for each
task, obtains the corresponding strategy (i.e., a reachable

Algorithm 2: Best-response Approach
Input: Worker set W , task set S
Output: Task assignment: A

1 A ← ∅;
2 for each task s ∈ S do
3 Obtain the available worker set AW(s) from W and randomly

assign an available worker, stored inMWC(s), to s, where⋂
MWC(s) = ∅;

4 A ← A ∪ (s,MWC(s));

5 for each worker wi ∈ W do
6 if wi is assigned to a task s then
7 wi .st ← s;

8 else
9 wi .st ← null;

10 k ← 1;
11 repeat
12 for each worker wi ∈ W do
13 find the best-response task s∗ for wi ;
14 /*s∗ can be obtained by Eq. 13*/
15 if Ui (st) ≤ 0 then
16 continue;

17 else if wi .st = null then
18 wi .st ← s∗;
19 MWC(s∗) ← MWC(s∗) ∪ {wi };
20 else
21 if workers in {MWC(wi .st) − {wi }} cannot

complete task wi .st before its deadline then
22 for each worker w j ∈ {MWC(wi .st) − {wi }}

do
23 w j .st ← null;

24 MWC(wi .st) ← ∅;
25 else
26 MWC(wi .st) ← MWC(wi .st) − {wi };
27 wi .st ← s∗;
28 MWC(s∗) ← MWC(s∗) ∪ {wi };

29 k ← k + 1;
30 until W .stk = W .stk−1;
31 /*W .stk denotes the strategies of all the workers in the kth

iteration*/
32 update A;
33 return A;

task or doing nothing) for each worker, and updates the task
assignment A accordingly (lines 2–9). Then, the algorithm
iteratively adjusts eachworker’s strategy to the best-response
strategy based on the current joint strategies of others until
a Nash equilibrium (i.e., no one changes their strategies) is
found (lines 11–30). At each iteration, only one worker is
allowed to select the best-response strategy and the game is
supposed to be played in sequence.

When there is no best-response task for worker wi based
on the current task assignment, wi makes no change to
the strategy (lines 15–16). For the worker selecting a best-
response task, we check the current strategy of this worker
as follows:

123

Coalition-based task assignment with priority-aware fairness...

1) in the event that the current strategy of the worker is
doing nothing, i.e., wi .st = null, we assign the best-
response task to the worker (i.e., wi .st = s∗) and update
the minimal worker coalition for task s∗ (lines 17–19);

2) in case that the current strategy of the worker involves a
task (marked aswi .st), whichmeanswi is assigned a task
wi .st in coalitionMWC(wi .st), the strategies of the other
workers in coalition MWC(wi .st) are updated based on
whether they are able to complete task wi .st together on
time (lines 21–26). Subsequently, the strategy andworker
coalition of wi are updated (lines 27–28). Finally, we
update the task assignment A according to the obtained
Nash equilibrium (line 32).

Time Complexity. The time complexity of Algorithm 2
is O(|S| · |W | + |W | · |maxRS| · K), where |S| is the num-
ber of tasks, |W | is the number of workers, |maxRS| is the
maximum number of reachable tasks among all the workers
(i.e., |maxRS| = maxw∈W |RS(w)|), and K is the number of
iterations to adjust each worker’s best-response strategy until
a Nash equilibrium is achieved.

4.3 Simulated annealing-based optimization
strategy

Although the pure Nash equilibrium calculated by the best-
response algorithm can generate an acceptable task assign-
ment with stable worker coalitions, it is a local optima of the
CTA problem and is not necessarily unique. Under the situ-
ations where multiple pure Nash equilibriums exist (i.e., the
structure of the problem space is not smooth), it is desirable
to obtain a better one than the one generated by the best-
response algorithm. SimulatedAnnealing (SA) is a stochastic
optimization procedure. It takes random walks through the
problem space at successively lower temperatures, looking
for points with better results (generated by the objective
function) than the current local optimal point. Inspired by
the success achieved by SA in solving discrete optimization
problems [14], we employ it to search for better approxima-
tion to the global optimal task assignment.

In particular, when each worker updates the strategy sti
sequentially based on the given st−i to maximize the utility
functionUi (sti , st−i), the workersmay reach aNash equilib-
rium that is a stable state. Considering that the search space
is discrete (i.e., the strategy sets ST = {STi }ni=1 are dis-
crete), the Simulated Annealing (SA) [17] can be applied
in the process of updating each worker’s strategy in order
for a better local optimum. SA is regarded as an efficient
probabilistic scheme for the game updating to solve discrete
optimization problems, evolving a discrete-time inhomoge-
nous Markov chain, x(k) = (st1, ..., stn). In our work, the
state x(k) = (st1, ..., stn) is the strategy combination of the
workers at the kth iteration in Algorithm 2. For worker wi ,

the strategy sti can keep the current task s0 or make change to
one of the other reachable tasks (i.e.,RS(wi)−{s0}). For sim-
ulation of the heat (randomness), it is assumed that worker
wi is able to change the current strategy at random by using
one of the other reachable tasks with an identical probability
Psti ,st ′i = 1/|RS(wi)|, where st ′i = s (s ∈ RS(wi) − {s0})
or st ′i = null. Every single worker can update the strategy
sequentially in line with the following rules.

1) If Ui (st ′i , st−i) ≥ Ui (sti , st−i), then x(k + 1) =
(st ′i , st−i).

2) If Ui (st ′i , st−i) < Ui (sti , st−i), then x(k + 1) =
(st ′i , st−i) with probability

P = exp
{Ui (st ′i , st−i) −Ui (sti , st−i)

Tem(k)

}
,

= exp
{Φi (st ′i , st−i) − Φi (sti , st−i)

Tem(k)

}
,

(14)

where Tem(k)(> 0) denotes the temperature at the kth iter-
ation, which is in decline gradually throughout the updating
process; otherwise, x(k + 1) = x(k) = (sti , st−i).

By adhering to the above rules, we can update lines 15–
28 in Algorithm 2. The detailed pseudo-code is omitted due
to space limit. Formally, the transition probability can be
computed in Eq. 15.

