
Fast Variational AutoEncoder with Inverted Multi-Index for
Collaborative Filtering

Jin Chen
∗

University of Electronic Science and

Technology of China, University of

Science and Technology of China

chenjin@std.uestc.edu.cn

Defu Lian
†

University of Science and Technology

of China

liandefu@ustc.edu.cn

Binbin Jin

Huawei Cloud Computing

Technologies Co., Ltd.

jinbinbin1@huawei.com

Xu Huang

University of Science and Technology

of China

gwjiang@mail.ustc.edu.cn

Kai Zheng

University of Electronic Science and

Technology of China

zhengkai@uestc.edu.cn

Enhong Chen

University of Science and Technology

of China

cheneh@ustc.edu.cn

ABSTRACT

Variational AutoEncoder (VAE) has been extended as a represen-

tative nonlinear method for collaborative filtering. However, the

bottleneck of VAE lies in the softmax computation over all items,

such that it takes linear costs in the number of items to compute

the loss and gradient for optimization. This hinders the practical

use due to millions of items in real-world scenarios. Importance

sampling is an effective approximation method, based on which

the sampled softmax has been derived. However, existing methods

usually exploit the uniform or popularity sampler as proposal distri-

butions, leading to a large bias of gradient estimation. To this end,

we propose to decompose the inner-product-based softmax proba-

bility based on the inverted multi-index, leading to sublinear-time

and highly accurate sampling. Based on the proposed proposals,

we develop a fast Variational AutoEncoder (FastVAE) for collabora-

tive filtering. FastVAE can outperform the state-of-the-art baselines

in terms of both sampling quality and efficiency according to the

experiments on three real-world datasets.

CCS CONCEPTS

• Information systems→ Recommender systems.

ACM Reference Format:

Jin Chen, Defu Lian, Binbin Jin, Xu Huang, Kai Zheng, and Enhong Chen.

2022. Fast Variational AutoEncoder with Inverted Multi-Index for Collabo-

rative Filtering. In Proceedings of the ACM Web Conference 2022 (WWW ’22),
April 25–29, 2022, Virtual Event, Lyon, France. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3485447.3512068

∗
This work was done when the author Jin Chen was at University of Science and

Technology of China for intern.

†
Corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00

https://doi.org/10.1145/3485447.3512068

1 INTRODUCTION

Recommendation techniques play a role in information filtering

to address the information overload in the era of big data. After

decades of development, recommendation techniques have shifted

from the latent linear models to deep non-linear models for mod-

eling side features and feature interactions among sparse features.

Variational AutoEncoder [18] has been extended as a representa-

tive nonlinear method (Mult-VAE) for recommendation [21], and

received much attention among the recommender system commu-

nity in recent years [30, 34, 35, 40, 46]. Mult-VAE encodes each

user’s observed data with a Gaussian-distributed latent factor and

decodes it to a probability distribution over all items, which is as-

sumed a softmax of the inner-product-based logits. Mult-VAE then

exploits multinomial likelihood as the objective function for opti-

mization, which has been proved to be more tailored for implicit

feedback than the Gaussian and logistic likelihood.

However, the bottleneck of Mult-VAE lies in the log-partition

function over the logits of all items in the multinomial likelihood.

The time to compute the loss and gradient in each training step

grows linearly with the number of items. When there are an ex-

tremely large number of items, the training of Mult-VAE is time-

consuming, making it impractical in real recommendation scenarios.

To address this problem, self-normalized importance sampling is

used for approximation [5, 14] since the exact gradient involves

computing expectation with respect to the softmax distribution.

The approximation of the exact gradient leads to the efficient sam-

pled softmax, but it does not converge to the same loss as the

softmax. The only way to eliminate the bias is to treat the softmax

distribution as the proposal distribution, but it is not efficient.

In spite of the well-known importance of a good proposal, many

existing methods still often use simple and static distributions, like

uniform or popularity-based distribution [22]. The problem of these

proposals lies in large divergence from the softmax distribution,

so that they need a large number of samples to achieve a low

bias of gradient. The recent important method is to use quadratic

kernel-based distributions [6] as the proposal, which are not only

closer to the softmax distribution, but also efficient to sample from.

However, the quadratic kernel is not always a good approximation

https://doi.org/10.1145/3485447.3512068
https://doi.org/10.1145/3485447.3512068

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Jin Chen, Binbin Jin, Xu Huang, et al.

of the softmax distribution, and it suffers from a large memory

footprint due to the feature mapping of the quadratic kernel.

Recently maximum inner product search (MIPs) algorithms have

been widely used for fast top-k recommendation with low accuracy

degradation [26, 31, 36], but they always return the same results

to the same query so that they can not be directly applied for item

sampling. On this account, the MIPs indexes have been constructed

over the randomly perturbed database for probabilistic inference

in log-linear models and become a feasible solution to sample from

the softmax distribution [27]. However, this not only increases

both data dimension and sample size, but also makes the samples

correlated. Moreover, this may also require to rebuild theMIPs index

from scratch once the model gets updated, which has a significant

impact on the training efficiency. Therefore, it is necessary to design

sampling algorithms tailored for the MIPs indexes.