P
[
x(k + 1) = (

st ′i , st−i
) |x(k) = (sti , st−i)

]

= 1
|RS(wi)| exp

{
min(0,Ui(st ′i ,st−i)−Ui (sti ,st−i))

Tem(k)

} (15)

The function Tem(k) : N → (0,∞) is non-increasing,
called cooling schedule, where N is the set of positive inte-
gers. From Eq. 15, it can be seen that the strategy selection
is almost random when Tem(k) is large while a better strat-
egy with larger utility has a greater likelihood to be chosen
when Tem(k) approaches zero. According to the two strategy
update rules of SA,we can see that although aworker updates
the strategy with a certain probability when the utility of the
update strategy is less than that of the current strategy, i.e.,
Ui (st ′i , st−i) < Ui (sti , st−i), the worker would definitely
update the strategy when Ui (st ′i , st−i) ≥ Ui (sti , st−i). As
a whole, the rules are more likely to increase the total util-
ity. Although allowing task selection with a smaller utility
contributes to a decrease in the total utility, such “irregular”
strategy selections have a potential to facilitate a better Nash
equilibrium (i.e., a better task assignment), which is validated
by the experiments in Sect. 6.

4.4 Convergence analysis

The question of convergence to a Nash equilibrium has
attracted a great deal of attention in the game theory field

123

Y. Zhao et al.

[10]. Therefore, we subsequently prove the convergence of
our solution to a pure Nash equilibrium where no worker is
incentivized to unilaterally deviate.

Lemma 5 The best-response algorithm converges to a pure
Nash equilibrium.

Proof As depicted in Eq. 12, the utilities of all the workers
are mapped onto a potential function (i.e., Φ), suggesting
that the individually made adjustment to the strategy by each
worker will result in a change to the utility of the worker
and to the potential function with the same amount. For a
potential game, eachworker has the strategy updated sequen-
tially for maximal utility by the best-response algorithm, and
the potential function will reach a local maximum (i.e., a
Nash equilibrium) accordingly, wherein the best-response
dynamic is equivalent to a local search on the potential func-
tion of a potential game. The study [25] has proven that in
any finite potential games, the sequential updates with best-
response dynamic always converge to a Nash equilibrium.

Lemma 6 The best-response algorithm with the simulated
annealing optimization converges to a pureNash equilibrium
when the cooling schedule is regulated.

Proof With the integration of the simulated annealing strat-
egy into the best-response algorithm, randomness is added
into the update process of workers’ strategies, i.e., worker
wi can change the current strategy on a random basis by
using one of the other reachable tasks with probabilities.
Specifically, the process is “heated” up before “cooling”
down, helping the potential function to avoid a local optimum
(obtained by the best-response algorithm) and converge to
another better Nash equilibrium, in which the cooling sched-
ule ought to be regulated such that the process will eventually
“freeze” (i.e., converge). Liu et al. [21] demonstrate that the
convergence of simulated annealing strategy can be guaran-
teed when the cooling schedule is set as Tem(k) = β

log(k)
(where β ≥ D∗ is a positive constant). If a joint strategy st
has a path to the optimal joint strategy st∗, D is defined as the
depth such that the smallest value of the potential Φ along
the path is Φ(st) − D. D∗ denotes the maximum depth of
the path starting from any joint strategy st and ending at the
final joint strategy st∗ if st has a path to st∗.

The convergence of the best-response algorithmwith sim-
ulated annealing is certain to proceed at a slower pace than
that of the best-response algorithm. In Sect. 6, we provide
experimental evidence for this statement and demonstrate a
pure Nash equilibrium can effectively be calculated, as stated
in our Lemma 5 and Lemma 6.

5 Priority-aware task assignment

Although stability is a desirable criterion for a worker coali-
tion, a stable mechanism might not be attractive to workers
because it might be unfair. For instance, if a worker con-
tributes more than the other workers in a coalition and gets
less reward, this worker probably loses faith in the mech-
anism. Moreover, a worker may have to wait for many
assignment rounds without receiving any tasks if there are
fewer tasks than workers. It is unfair since workers spending
similar time on the SC platform receive inequitable rewards.
Unfairly treated workers may reduce their working hours or
leave the platform, eventually harming the platform.

Fairness is important in spatial crowdsourcing because of
varying worker inputs, e.g., each worker’s marginal contri-
bution (the reward obtained by the worker when joining a
coalition) and online time. To achieve a fair reward distri-
bution among the members of a coalition, we introduce the
concept ofmarginal contribution-based value and fairly com-
pute each worker’s reward in a coalition based on it. Then,
we use a priority-aware fairness metric to assign tasks while
taking workers’ online time and travel time into account.

5.1 Marginal contribution-based reward
distribution

Considering that the reward allocation for a worker is propor-
tional to the worker’s contribution to the coalition in a task
assignment game, i.e., how much value the worker creates,
we introduce the concept of Marginal Contribution-based
Value. Specifically, The marginal contribution-based value
of worker wi in coalition MWC(s) is the weighted average
of all marginal contributions of wi to all possible worker
sequences from workers in MWC(s). This is formalized as
follows:

V(MWC(s),wi) =
∑

G∈G(MWC(s)) i(G)

|MWC(s)|! , (16)

δi (G) = RG ′∪wi − RG ′ , (17)

where V(MWC(s),wi) is the marginal contribution-based
value of worker wi in worker coalition MWC(s), G denotes
a specific worker sequence based on the order of assignment,
G(MWC(s)) denotes all possible worker sequences, where
workers come from MWC(s), δi (G) is the marginal contri-
bution of wi by joining G, and |MWC(s)| is the number of
workers in coalitionMWC(s). The probability of eachworker
sequence occurring is the same and is equal to 1

|MWC(s)|! . Fur-
ther, δi (G) is defined in Eq. 17, where RG ′∪wi denotes the
reward obtained by workers in G ′ ∪ wi , and G ′ denotes the
worker sequence before worker wi joining G.

Taking task s1 and worker coalition {w1, w2, w4} as an
example, the calculation of the marginal contribution of wi

123

Coalition-based task assignment with priority-aware fairness...