To this end, based on the popular MIPs index – inverted multi-

index [3], we propose a series of proposal distributions, from which

items can be efficiently yet independently sampled, to approximate

the softmax distribution. The basic idea is to decompose item sam-

pling into multiple stages. In each except the last stage, only a

cluster index is sampled given the previously sampled clusters. In

the last stage, items being simultaneously assigned to these sampled

clusters are sampled according to uniform, popularity, or residual

softmax distribution. Since there are a few items left, items are sam-

pled from these approximated distributions in sublinear or even

constant time. In some cases, the decomposed sampling is as exact

as sampling from softmax, such that the quality of sampled items

can be guaranteed. These samplers are then adopted to efficiently

train Variational AutoEncoder for collaborative filtering (FastVAE

for short). FastVAE
1
is evaluated extensively on three real-world

datasets, demonstrating that FastVAE outperforms the state-of-the-

art baselines in terms of sampling quality and efficiency.

The contributions can be summarized as follows:

• To the best of our knowledge, we discover high-quality approxi-

mated softmax distributions for the first time, by decomposing

the softmax probability based on the inverted multi-index.

• We design an efficient sampling process for these approximate

softmax distributions, from which items can be independently

sampled in sublinear or even constant time. These samplers are

applied for developing the fast Variational AutoEncoder.

• We evaluate extensively the proposed algorithms on four real-

world datasets, demonstrating that FastVAE performs at least as

well as VAE for recommendation. Moreover, the proposed sam-

plers are highly accurate compared to existing sampling methods,

and perform sampling with high efficiency.

2 RELATEDWORK

We mainly survey related work about efficient softmax, negative

sampling and maximum inner product search. Please refer to the

survey [44, 47] for deep learning-based recommender systems, and

the survey [1] for classical recommendation algorithms.

2.1 Efficient Softmax Training

Sampled softmax improves training based on self-normalized im-

portance sampling [5] with a mixture proposal of unigram, bigram

1
https://github.com/HERECJ/FastVae_Gpu

and trigrams. Hierarchical softmax [25] uses the tree structure

and lightRNN [19] uses the table to decompose the softmax prob-

ability such that the probability can be quickly computed. Noise-

Contrastive Estimation [12] uses nonlinear logistic regression to

distinguish the observed data from some artificially generated noise,

and has been successfully used for language modeling by treating

the unigram distribution as the noise distribution [24]. Sphere soft-

max [8, 41] replaces the exponential function with a quadratic

function, allowing exact yet efficient gradient computation.

2.2 Negative Sampling in RS

Dynamic negative sampling (DNS) [49] draws a set of negative

samples from the uniform distribution and then picks the item with

the largest prediction score. Similar to DNS, the self-adversarial

negative sampling [39] draws negative samples from the uniform

distribution but treats the sampling probability as their weights.

Kernel-based sampling [6] picks samples proportionally to a qua-

dratic kernel, making it fast to compute the partition function in the

kernel space and to sample entries in a divide and conquer way. Lo-

cality Sensitive Hashing (LSH) over randomly perturbed databases

enable sublinear time sampling [27] and LSH itself can generate

correlated and unnormalized samples [38], which allows efficient

estimation of the partition function. Self-Contrast Estimator [9]

copied the model and used it as the noise distribution after every

step of learning. Generative Adversarial Networks [16, 43] directly

learn the noise distribution via the generator networks.

2.3 Maximum Inner Product Search

The MIPS problem is challenging since the inner product violates

the basic axioms of a metric, such as a triangle inequality and non-

negative. Some methods try to transform MIPS to nearest neighbor

search (NNS) approximately [36] or exactly [4, 28]. The key idea

of the transformation lies in augmenting database vectors to en-

sure them an (nearly) identical norm, since MIPS is equivalent

to NNS when the database vectors are of the same norm. After

the transformation, a bulk of algorithms can be applied for ANN

search, such as Euclidean Locality-Sensitive Hashing [7], Signed

Random Projection [37] and PCA-Tree [4]. Several existing work

also studies quantization-based MIPS by exploiting additive nature

of inner product, such as additive quantization [6], composite quan-

tization [48] and even extends PQ from the Euclidean distance to

the inner product [10]. Similarly, the graph-based index has been

extended to MIPS [26], achieving remarkable performance.

3 PRELIMINARIES

3.1 Mult-VAE

Assuming recommender models operate on N users’ implicit behav-

ior (e.g. click or view) overM items, where each useru is represented

by the observed data yu of dimensionM . Each entry yui indicates
an interaction record to the item i , whereyui = 0 indicates no inter-

action. Mult-VAE [21] is a representative nonlinear recommender

method for modeling such implicit data. It particularly encodes yu
with a Gaussian-distributed latent factor zu and then decodes it

to ŷu , a probability distribution over all items. The objective is to

Fast Variational AutoEncoder with Inverted Multi-Index WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

maximize the evidence lower bound (ELBO):

L(u) = Ezu∼qϕ (·|yu)[logpθ (yu |zu)] − KL
(
qϕ (zu |yu) | |p(zu)

)
, (1)

where qϕ (zu |yu) is the variational posterior with parameters ϕ
to approximate the true posterior p(zu |yu). qϕ (zu |yu) is gener-
ally assumed to follow the Gaussian-distribution whose mean and

variance are estimated by the encoder of Mult-VAE. That is, zu ∼
N

(
MLPµ (yu ;ϕ), diag(MLPσ 2 (yu ;ϕ))

)
, whereMLPµ andMLPσ 2 de-

note multilayer perceptrons (MLPs). p(zu) is the prior Gaussian

distributionN(0, I). pθ (yu |zu) is the generative distribution condi-

tioned on zu . The observed datayu is assumed to be drawn from the

multinomial distribution, which motivates the widely-used multi-

nomial log-likelihood in Eq. (1):

logpθ (yu |zu) =
∑
i∈I

logpθ (ŷui |zu) =
∑
i∈I

log

exp(z⊤u qi)∑
j∈I exp(z

⊤
u qj)

,

where I is the set of all items, zu andqi is the latent representation
of user u and item i , respectively.

3.2 Sampled Softmax

Optimizing the multinomial log-likelihood of Mult-VAE is time-

consuming due to the log-partition function over the logits of all

items. Given one user’s inner-product logit oi for item i , the prefer-

ence probability for the item i is calculated by P(i) =
exp(oi)∑|I |
j=1 exp(oj)

.

Denoting model parameters by θ , the gradient of the log-likelihood
loss is computed as ∇θ log P(i) = ∇θoi − Ej∼P∇θoj . Therefore, it
takes linear costs in the number of items to compute the loss and

gradient. This hinders the multinomial likelihood from the practical

use in the real-world scenario with millions of items.

Sampled softmax is one popular approximation approach for

log-softmax based on the self-normalized importance sampling.

Since the second term of ∇θ log P(i) involves an expectation, it can

be approximated by sampling a small set of candidate samples Φ
from a proposal Q . This can be equivalently achieved by adjusting

o′j = oj − logQ(j),∀j ∈ {i} ∪ Φ and computing the softmax over

{i}∪Φ (i.e. sampled softmax). Obviously, the computational cost for

loss and gradient is significantly reduced. However, to guarantee the

gradient of the sampled softmax unbiased, Bengio and Senécal [5]

showed that the proposal Q should be equivalent to the softmax

distribution P . Since it is computationally expensive to sample

from the softmax distribution, many existing methods simply use

the uniform or popularity-based proposal. One recent important

method [6] proposed to adopt quadratic kernel-based distributions

as the proposal. However, it is not always a good approximation of

the softmax distribution and suffers from a large memory footprint.

Thus, it is necessary to seek a more accurate and flexible sampler.

4 EXACT SAMPLINGWITH INVERTED

MULTI-INDEX

As demonstrated, to guarantee the gradient of the sampled softmax

unbiased, it is necessary to draw candidate items from the softmax

probability with the inner-product logits:

Q (yi |zu) =
exp(z⊤u qi)∑
j∈I exp(z

⊤
u qj)

. (2)

To achieve this goal, inspired by the popular inverted multi-index [3,

11, 17] for the approximate maximum inner product search (MIPS)

and nearest neighbor search (ANNs), we provide a new way for

sampling items from multiple multinomial distributions in order.

Technical details will be elaborated below.

The inverted multi-index [3] generalizes the inverted index with

multiple codebook quantization, such as product quantization [15]

and additive quantization [2]. Below we demonstrate with product

quantization, whose basic idea is to independently quantizemultiple

subvectors of indexed vectors. Formally, suppose q ∈ RD is an

item vector, we first evenly split it intom distinct subvectors (i.e.,

q = q1 ⊕ q2 ⊕ · · · ⊕ qm where ⊕ is the concatenation). Then, each

subvector ql is mapped to an element of a fixed-size vector set by

a quantizer fl : fl (q
l) ∈ Cl = {clk |k ∈ {1, ...,K}}, where C

l
is

the vector set (i.e. codebook) of size K in the l-th subspace and the

element clk is called a codeword. Therefore, q is mapped as follows:

q → f1(q
1) ⊕ f2(q

2) ⊕ · · · ⊕ fm (q
m) = c1k1 ⊕ c

2

k2
⊕ · · · ⊕ cmkm .

where kl (1 ≤ l ≤ m) is the index of the mapped codeword from

ql . The codewords of each codebook can be simply determined

by the K-means clustering [15], where the l-th subvectors of all

items’ vectors are grouped into K clusters. In the following, we

demonstrate sampling with 2 codebooks for simplicity (i.e.m = 2),

which is the default option of inverted multi-index.

With the quantization, each item vector is only approximated

by the concatenation of codewords. To eliminate the difference

between item vector and its approximation, we add a residual vector

q̃ = q − c1k1
⊕ c2k2

to the approximation. It is well-known that the

inverted multi-index only assigns each item to a unique codeword

in each subspace, making it possible to develop sublinear-time

sampling methods from the softmax distribution. The following

theorem lays the foundation.

Theorem 4.1. Assume zu = z1u ⊕ z
2

u is a vector of a user u, qi =
c1k1
⊕ c2k2

+ q̃i is a vector of an item i , Ωk1,k2 is the set of items which

are assigned to c1k1 in the first subspace and c
2

k2
in the second subspace.