Table 2 Marginal contribution calculation of w1, w2, and w4 for completing s1

Probability Order of assignment δ1(G) δ2(G) δ4(G)

1/6 w1, w2, w4 R{w1} = 0 R{w1,w2} − R{w1} = 2.65 R{w1,w2,w4} − R{w1,w2} = 0.12

1/6 w1, w4, w2 R{w1} = 0 R{w1,w4,w2} − R{w1,w4} = 0.12 R{w1,w4} − R{w1} = 2.65

1/6 w2, w1, w4 R{w2,w1} − R{w2} = 0.15 R{w2} = 2.50 R{w2,w1,w4} − R{w2,w1} = 0.12

1/6 w2, w4, w1 R{w2,w4,w1} − R{w2,w4} = 0.01 R{w2} = 2.50 R{w2,w4} − R{w2} = 0.25

1/6 w4, w1, w2 R{w4,w1} − R{w4} = 0.15 R{w4,w1,w2} − R{w4,w1} = 0.12 R{w4} = 2.50

1/6 w4, w2, w1 R{w4,w2,w1} − R{w4,w2} = 0.01 R{w4,w2} − R{w4} = 0.25 R{w4} = 2.50

(wi ∈ {w1, w2, w4}), δi (G), is shown in Table 2, where
G ∈ G = {(w1, w2, w4), (w1, w4, w2), (w2, w1, w4),

(w2, w4, w1),

(w4, w1, w2), (w4, w2, w1)}. The marginal contribution-bas
ed value of each worker is computed as follows:

V ({w1, w2, w4}, w1)

= 1

6
(0 + 0 + 0.15 + 0.01 + 0.15 + 0.01) = 0.05,

V ({w1, w2, w4}, w2)

= 1

6
(2.65 + 0.12 + 2.50 + 2.50 + 0.12 + 0.25) = 1.36,

V ({w1, w2, w4}, w4)

= 1

6
(0.12 + 2.65 + 0.12 + 0.25 + 2.50 + 2.50) = 1.36

The reward of a worker is calculated on the correspond-
ingmarginal contribution-based value, i.e., Rwi (MWC(s)) =
V (MWC(s), wi), where Rwi (MWC(s)) denotes the reward
obtained byworkerwi in coalitionMWC(s). The total reward
obtained by coalition {w1, w2, w4} is 2.77. Workers w1, w2,
and w4 receive rewards 0.05, 1.36, and 1.36, respectively.

5.2 Priority-aware fairness

The CTA framework in the conference version [41] is
designed assumingperfect rationality and self-interest among
players. However, humans often care strongly about fairness
[12]. Therefore, fairness should be taken into account in SC,
where the allocation of tasks plays an important role. In SC,
workers consider it fair that each worker gets a (slightly)
different rewardbecause they contribute differently, e.g., con-
tribute different online time. For example, workers agree that
a worker who has waited a long time for a task should have
a higher priority to get a task than others. This additional
information is denoted as the priority. Next, we proceed to
adopt a priority-aware fairness criterion [13] that correlates
with workers’ reward, workload, and online time.

More formally, in an n-worker coalition MWC(s), we
assign a priority-aware utility (PAU), PAU(wi , s), to worker
wi tomeasure the priority-aware fairness, which is calculated

using the following equations.

PAU(wi, s) =
∑n

j=1,i �= j ζ(i, j)

n − 1
, (18)

ζ(i, j) =

⎧
⎪⎨

⎪⎩

1∃γ ∈ [
γmin, γmax

]

(Rwi (MWC(s))
fγ (i) = Rw j (MWC(s))

fγ (j)

)

0 otherwise,

(19)

fγ (i) = 1

n
+ γ

(

pi − 1

n

)

, (20)

pi = 1 − 1

tnow − wi.on + 1
, (21)

where ζ(i, j) denotes a scoring function for any pair ofwork-
ers wi and w j . Function ζ(i, j) is calculated in Eq. 19,
where γ ∈ [

γmin, γmax
]
is a greediness parameter, and

Rwi(MWC(s)) is the reward of wi in coalition MWC(s). To
enable flexible fairness, we use

[
γmin, γmax

]
to denote the

upper and lower bounds of parameter γ in Eq. 19, thus mak-
ing it possible to specify how tolerant we are with respect to
differences inworker rewards.We say thatworkerswi andw j

have a fair share with respect to each other if their rewards

satisfy
Rwi (MWC(s))

fγ (i) = Rwj (MWC(s))

fγ (j) with γ ∈ [
γmin, γmax

]
.

Further, fγ (i) denotes a fairness function of worker wi (cf.
Eq. 20), and pi denotes the priority value ofworkerwi , which
is measured according to the online duration of worker wi

(i.e., the difference between the current time tnow and wi ’s
online time wi.on), cf. Eq. 21. A higher priority-aware utility
implies a more fair task assignment.

5.3 Priority-aware task assignment approaches

The original CTA problem is converted into a priority-aware
CTA problem by considering the priority-aware fairness of
workers. The next problem is how to combine the priority-
aware fairness with the existing objective of maximizing the
total reward. In other words, the assignment should provide
priority-aware fairness without sacrificing the total reward.
To enable this, we improve the greedy and equilibrium-based
task assignment approaches to maximize the total reward
with priority-aware fairness as a constraint.

123

Y. Zhao et al.

Algorithm 3: Priority-aware Greedy Approach
Input: Worker set W , task set S, acceptance threshold η,

priority-aware threshold δg
Output: Task assignment: A

1 A ← ∅;
2 for each s ∈ S do
3 Obtain the available worker set AW (s) from W ;
4 WC(s) ← ∅; RWC(s) ← 0; R′ ← 0;
5 for the nearest worker w ∈ AW (s) do
6 R′ ← RWC(s)∪{w};
7 /*RWC(s)∪{w} is computed based on Eq. 1.*/
8 AW (s) ← AW (s) − {w};
9 Compute w’s marginal contribution-based reward

Rw(WC(s) ∪ {w}) based on Eq. 16 and compute w’s
priority-aware utility PAU (w, s) based on Eq. 18
accordingly;

10 if PAU (w, s) > δg then
11 if R′ = 0 and AW (s) = ∅ then
12 break;

13 if R′ = 0 and AW (s) �= ∅ then
14 WC(s) ← WC(s) ∪ {w};
15 if R′ > RWC(s) then
16 WC(s) ← WC(s) ∪ {w};
17 RWC(s) ← R′;
18 else
19 MWC(s) ← WC(s);
20 RMWC(s) ← RWC(s);
21 A ← A∪ < s, MWC(s) >;
22 break;

23 Calculate the acceptance probability APMWC(s) based on
Eq. 8;

24 if APMWC(s) < η then
25 A ← A− < s, MWC(s) >;
26 S = S − {s};
27 else
28 W = W − MWC(s);
29 S = S − {s};
30 return A.

5.3.1 Priority-aware greedy approach

We improve the greedy task assignment approach by intro-
ducing a priority-aware threshold, δg , which can guarantee
the priority-aware fairness among workers to some extent
and be set by users or the SC platform.