The softmax probability Q(yi |zu)can be decomposed as follows:

Q (yi |zu) = P 1

u (k1) · P
2

u (k2 |k1) · P
3

u (yi |k1, k2),

P 1

u (k1) =
ψk

1
exp(z 1u

⊤
c 1k

1

)∑K
k=1ψk exp(z 1u

⊤
c 1k)

,

P 2

u (k2 |k1) =
ωk

1
,k
2
exp(z 2u

⊤
c 2k

2

)

K∑
k=1

ωk
1
,k exp(z 2u

⊤
c 2k)︸ ︷︷ ︸

ψk
1

,

P 3

u (yi |k1, k2) =
exp(z⊤u q̃i)∑

j∈Ωk
1
,k
2

exp(z⊤u q̃j)︸ ︷︷ ︸
ωk

1
,k
2

.

(3)

The proof is attached in the Appendix. Theorem 4.1 can be

straightforwardly extended to the case wherem > 2. Surprisingly,

this theorem provides a new perspective to exactly sample a candi-

date item from the softmax probability in Eq. (2), which is called

MIDX sampler. First of all, we should construct three multino-

mial distributions in Eq. (3). Second, we sample an index k1 from
P1u (·), indicating to select the codeword from the first codebook

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Jin Chen, Binbin Jin, Xu Huang, et al.

𝑐1
2 𝑐2

2 𝑐3
2 𝑐4

2 𝑐5
2

𝑐1
1

𝑐2
1

𝑐3
1

𝑐4
1

𝑐5
1

𝑖1

𝑖2

𝑖3

𝑖4

𝑢

Stage 1 Stage 2 Stage 3

Figure 1: An illustration of the sampling. Firstly, draw a

codeword index (k1 = 2) in the first codebook, and then draw

another codword index (k2 = 4). Finally, item i3 is sampled

from Ω2,4, which is the set of items assigned to k1 and k2.

C1. Third, we sample another index k2 from the conditional proba-

bility P2u (·|k1), indicating to select the codeword from the second

codebook C2 given the first index. Finally, a candidate item can be

sampled from the residual softmax in P3u (·|k1,k2). An important

observation is that ωk1,k2 is absolutely not empty, such that each

time an item can be sampled out in the last step. Figure 1 illustrates

the procedure and Algorithm 1 details the workflow.

Time complexity analysis. From Algorithm 1, we see that the

overall procedure can be split into two parts. Lines 1-3 describe

the initialization part to obtain codebooks and lines 4-13 describe

the sampling part with the computation of the probability. Being

independent to users, the initialization part is only executed once in

O(KMDt), whereM is the number of items and t is the number of

iterations in K-means. Thanks to the Vose-Alias method sampling

techniques [42], the sampling part only takes O(1) time to sample

an item. Unfortunately, it is necessary to compute the inner-product

logits over all items, which takes O(MD) time. This indicates that

it is no more efficient than sampling an item from the softmax

distribution directly.

5 APPROXIMATE SAMPLINGWITH

INVERTED MULTI-INDEX

The reason why MIDX spends much time on sampling part is that it

involves computing inner-product logits over all items when prepar-

ing P1(·), P2(·|k1) and P3(·|k1,k2) in Eq. (3). To address this issue,

we design three variants of MIDX sampling by reducing the time for

computing P1(·), P2(·|k1) and P3(·|k1,k2). Although these samplers

only approximate the softmax distribution, we theoretically show

that the divergence between them is small.

5.1 MIDX with Uniform

If replacing the multinomial distribution P3(·|k1,k2) with a non-

personalized and static distribution, it will be efficient to prepare

P1(·) and P2(·|k1), since they only involve computing the inner

product between user vector and codewords instead of the whole

item vectors. A straightforward choice is the uniform distribution.

The resultant variant is called MIDX_Uni, whose distribution is

derived based on the following theorem.

Theorem 5.1. Suppose P1(·) and P2(·|k1) remain the same as that
in Theorem 4.1, P3(·|k1,k2) is replaced with a uniform distribution,

Algorithm 1:MIDX Sampling

Input: Items’ vectors {qi |i ∈ I}, user vector zu , sampling

size T , codebook size K
Output: Candidate samples with sampling probability (Φ)

1 C1, C2 ← ProductQuantization({qi |i ∈ I}, K) ;

2 Compute residual vectors for all items {q̃i |i ∈ I};

3 Compute Ωk1,k2 ,∀1 ≤ k1,k2 ≤ K ;

// Sampling part in O(MD +T)

4 for k1 = 1 to K do

5 for k2 = 1 to K do

6 Compute ωk1,k2 and construct P3u (·|k1,k2) in Eq. (3);

7 Computeψk1 and construct P2u (·|k1) in Eq. (3);

8 Construct P1u (·) in Eq. (3);

9 Initialize Φ = ∅;

10 for i = 1 to T do

11 Respectively sample k1,k2, i from P1u (·), P
2

u (·|k1) and

P3u (·|k1,k2) in order;

12 Q(yi |zu) ← P1u (k1)P
2

u (k2 |k1)P
3

u (yi |k1,k2);

13 Φ← Φ ∪ (i,Q(yi |zu));

14 Return Φ;

i.e. P3(yi |k1,k2) = 1

|Ωk
1
,k
2
|
, where |Ωk1,k2 | denotes the number of

items in the set. Then, the proposal distribution is equivalent to:

Quni(yi |zu) =
exp(z1u

⊤
c1k1
) exp(z2u

⊤
c2k2
)∑

k ,k ′ |Ωk ,k ′ | exp(z
1

u
⊤
c1k) exp(z

2

u
⊤
c2k ′)

=
exp(z⊤u (qi − q̃i))∑
j ∈I exp(z

⊤
u (qj − q̃j))

.