The Process of Priority-aware Greedy Approach. The
priority-aware greedy approach, shown in Algorithm 3, dif-
fers mainly from the original approach in Algorithm 1 in that
when assigning nearby workers to a task (lines 2–29), the
priority-aware utility of theworker is calculated (line 9), and a
worker is allowed to join a coalition only if the priority-aware
utility of the worker exceeds the user- or platform-specified
threshold δg (line 10), which guarantees priority-aware fair-
ness of the existing task assignment to some extent.

Time Complexity. The time complexity of Algorithm 3
is O(|S| · |W | · |maxAW | · |maxMWC|!), where |S| is the

number of tasks, |W | is the number of workers, |maxAW |
is the maximum number of available workers among all the
tasks, and |maxMWC| is the maximum number of workers
among all coalitions, i.e., |maxMWC| = maxs∈S |MWC(s)|.
In practice, the number |MWC(s)| of workers in coalition
MWC(s) is small, which means that the time complexity is
acceptable.

Algorithm 4: Priority-aware Equilibrium-based
Approach
Input: Worker set W , task set S, priority-aware threshold δe
Output: Task assignment: A

1 A ← ∅;
2 for each task s ∈ S do
3 Obtain the available worker set AW(s) from W and randomly

assign an available worker, stored inMWC(s), to s, where⋂
MWC(s) = ∅;

4 A ← A ∪ (s,MWC(s));

5 for each worker wi ∈ W do
6 Obtain reachable task set RS(wi) based on AW(s);
7 if wi is assigned to a task s then
8 wi .st ← s;

9 else
10 wi .st ← null;

11 k ← 1;
12 repeat
13 for each worker wi ∈ W do
14 for each task s ∈ RS(wi) do
15 if s is the best-response task for wi and Ui (st) > 0

then
16 if wi .st = null then
17 wi .st ← s;
18 MWC(s) ← MWC(s) ∪ {wi };
19 else if workers in {MWC(wi .st) − {wi }}

cannot complete wi .st before deadline then
20 for each worker

w j ∈ {MWC(wi .st) − {wi }} do
21 w j .st ← null;

22 MWC(wi .st) ← ∅;
23 else
24 MWC(wi .st) ← MWC(wi .st) − {wi };
25 wi .st ← s;
26 MWC(s) ← MWC(s) ∪ {wi };
27 else
28 Compute Rwi (MWC(s)) and PAU(wi , s);
29 if PAU(wi , s) > δe then
30 s is assigned to wi with probability P (see

Eq. 14);

31 k ← k + 1;
32 until W .stk = W .stk−1;
33 update A;
34 return A.

123

Coalition-based task assignment with priority-aware fairness...

5.3.2 Priority-aware equilibrium-based approach

We formulate the priority-aware CTA problem as an n-player
strategic game, G = (W ,ST,U), as in Sect. 4.1.

The Process of Priority-aware Equilibrium-based
Approach. The improved priority-aware equilibrium-based
approach is given in Algorithm 4, where the initialization
is the same as in the original Equilibrium-based approach
(Algorithm 2 in Sect. 4.2). Specifically, we first compute the
available worker set and assign an available worker to each
task randomly (lines 2–4). Then, the reachable task set can
be computed for each worker (lines 5–6), and each worker
updates their strategy (lines 7–10).

Next, we check each task s in worker wi ’s reachable task
set RS(w) (lines 13–14). If s is the best-response task for
wi , we assign it to wi (lines 15–26), which is the same as
in Algorithm 2. Otherwise, we compute wi ’s the marginal
contribution-based reward Rwi (MWC(s)) based on Eq. 16
and computewi ’s priority-aware utilityPAU(wi , s) based on
Eq. 18 (line 28). If the priority-aware utility of wi exceeds a
user- or platform-specified threshold (i.e.,PAU(wi , s) > δe),
s is assigned to wi with probability P , where P is calculated
based on Eq. 14 (lines 29–13).

Time Complexity. The time complexity of Algorithm 4
is O(|S| · |W | + |W | · |maxRS| · K · |maxMWC|!), where
|maxRS| is the maximum number of reachable tasks among
all the workers (i.e., |maxRS| = maxw∈W |RS(w)|), and K is
the number of iterations to adjust eachworker’s best-response
strategy until a Nash equilibrium is achieved.

6 Experimental study

We proceed to evaluate the performance of the proposed
methods using both real and synthetic datasets. All experi-
ments are performed on an Intel (R) Xeon (R) CPU E5-2650
v2 @ 2.60 GHz with 128 GB RAM.

6.1 Experimental setup

The experiments are carried out using two datasets, named
gMission (GM) and synthetic (SYN). First, gMission is an
open source SC dataset [1] in which each task is associated
with a location, a deadline, and a reward (regarded as its
maximal reward), and in which each worker is associated
with a location and a reachable radius. The publication time
of all tasks is set to 0, which is also the current time. Then, the
online time of workers is generated uniformly from values in
the range [−5, 0] to guarantee that workers are online before
or at the current time. As gMission is not associated with
a workload, expected completion time, and penalty rate of
tasks, we uniformly generate these from ranges [25 · s.d, 2 ·

s.d], [25 ·s.d, 3
5 ·s.d], and [0, s.maxR

s.d−s.e] (to ensure that the actual
reward obtained by workers is non-negative), respectively,
where s.d is the deadline of s and s.maxR is the reward of
each task s. It is common practice in experimental studies
of SC platforms to generate the values of these attributes in
a uniform manner [11, 27]. The speed of workers are set to
5km/h.

For the synthetic dataset, based on the observation from
gMission that the locations of workers/tasks are uniformly
distributed in space, we generate the locations of work-
ers/tasks following a uniform distribution. The maximum
reward of each task is set following a Gaussian distribution
since it is influenced by complex variables in practice. The
workload is uniformly generated from range [2, 10]. Other
settings (i.e., the publication time, the penalty rate of each
task, and the online time and speed of each worker) in the
synthetic dataset are set to resemble the settings seen in gMis-
sion.

We study the performance of the following algorithms:

1) OTA: The Optimal Task Assignment algorithm based on
tree decomposition. OTA first finds all minimal worker
coalitions for each task by utilizing dynamic program-
ming and then applies the tree-decomposition-based
algorithm [42] to identify the optimal task assignment
with the maximum reward.

2) GTA: The Greedy Task Assignment algorithm, where α

is set to 0.5 and the acceptance threshold η is set to 0.4.
3) GTA+PAU:The PAU-basedGTA,where the threshold on

the PAU is set to 0.03 and
[
γmin, γmax

]
is set to [0.3, 1.5].