(4)

The proof is attached in the Appendix. Theorem 5.1 shows that

each time the codeword with the large inner product and with more

items are more likely to be sampled.

Time complexity analysis. When computing the sampling prob-

ability, the computation only involves the inner product between

the user vector and all codewords, which takes O(KD) to compute.

In addition, it takes O(K2) since it should calculate the normaliza-

tion constant in P2(·|k1) for each k1. Overall, the time complexity

of the preprocessing part is O(KD +K2). Since the codebook size K
is much smaller than the number of itemsM , MIDX_Uni sampling

is much more efficient than the MIDX sampling.

5.2 MIDX with Popularity

Besides the uniform distribution, another widely-used static distri-

bution is derived from popularity. If a user does not interact with a

popular item, she may be truly uninterested in it since the item is

highly likely to be exposed to the user. Therefore, by introducing

the popularity, we design the second variant,MIDX_Pop, whose

distribution is derived by the following theorem.

Theorem 5.2. Suppose P1(·) and P2(·|k1) remain the same as that
in Theorem 4.1, P3(·|k1,k2) is replaced with a distribution derived
from the popularity, i.e. P3(yi |k1,k2) =

pop(i)∑
j∈Ωk

1
,k
2

pop(j) , where pop(i)

can be any metric of the popularity. Then, the proposal distribution is

Fast Variational AutoEncoder with Inverted Multi-Index WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

Table 1: Space and Time complexity of sampling T items

from different proposals. Denote byM the number of items,

D the representation dimension, and K the codebook size. B
the sample size of DNS’s uniform sampling. (K,D ≪ M)

Proposals Q Space Sample Time

Uniform 1 T
Popularity M T
DNS [49] MD BDT
Kernel [6] MD2 D2T logM

MIDX in Eq. (3) MD MD +T
MIDX_Uni in Eq. (4) KD + K2 +M KD + K2 +T
MIDX_Pop in Eq. (5) KD + K2 +M KD + K2 +T

equivalent to:

Qpop(yi |zu) =
exp(z⊤u (qi − q̃i) + logpop(i))∑

j ∈I exp(z
⊤
u (qj − q̃j) + logpop(j))

. (5)

The proof is attached in the Appendix. Generally, let ci be oc-
curring frequency of item i , pop(i) can be set to ci , log(1 + ci) or

c
3/4

i [23]. We empirically find that ci achieves comparatively better

performance. Theorem 5.2 shows that the sampling probability of

an item is additionally affected by the popularity, such that the

more popular items are more likely to be sampled. Regarding the

time complexity, it takes O(KD + K2) time in the preprocessing

part, which is the same as MIDX_Uni.

Table 1 summarizes the time and space complexity for item sam-

pling from different proposals, which demonstrates the superiority

of MIDX_Uni and MIDX_Pop in space and time cost. Thanks to the

independence of the users, the MIDX_Uni and MIDX_Pop can be

implemented on the GPUs, which accelerates the sampling proce-

dure. Note that the initialization time refers to constructing indexes,

such as alias tables, inverted multi-index or tree.

5.3 Theoretical Analysis

In this section, we further theoretically explain the bias of the

proposed distribution from the softmax distribution.

Theorem 5.3. Assuming that the residual embedding ∥q̃i ∥ ≤
C , the Kullback–Leibler divergence from the softmax distribution
Q(y · |zu) to the proposed distribution Quni(y · |zu) can be bounded
from above:

0 < DKL [Quni(y · |zu)| |Q(y · |zu)] ≤ 2C ∥zu ∥.

The proof is attached in the Appendix. The divergence of the pro-

posal fromEq. (2) depends on exp(z⊤u q̃i). Therefore, when ∥q̃i ∥,∀1 ≤
i ≤ M (i.e., distortion of product quantization) is small, the diver-

gence between them is small. With the increasing granularity of

space partition (the number of clusters in K-means), the residual

vectors are of small magnitude such that the upper bound becomes

smaller. This indicates that the approximate distribution is less

deviated from the softmax distribution.

Theorem 5.4. Assuming that the residual embedding | |q̃i | | ≤
C , the Kullback–Leibler divergence from the softmax distribution
Q(y · |zu) to the proposed distribution Qpop(y · |zu) can be bounded

from above:

0 < DKL
[
Qpop(y · |zu)| |Q(y · |zu)

]
≤ 2C | |zu | | + log

maxpop(·)

minpop(·)
.

The proof is attached in the Appendix.

6 FASTVAE

We train Mult-VAE with sampled softmax, where we use the pro-

posed proposals for item sampling (FastVAE for short). As shown

in Section 3.1, the objective function in Eq.(1) consists of two terms.

Regarding the first term, the expectation can be efficiently ap-

proximated by drawing a set of user vectors {z(1)u , z
(2)
u , · · · , z

(S)
u }

from the variational posterior qϕ (·|yu). By incorporating the sam-

pled softmax, we draw a small set of candidate items Φu from one

of our proposed samplers (i.e., MIDX_Uni and MIDX_Pop) and then

the first term becomes:

Ezu∼qϕ (· |yu)[logpθ (yu |zu)]

=
1

S

S∑
s=1

∑
i ∈I

yui log
exp

(
z(s)u
⊤
qi − logQ(yi |z

(s)
u)

)
∑
j ∈{i }∪Φu exp

(
z(s)u
⊤
qj − logQ(yj |z

(s)
u)

) .
For the second term, both the variational posteriorqϕ (zu |yu) and

the prior distribution p(zu) follow Gaussian distributions, so that

the KL divergence has a closed-form solution. Suppose qϕ (zu |yu) =

N(µ,σ2) and p(zu) = N(0, 1), the KL divergence is computed as:

−KL
(
qϕ (zu |yu)| |p(zu)

)
=

1

2

(logσ2 − µ2 − σ2 + 1)⊤1.

By maximizing the objective function, all parameters can be jointly

optimized.

7 EXPERIMENTS

In the evaluation, the following three research questions are ad-

dressed. First, does FastVAE outperform the state-of-the-art baselines
in terms of recommendation quality? Second, how accurately do the
proposal distributions approximate the softmax distribution? Third,
how efficiently are items sampled from the proposals? More details

about the experimental settings are referred to in the Appendix.

7.1 Experimental Settings

7.1.1 Datasets. Experiments are conducted on the four public

datasets for evaluation. TheMovieLens10M(shorted as ML10M)

dataset is a classic movie rating dataset, whose ratings range from

0.5 to 5. We convert them into 0/1 indicating whether the user has

rated the movie. The Gowalla dataset includes users’ check-ins at

locations in a location-based social network and is much sparser

than the MovieLens dataset. The Netflix dataset is another famous

movie rating dataset but with much more users. The Amazon

dataset is a subset of customers’ ratings for Amazon books, where

the rating scores are integers from 1 to 5, and books with scores

higher than 4 are considered positive. For all the datasets, We filter

out users and items with less than 10 interactions. The details are

summerized in the Table 2.

For each user, we randomly sample 80% of interacted items to

construct the history vector and fit the models to the training items.

For evaluation, we take the user history to learn the necessary

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Jin Chen, Binbin Jin, Xu Huang, et al.

Table 2: Dataset Statistics

Dataset #User #Item #Interactions Sparsity

ML10M 47,292 5,942 2,001,164 99.2879%

Gowalla 29,858 40,988 1,027,464 99.9160%

Amazon 56,257 50,154 1,418,076 99.9497%

Netflix 422,624 17,618 53,417,358 99.2826%

representations from the well-trained model and then compute

metrics by looking at how well the model ranks the unseen history.

7.1.2 Baselines. We compare our FastVAE with the following com-

peting collaborative filtering models. The dimension of latent fac-

tors for users and items is set to 32 by default. Unless specified, we

adopt the matrix factorization as the basic models.

• WRMF [13, 29], weighted regularized matrix factorization, is a

famous collaborative filteringmethod for implicit feedback. It sets

a prior on uninteracted items associated with the confidence level

of being negative. It learns parameters by alternating least square

method in the case of square loss. We tune the parameter of the

regularizer of uninteracted items within {1,5,10,20,50,100,200,500}.

The coefficient of L2 regularization is fixed to 0.01.

• BPR [33], Bayesian personalized ranking for implicit feedback,

utilizes the pair-wise logit ranking loss between positive and

negative samples. For each pair of interacted user and item, BPR

randomly samples several uninteracted items of the user for

training and applies stochastic gradient descent for optimization.

We set the number of sampled negative items as 5 and tune the

coefficient of regularization with {2,1,0.5}.

• WARP-MF [45] uses the weighted approximate-rank pair-wise

loss function for collaborative filtering. Given a positive item, it

uniformly samples negative items until the rating of the sampled

item is higher. The rank is estimated based on the sampling trials.

We use the implementation in the lightFM
2
. The maximal number

of trails is set to 50. The coefficient of the regularization is tuned

within {0.05, 0.01, 0.005, 0.001} and the learning rate is tuned

within {10−3, 10−4, 10−5, 10−6}.

• AOBPR [32] improves the BPR with adaptive sampling method.

We use the version implemented in LibRec
3
. The parameter for

the geometric distribution is set to 500 and the learning rate is

set to 0.05. We tune the coefficient of the regularization within

{0.005, 0.01, 0.02}.

• DNS [49] dynamically chooses items according to the predicted

ranking list for the topk recommendation. Specifically, the dy-

namic sampler first draws samples uniformly from the item set

and the item with the maximum rating is selected.

• PRIS [20] utilizes the importance sampling to the pairwise rank-

ing loss for personalized ranking and assigns the sampling weight

to the sampled items. We adopt the joint model implemented in

the open resource code
4
. The number of clusters is set to 16.