4) BR: The Best-Response approach.
5) BR+SA: The Best-Response approach with Simulated

Annealing optimization, where the cooling schedule is
given by Tem(k) = 1

log(k+1) , where k denotes the kth iter-
ation of the algorithm.

6) BR+SA+PAU:ThePAU-basedBR+SA,where the thresh-
old on the PAU is set to 0.25 and

[
γmin, γmax

]
is set to

[0.4, 0.6].

Threemainmetrics are used for comparing the algorithms:
Total reward, Average Payoff Difference, and CPU time for
finding the final task assignment. The Average Payoff Dif-
ference, Pdif, that measures the payoff difference among
workers in a coalition by considering the rewards and the
online times of workers, is calculated as follows:

Pdif = 1
|S|

∑
s∈S �Pmax(WC(s)),

�Pmax(WC(s))

= max
wi ,w j∈WC(s)

{∣
∣
∣
∣
Rwi (WC(s))
s·T−wi ·on − Rw j (WC(s))

s·T−w j ·on

∣
∣
∣
∣

}

,

(22)

where |S| is the number of tasks,�Pmax(WC(s)) is the max-
imal payoff difference among workers in coalition WC(s),

123

Y. Zhao et al.

Table 3 Parameter settings

Parameter Values

Number of tasks, |S|
(GM)

100, 200, 300, 400, 500

Number of tasks, |S|
(SYN)

1K, 2K, 3K, 4K, 5K

Number of workers, |W |
(GM)

100, 200, 300, 400, 500

Number of workers, |W |
(SYN)

1K, 2K, 3K, 4K, 5K

Reachable distance of
workers, r (km) (SYN)

1, 2, 3, 4, 5

Expected completion
time of tasks, e (SYN)

2h, 4h, 6h, 8h, 10h

Time between the
expected completion
time and the deadline of
tasks, d − e (GM)

2h, 4h, 6h, 8h, 10h

Rwi (WC(s))
s.T−wi .on

is the payoff obtained by worker wi for finishing
task s, s.T is the completion time of task s, and wi.on is the
online time of worker wi . Apparently, it is more fair if the
payoff difference amongworkers is smaller. In other words, a
task assignment with a smaller average payoff difference is a
more fair task assignment. Table 3 shows parameter settings,
where default values are underlined.

6.2 Experimental results

Effect of |S|. To study the scalability of all the algo-
rithms, we generate five datasets containing 100 to 500
(1, 000 to 5, 000) tasks by random selection from the gMis-
sion dataset (synthetic dataset). As shown in Figs. 4a and 5a,
the total reward of all the methods exhibits a similar increas-
ing trend when |S| grows. Since OTA is the optimal task
assignment algorithm, it achieves the highest total reward,
followed by BR+SA, BR+SA+PAU, BR, GTA+PAU, and
GTA, on both gMission and the synthetic datasets. BR+SA
can obtain at most 96% of the maximal reward, and its
reward is consistently higher than that of BR (by up to 8%),
which demonstrates the superiority of the simulated anneal-
ing optimization strategy. BR and GTA can achieve up to
93% and 82% of the optimal reward, respectively. Figures4b
and 5b show the experimental results about the average pay-
off difference, which aim to demonstrate the effectiveness
of considering the priority-aware fairness (i.e., PAU) in task
assignment. Therefore, we only compare the methods (i.e.,
GTA+PAU and BR+SA+PAU) that consider priority-aware
fairness with their counterparts (i.e., GTA and BR+SA) in
these experiments. We can see that although BR+SA obtains
higher rewards than BR+SA+PAU (up to 2%), its average
payoff difference is higher than that of BR+SA+PAU (up

Fig. 4 Effect of |S| on gMission

to 41%). The payoff difference of the algorithms decreases
with increasing |S| since workers have more choices when
more tasks are to be assigned, which enables them to choose
suitable tasks that lead to smaller payoff differences. It is
noteworthy that GTA+PAU performs better than GTA in
terms of total rewards and average payoff differences, as
shown in Figs. 4a, b, and 5a, b. In Figs. 4c, d and 5c, d, despite

123

Coalition-based task assignment with priority-aware fairness...

Fig. 5 Effect of |S| on the Synthetic Dataset

theCPU timeof allmethods increase as |S| increases, our pro-
posed algorithms (including GTA, GTA+PAU, BR, BR+SA,
and BR+SA+PAU) deliver clearly superior performance to
OTA. OTA deteriorates at a significantly faster pace in terms
of efficiency. As expected, GTA is the fastest algorithm,
which can improve efficiency by 11%–32% (23%–39%)
compared with BR (BR+SA), while it generates smaller
rewards when compared to the other algorithms. Moreover,
independently of |S|, GTA and BR+SA always run faster

Fig. 6 Effect of |W | on gMission

than their counterparts (i.e., GTA+PAU and BR+SA+PAU)
that take into account fairness. This is because GTA+PAU
and BR+SA+PAU have to compute the PAU when assigning
tasks.

Effect of |W |. Next, we study the effect of |W |, the num-
ber of workers to be assigned. As shown in Figs. 6a, c, and
7a, c, BR, BR+SA, and BR+SA+PAU can achieve higher

123

Y. Zhao et al.

Fig. 7 Effect of |W | on the synthetic dataset

global rewards than GTA-related methods while sacrificing
some efficiency. However, the computational efficiency of
BR, BR+SA, and BR+SA+PAU are acceptable. Although
the total reward of OTA is the highest, it is time-consuming
compared with other methods, as shown in Figs. 6d and 7d.
More specifically, BR+SA can achieve up to 98%of themax-
imal reward, and its CPU time is significantly less than that
of OTA, i.e., the CPU time of BR+SA is only 10%–53% of

Fig. 8 Effect of r on the synthetic dataset

OTA’s. In contrast, the reward obtained by BR (GTA) is only
71%–93% (67%–86%) of themaximal reward. FromFigs. 6b
and 7b, we can see that the average payoff difference shows
an upward trend when increasing |W |. This is because each
task tends to be assigned to a coalition with more workers
when the number of workers increases, which leads to higher
payoff differences.GTA+PAUandBR+SA+PAUstill outper-
form their own counterparts (i.e., GTA and BR+SA) in terms
of fairness.

To save space, in the following experiments, we omit the
CPU time of OTA that is excessive, and we omit results on
gMission as these are similar to those of the synthetic dataset.

Effect of r . Fig. 8 shows the effect of workers’ reach-
able distance, r , on the performance of all the algorithms.
When the reachable distance is increased, workers can reach
more tasks, enabling them to select taskswith higher rewards,
which explains the increasing trends of the total rewards with
growing r in Fig. 8a. When it comes to the average pay-

123

Coalition-based task assignment with priority-aware fairness...

Fig. 9 Effect of e on the synthetic dataset

off difference, as expected, the PAU-related methods (i.e.,
GTA+PAU and BR+SA+PAU) show a clearly superior per-
formance over the methods without PAU (i.e., GTA and
BR+SA), as seen in Fig. 8b. Moreover, the CPU time of all
the approaches increaseswith increasing r sinceworkers con-
sider more tasks when finding suitable tasks—cf. Fig. 8c.

Effect of e. Next, we study how the expected comple-
tion time of tasks affects the performance. Figure9a shows
that the total rewards of all methods increase gradually with
increasing e since a larger e implies that more tasks can reach
themaximal rewards. OTA still obtains themaximal rewards,
and BR+SA outperforms BR and GTA. It is noticeable, how-
ever, that all the methods tend to maintain stability when
e > 8h, which may be due to the fact that a majority of
the tasks can be completed before 8h to achieve their own
maximal rewards. In Fig. 9b, the average payoff difference of
BR+SA and BR+SA+PAU decreases when e > 4, since it is
more likely that workers can choose suitable tasks that lead to
smaller payoff differenceswith larger e. In terms ofCPU time

Fig. 10 Effect of d − e on the synthetic dataset

in Fig. 9c, all methods except BR+SA+PAU exhibit slight
ascending trends. The CPU time of BR+SA+PAU increases
sharply when e gets larger. This is because with larger e,
workers tend to form larger worker coalitions to achieve the
maximum rewards for tasks, and computing the marginal
contribution-based values for these coalitions takes more
CPU time.

Effect of d − e. In the final set of experiments, we study
the effect of d−e. Not surprisingly, as can be seen in Fig. 9a,
all the approaches lead to higher rewards when deadlines are
relaxed. A larger d − e means that each worker on average
has more reachable tasks, which increases the total rewards.
Another observation is that the performance gap between the
BR-related approaches and the GTA-related algorithms in
terms of the total reward is also increasing. This is due to the
fact that when applying the BR-related algorithms, the total
reward is more sensitive to the average number of available
worker sets for each task, which increases with d−e. In such

123

Y. Zhao et al.

circumstances, the benefits of the BR-related approaches
become more significant. In terms of the average payoff
difference in Fig. 9b, we observe that the PAU-related meth-
ods consistently perform better than their own counterparts
without considering priority-aware fairness. In addition, the
average payoff difference ofBR+SAandBR+SA+PAUshow
a decreasing trend when d − e increases, for reasons similar
to those explaining the effects of e, i.e., the larger d − e is,
the more chance the SC server has to assign workers tasks
with smaller average differences. From Fig. 9c, we can see
that all the approaches except BR+SA+PAU use more CPU
time when d − e increases. BR+SA+PAU costs less CPU
time with increasing d − e. This is due to the fact that each
task has more available workers when d − e gets larger, for
which the minimal worker coalitions for each task are more
likely to be smaller. As a result, the efficiency of computing
marginal contribution-based values is improved.

Summary:The take-awaymessage of our empirical study
can be summarized as follows:

1. OTA achieves the maximum rewards but sacrifices some
efficiency, which can be applied in small SC applications,
e.g., on-wheel meal-ordering service (e.g., GrubHub)
and real-time taxi-calling service (e.g., Uber) in a small
town/area with a small population, that pursue high
reward/profit. These applications focus more on help-
ing workers obtain high rewards. Besides, a start-up SC
platform would sacrifice efficiency for task assignment
effectiveness to attract more workers and reduce worker
turnover.

2. BR+SA achieves good balance between efficiency and
effectiveness (it is second only to OTA in terms of the
total reward).

3. GTA is the most efficient algorithm, but it performs
worse than othermethods in effectiveness,which is appli-
cable for the SC applications with a large number of
tasks/workers. These applications need to improve the
task assignment efficiency to ensure a considerable num-
ber of tasks to be assigned to suitable workers timely.

4. Considering the priority-aware Utility (PAU) of work-
ers, GTA+PAU and BR+SA+PAU achieve more fair
task assignments than their counterparts (i.e., GTA and
BR+SA), respectively. GTA+PAU and BR+SA+PAU is
suitable for the SC applications that pursue task assign-
ment effectiveness and efficiency under fair. A typical
example is cooperative SC applications where multiple
workers perform a task collaboratively. It is necessary to
distribute the rewards for these workers fairly.

7 Related work

Recent studies in Spatial Crowdsourcing (SC) make great
efforts to solve different task assignment problems [4, 5, 8,
20, 26, 28, 29, 33, 35, 40, 45–47]. However, these studies
adopt task assignment methods that assume centralized con-
trol and do not consider the coordination among workers,
which incurs substantial computational costs especially in
large-scale SC. The need for coordination increases greatly
the system implementation difficulties and human efforts
when attempting to apply existing methods in practice.

Additionally, the majority of SC studies focus on assign-
ing tasks to single nearby workers based on different system
optimization goals. However, in practice, complex tasks
(such as monitoring traffic condition and cleaning rooms)
occur in practice that require the involvement of multi-
ple workers, called multiple task assignment. The present
study goes further in this direction to address coalition-based
task assignment by considering the rewarding and stability
of worker coalitions. In our problem setting, workers are
required to form coalitions to perform tasks through col-
laboration. Establishing worker coalitions is an important
aspect of worker coordination and cooperation in SC, by
which workers can enhance their combined capabilities of
performing tasks and improve their utility.

Being an important factor for workers’ satisfaction in
crowdsourcing, fairness has been studied recently [9, 36,
39]. Basik et al. [9] offer a fair task allocation solution for
crowdsourced delivery that focuses on distributive fairness,
which is defined as the proximity between a worker’s own
input/output ratio and the input/output ratio of a referent,
where the input to a worker is the total reward of the offers
accepted and the output of a worker is the amount of reward
earned. The notion of fairness in their study differs from our
definition of fairness. Ye et al. [36] propose a fair task assign-
ment framework that aims to maximize the minimum utility
(i.e., the number of tasks assigned) for all workers, which
is different from our goal. Moreover, it does not explore
the priority awareness in the fair task assignment. Consid-
ering the degree of dissatisfaction for both workers (i.e.,
drivers) and tasks (i.e., passengers), Zhao et al. [39] propose
a preference-aware task assignment problem for on-demand
taxi dispatching, which is a single task assignment problem
in which a task is assigned to only one worker. Their problem
setting differs substantially from ours. Thus, their algorithm
cannot solve our problem.