• Self-Adversarial (SA) [39], a self-supervised method for nega-

tive sampling, is recently proposed for the recommendation. It

2
https://github.com/lyst/lightfm

3
https://github.com/guoguibing/librec

4
https://github.com/DefuLian/PRIS

utilizes uniform sampling and assigns the sampling weight for

the negative item depending on the current model.

• Mult-VAE [21], variational autoencoders for collaborative filter-

ing, is the work of learning user representations with variational

autoencoders in recommendation systems. It learns the user rep-

resentation by aiming at maximizing the likelihood of user click

history. We mainly focus on the comparison with VAE and we

will introduce the parameter setting in the following part.

In addition to these recommendation algorithms, we conduct ex-

periments with the following samplers.

• Uniform sampler is a common sampling strategy that randomly

draws negatives from the set of items for optimization, widely

used for sampled softmax.

• Popularity sampler is correlated with the popularity of items,

where the items with higher popularity have a greater probability

of being sampled. The popularity is computed as log(fi + 1)

where fi is the occurring frequency of item i . We normalize the

popularity of all items for sampling.

• Kernel based sampler [6] is a recent method for adaptively sam-

pled softmax, which lowers the bias by the non-negative qua-

dratic kernel. Furthermore, the kernel-based sampler is imple-

mented with divide and conquer depending on the tree structure.

7.1.3 Evaluation Metrics. Two standard metrics are utilized for

evaluating the quality of recommendation, Normalized Discounted

Cumulative Gain (NDCG) and Recall. A higher NDCG@k represents
the positive items in the test data are ranked higher in the ranking

list. Recall@k measures the fraction of the positive items in the test

data. All algorithms are fine-tuned based on NDCG@50. After that,

we run 5 times cross-validation.

7.1.4 Experiment Settings. We develop the proposed algorithms

FastVAE with Pytorch in a Linux system (2.10 GHz Intel Xeon Gold

6230 CPUs and a Tesla V100 GPU). We utilize the Adam algorithm

with a weight decay of 0.01 for optimization. We implement the

variational autoencoder with one hidden layer and the generative

module would be [M → 200→ 32]. The active function between

layers is ReLu by default. The input of user history is dropout

with a probability of 0.5 before the linear layers. The batch size

is set to 256 forall the datasets. The learning rate is tuned over

{0.1,0.01,0.001,0.0001}. We train the models within 200 epochs.

For the FastVAE, the number of samples is set to 200 for the

MovieLens10M and Netflix dataset, 1000 for the Gowalla dataset,

2000 for the Amazon dataset. There are 16 codewodes for each code

book. Regarding the popularity based strategy, we follow the same

popularity function log(fi + 1).

7.2 Comparisons with Baselines

The comparisons of recommendation quality (i.e., Recall@50 and

NDCG@50) with baselines is reported in Table 3, which are based

on 5-time independent trials. We report the results of FastVAE with

MIDX_Pop here. We have the following findings.

Finding 1: By using the MIDX-like proposals, FastVAE with sampled
softmax could behaves almost as well as Multi-VAE with full softmax
and even perform slightly better. Surprisingly, the averaged relative

improvements are even up to 0.64% and 0.25% on four datasets in

terms of NDCG@50 and Recall@50, respectively. This implies the

Fast Variational AutoEncoder with Inverted Multi-Index WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

Table 3: Comparisons with baselines w.r.t NDCG@50 and Recall@50 (∆ = 10
−4
).

MovieLens-10M Gowalla Netflix Amazon

NDCG@50 Recall@50 NDCG@50 Recall@50 NDCG@50 Recall@50 NDCG@50 Recall@50

WRMF 0.3194±0.3∆ 0.4967±0.6∆ 0.1316±0.1∆ 0.2223±0.1∆ 0.3020±0.1∆ 0.3653±0.6∆ 0.0919±1.4∆ 0.1802±3.0∆
BPR 0.2915±2.4∆ 0.4642±3.2∆ 0.1216±1.1∆ 0.1978±1.9∆ 0.2742±1.7∆ 0.3283±1.2∆ 0.0740±2.2∆ 0.1441±4.2∆

WARP-MF 0.2968±2.3∆ 0.4785±3.3∆ 0.1273±0.7∆ 0.2073±1.7∆ 0.2953±1.2∆ 0.3539±1.2∆ 0.0798±1.4∆ 0.1615±3.7∆
AOBPR 0.2934±0.5∆ 0.4753±0.3∆ 0.1385±0.4∆ 0.2369±0.8∆ 0.2952±0.4∆ 0.3560±0.8∆ 0.0906±1.7∆ 0.1763±2.5∆
DNS 0.3153±2.7∆ 0.4988±3.4∆ 0.1622±1.5∆ 0.2761±2.9∆ 0.2974±2.4∆ 0.3594±2.5∆ 0.1119±1.7∆ 0.2186±3.4∆
PRIS 0.3162±1.6∆ 0.4937±3.3∆ 0.1657±2.7∆ 0.2736±3.1∆ 0.2975±2.5∆ 0.3608±2.9∆ 0.1189±2.9∆ 0.2244±4.1∆
SA 0.3237±1.4∆ 0.5066±2.0∆ 0.1704±1.2∆ 0.2866±1.8∆ 0.3177±3.5∆ 0.3784±2.8∆ 0.1378±1.8∆ 0.2401±2.9∆