123

Coalition-based task assignment with priority-aware fairness...

In the closest related research to ours, Cheng et al.
[2] designs a game-theoretic approach to cooperative task
assignment. However, their approach differs from ours in
terms of the objectives and problem setting. First they [2] aim
to maximize the total cooperation quality scores of assign-
ments, while our goal is to maximize the overall rewards of
workers with priority-aware fairness as a constraint. Further,
theymake the implicit assumption that workers are willing to
voluntarily perform tasks assigned to them. In practice,work-
ers are likely to be reluctant to performassigned taskswithout
receiving payments or credits, as they face different partic-
ipation costs (e.g., mobile device battery energy cost) [34],
especially for complex tasks that require a group of workers
to collaborate. In our problem, we take workers’ rewards into
consideration in order to motivate workers to perform tasks.
Moreover, Cheng et al. [2] only obtain one Nash equilibrium
amongmultipleNash equilibriums through the best-response
method, while we aim to achieve a better Nash equilibrium
with higher total rewards through a combination of simulated
annealing scheme and the best-response method.

8 Conclusion and future work

We study a novel problem, called Coalition-based Task
Assignment (CTA), in spatial crowdsourcing, where an
individual worker may not be able to accomplish a task
independently because the task exceeds the capability of a
single worker. Instead, workers are required to form stable
coalitions with sufficient cumulative capabilities (or time)
to perform the tasks. As the CTA problem is NP-hard, we
propose different algorithms (including a greedy and an
equilibrium-based algorithm) to efficiently and effectively
assign tasks that maximize the overall rewards. The first
algorithm assigns tasks to the nearby workers greedily and
adopts an acceptance probability to achieve high-value task
assignments. The equilibrium-based algorithm combines the
best-response strategy and simulated annealing to find aNash
equilibrium that represents an approximately optimal task
assignment. We further improve these two algorithms by
integrating marginal contribution-based reward distribution
and a priority-aware fairness mechanism to achieve fair task
assignments. An extensive empirical study demonstrates that
the proposed solutions are able to deliver nearmaximum total
rewards with reasonably small running times and that the
improved algorithms are able to find more fair assignments
with lower average payoff differences. Future research direc-
tions include (i) to parallelize the solutions so that they scale
to more data-intensive applications, (ii) to improve the effi-
ciency of the equilibrium-based approaches by enabling lazy
updating of the best responses, (iii) to generate an optimal
task execution schedule for each worker to achieve the max-

imum reward, and (iv) to explore more efficient means of
calculating marginal contribution-based values.

Acknowledgements This work is partially supported by NSFC (Nos.
61972069, 61836007, 61832017, 62272086), Shenzhen Municipal
Science and Technology R&D Funding Basic Research Program
(JCYJ20210324133607021), Municipal Government of Quzhou under
Grant No. 2022D037, and Key Laboratory of Data Intelligence and
Cognitive Computing, Longhua District, Shenzhen. It is also supported
by Hong Kong Research Grants Council (No. 16202722), Natural Sci-
ence Foundation of China (No. 62072125) and is partially conducted in
the JC STEM Lab of Data Science Foundations funded by The Hong
Kong Jockey Club Charities Trust.

Funding Open access funding provided by Aalborg University Library.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Chen, Z., Fu, R., Zhao, Z., Liu, Z., Xia, L., Chen, L., Cheng, P.,
Cao, C.C., Tong,Y., Zhang, C.J.: gmission: a general spatial crowd-
sourcing platform. PVLDB 7(13), 1629–1632 (2014)

2. Cheng, P., Chen, L., Ye, J.: Cooperation-aware task assignment in
spatial crowdsourcing. In: ICDE, pp. 1442–1453 (2019)

3. Cheng, P., Lian, X., Chen, L., Han, J., Zhao, J.: Task assignment
on multi-skill oriented spatial crowdsourcing. TKDE 28(8), 2201–
2215 (2015)

4. Cheng, P., Lian, X., Chen, Z., Fu, R., Chen, L., Han, J., Zhao, J.:
Reliable diversity-based spatial crowdsourcing bymovingworkers.
PVLDB 8(10), 1022–1033 (2015)

5. Cui, Y., Deng, L., Zhao, Y., Yao, B., Zheng, V.W., Zheng, K.:
Hidden poi ranking with spatial crowdsourcing. In: SIGKDD, pp.
814–824 (2019)

6. D., F., J., T.: Game Theory. MIT Press (1991)
7. Deng, D., Shahabi, C., Zhu, L.: Task matching and scheduling for

multiple workers in spatial crowdsourcing. In: SIGSPATIAL, pp.
2101–2110 (2015)

8. Deng,L., Lian,D.,Huang, Z., Chen, E.:Graph convolutional adver-
sarial networks for spatiotemporal anomaly detection. TNNLS
33(6), 2416–2428 (2022)

9. Fuat, B., Bugra, G., Hakan, F., Kun-Lung, W.: Fair task allocation
in crowdsourced delivery. CoRR abs/1807.02987 (2018). http://
arxiv.org/abs/1807.02987

10. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games.
MIT Press, New York (1998)

11. Gummidi, S.R.B., Pedersen, T.B., Xie, X.: Transit-based task
assignment in spatial crowdsourcing. In: SSDBM, pp. 1301–1312
(2020)

12. Jong, S.D., Tuyls, K., Verbeeck, K.: Artificial agents learning
human fairness. In: AAMAS, pp. 863–870 (2008)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1807.02987
http://arxiv.org/abs/1807.02987

Y. Zhao et al.

13. Jong, S.D., Tuyls, K., Verbeeck, K., Roos, N.: Priority awareness:
towards a computational model of human fairness for multi-agent
systems. In: AAMAS, pp. 117–128 (2008)

14. Kaufman, D.E., Smith, R.L.: Fastest paths in time-dependent net-
works for intelligent vehicle-highway systems application. JITS
1(1), 1–11 (1993)

15. Kazemi, L., Shahabi, C.: Geocrowd: Enabling query answering
with spatial crowdsourcing. In: SIGSPATIAL, pp. 189–198 (2012)

16. Kazemi, L., Shahabi, C., Chen, L.: Geotrucrowd: trustworthy query
answering with spatial crowdsourcing. In: SIGSPATIAL, pp. 314–
323 (2013)

17. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simu-
lated annealing. Science 220, 671–680 (1983)

18. Li, X., Zhao, Y., Guo, J., Zheng, K.: Group task assignment with
social impact-based preference in spatial crowdsourcing. In: DAS-
FAA, pp. 677–693 (2020)

19. Li, X., Zhao, Y., Zheng, K., Zhou, X.: Consensus-based group task
assignment with social impact in spatial crowdsourcing. Data Sci.
Eng. 5(4), 375–390 (2020)

20. Li, Y., Zhao, Y., Zheng, K.: Preference-aware group task assign-
ment in spatial crowdsourcing: a mutual information-based
approach. In: ICDM, pp. 350–359 (2021)

21. Liu, Y., Dong, L., Marks, R.J.: Common control channel assign-
ment in cognitive radio networks using potential game theory. In:
WCNC, pp. 315–320 (2013)

22. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav.
14(1), 124–143 (1996)

23. Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard Uni-
versity Press, New York (1997)

24. Nash, J.F., et al.: Equilibrium points in n-person games. Proc. Natl.
Acad. Sci. 36(1), 48–49 (1950)

25. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic
Game Theory. MIT Press, New York (2007)

26. Song, T., Tong, Y., Wang, L., She, J., Yao, B., Chen, L., Xu, K.:
Trichromatic online matching in real-time spatial crowdsourcing.
In: ICDE, pp. 1009–1020 (2017)

27. Tong, Y., She, J., Ding, B., Wang, L.: Online mobile micro-task
allocation in spatial crowdsourcing. In: ICDE, pp. 49–60 (2016)

28. Tong, Y., Wang, L., Zhou, Z., Chen, L., Du, B., Ye, J.: Dynamic
pricing in spatial crowdsourcing: a matching-based approach. In:
SIGMOD, pp. 773–788 (2018)

29. Tong, Y., Wang, L., Zhou, Z., Ding, B., Chen, L., Ye, J., Xu, K.:
Flexible online task assignment in real-time spatial data. PVLDB
10(11), 1334–1345 (2017)

30. Tong, Y., Zhou, Z., Zeng, Y., Chen, L., Shahabi, C.: Spatial crowd-
sourcing: a survey. PVLDB 29(1), 217–250 (2020)

31. Vazirani, V.V.: ApproximationAlgorithms. Springer, Berlin (2013)
32. Wang, Z., Li, Y., Zhao, K., Shi, W., Lin, L., Zhao, J.: Worker

collaborative group estimation in spatial crowdsourcing. Neuro-
computing 428, 385–391 (2021)

33. Wang, Z., Zhao, Y., Chen, X., Zheng, K.: Task assignment with
worker churn prediction in spatial crowdsourcing. In:CIKM(2021)

34. Xia, J., Zhao, Y., Liu, G., Xu, J., Zhang, M., Zheng, K.: Profit-
driven task assignment in spatial crowdsourcing. In: IJCAI, pp.
1914–1920 (2019)

35. Ye, G., Zhao, Y., Chen, X., Zheng, K.: Task allocation with geo-
graphic partition in spatial crowdsourcing. In: CIKM (2021)

36. Ye, Q.C., Zhang, Y., Dekker, R.: Fair task allocation in transporta-
tion. OMEGA 68, 1–16 (2017)

37. Zeng, Y., Tong, Y., Chen, L., Zhou, Z.: Latency-oriented task com-
pletion via spatial crowdsourcing. In: ICDE, pp. 317–328 (2018)

38. Zhao, B., Xu, P., Shi, Y., Tong, Y., Zhou, Z., Zeng, Y.: Preference-
aware task assignment in on-demand taxi dispatching: An online
stable matching approach. In: AAAI, pp. 2245–2252 (2019)

39. Zhao, B., Xu, P., Shi, Y., Tong, Y., Zhou, Z., Zeng, Y.: Preference-
aware task assignment in on-demand taxi dispatching: an online
stablematching approach. In:AAAI, vol. 33, pp. 2245–2252 (2019)

40. Zhao, Y., Chen, X., Deng, L., Kieu, T., Guo, C., Yang, B., Zheng,
K., Jensen, C.S.: Outlier detection for streaming task assignment
in crowdsourcing. In: WWW (2022)

41. Zhao,Y., Guo, J., Chen,X., Hao, J., Zhou,X., Zheng,K.: Coalition-
based task assignment in spatial crowdsourcing. In: ICDE (2021)

42. Zhao, Y., Li, Y., Wang, Y., Su, H., Zheng, K.: Destination-aware
task assignment in spatial crowdsourcing. In: CIKM, pp. 297–306
(2017)

43. Zhao, Y., Xia, J., Liu, G., Su, H., Lian, D., Shang, S., Zheng,
K.: Preference-aware task assignment in spatial crowdsourcing.
In: AAAI, pp. 2629–2636 (2019)

44. Zhao, Y., Zheng, K., Cui, Y., Su, H., Zhu, F., Zhou, X.: Predictive
task assignment in spatial crowdsourcing: a data-driven approach.
In: ICDE, pp. 13–24 (2020)

45. Zhao,Y., Zheng,K., Guo, J., Yang, B., Pedersen, T.B., Jensen, C.S.:
Fairness-aware task assignment in spatial crowdsourcing: game-
theoretic approaches. In: ICDE, pp. 265–276 (2021)

46. Zhao, Y., Zheng, K., Li, Y., Su, H., Liu, J., Zhou, X.: Destination-
aware task assignment in spatial crowdsourcing: a worker decom-
position approach. In: TKDE, pp. 2336–2350 (2019)

47. Zhao,Y., Zheng,K.,Yin,H., Liu,G., Fang, J., Zhou,X.: Preference-
aware task assignment in spatial crowdsourcing: from individuals
to groups. In: TKDE (2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Coalition-based task assignment with priority-aware fairness in spatial crowdsourcing
	Abstract
	1 Introduction
	2 Problem statement
	3 Greedy approach
	4 Equilibrium-based approach
	4.1 Game modeling and nash equilibrium
	4.2 Best-response approach
	4.3 Simulated annealing-based optimization strategy
	4.4 Convergence analysis

	5 Priority-aware task assignment
	5.1 Marginal contribution-based reward distribution
	5.2 Priority-aware fairness
	5.3 Priority-aware task assignment approaches
	5.3.1 Priority-aware greedy approach
	5.3.2 Priority-aware equilibrium-based approach

	6 Experimental study
	6.1 Experimental setup
	6.2 Experimental results

	7 Related work
	8 Conclusion and future work
	Acknowledgements
	References