Mult-VAE 0.3206±2.5∆ 0.5037±2.7∆ 0.1751±3.2∆ 0.2911±5.7∆ 0.3227±2.8∆ 0.3841±3.1∆ 0.1441±0.9∆ 0.2483±2.9∆
FastVAE 0.3275±2.5∆ 0.5078±2.4∆ 0.1797±2.0∆ 0.2971±2.1∆ 0.3238±3.0∆ 0.3845±2.7∆ 0.1404±2.1∆ 0.2434±3.5∆

MIDX-like proposals could accurately approximate the softmax

distribution and sample informative items. The improvements may

lie in the oversampling of less popular items.

Finding 2: FastVAE outperforms all state-of-the-art baselines on
two datasets. The averaged relative improvements over the best

baseline are up to 2.61% and 1.72% in terms of NDCG@50 and Re-

call@50, respectively. This indirectly implies the effectiveness of

the proposed samplers at sampling high-informative items. Note

that WRMF usually works better than static-sampling-based base-

lines, as WRMF treats all unobserved data as negative. However, the

lack of differentiation among them leads to sub-optimal solutions

compared to Mult-VAE, whose objective function (i.e. full softmax)

also takes all items into account.

7.3 Comparisons with Different Samplers

7.3.1 Divergence between Proposals and the Softmax Distribution.
In order to understand how accurately the proposal distributions

approximate the softmax distribution, we investigate the diver-

gence between the proposals and the softmax distribution on the

MovieLens10M dataset. In particular, we randomly select a user, and

compute her/his softmax distribution with a randomly-initialized

model and well-trained model, respectively. Regarding the propos-

als, we sample 100,000 items from each of them and then plot the

cumulative probability distribution. Regarding MIDX-like propos-

als in both cases, 64 clusters in each quantization will be used. The

results of these two cases are reported in Figure 2, where items

are sorted by popularity for better comparison. Note that since we

have observed similar results from multiple users, only one user’s

result is reported for illustration. We have the following findings.

Finding 1: The MIDX sampler is as accurate as softmax, based on
full coincidence between softmax and MIDX in both cases. This is
because the decomposition of the softmax distribution is fully exact,

as shown in Section 4. However, since the item should be sampled

from the residual softmax distribution, the time cost is so high that

the MIDX sampler is not directly used in practice.

Finding 2: When the model is well-trained, the MIDX-variant sam-
plers are much closer to the softmax distribution than Kernel and DNS.
This implies that MIDX-variant samplers reduce the bias of sampled

softmax. Though Kernel-based sampling also directly approximates

the softmax distribution, it is almost as close as DNS to the softmax.

Moreover, the Kernel-based sampling approximates the probability

0 2000 4000 6000 8000
Items

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

(a) Randomly-initialized model

0 2000 4000 6000 8000
Items

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y Softmax
Uniform
Popular
MIDX
MIDX_Uni
MIDX_Pop
DNS
Kernel

(b) Well-trained model

Figure 2: Cumulative probability distribution of different

samplers. Items are sorted by popularity.

of long-tailed items less accurately. This is consistent with the fact

the Kernel-based sampler oversamples items with negative logits

[6] since long-tailed items are more likely to yield negative logits.

Finding 3: The MIDX_Uni sampler approximates the softmax dis-
tribution a little less accurately than MIDX_Pop. These samplers

mainly vary in item sampling in the last stage, but all depend on

item vector quantization. This implies the effect of inverted multi-

index at approximate sampling. Moreover, compared to the softmax

distribution, these samplers are more likely to sample less popular

items, evidenced by that their curves are slightly above the softmax.

Finding 4: The MIDX-variant samplers can capture the dynamic
update of the model. In particular, when the model is well-trained,

the MIDX-variant samplers well approximate the softmax; when

the model is only randomly initialized, most dynamic samplers are

similar to the static samplers. The latter observation is reasonable

since randomized representations do not have cluster structures.

This indicates that along with the training course of the model, the

MIDX-variant samplers can be more and more informative.

7.3.2 Effectiveness Study of Samplers. To validate the effective-

ness of the proposed MIDX-based samplers, we investigate the

recommendation performance during training epochs with differ-

ent samplers aforementioned in the section 7.1.2. We report the

changing curve of NDCG@50 and Recall@50 on the Gowalla and

Netflix datasets in Figure 3. We sample 1,000 items for the Gowalla

dataset and 200 items for the Netflix dataset with all the tested

samplers. The number of the sampled items are greatly smaller

than the number of total items.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Jin Chen, Binbin Jin, Xu Huang, et al.

50 100 150 200
#Epoch

0.05

0.10

0.15

N
D

C
G

@
50 Multi-VAE

Uniform
Popularity
MIDX_Uni
MIDX_Pop
Kernel

(a) Gowalla

50 100 150 200
#Epoch

0.20

0.25

0.30

N
D

C
G

@
50

(b) Netflix

Figure 3: Effectiveness of different samplers in terms of rec-

ommendation performance.

200616 501540 802464 1003080 1504620
#Items

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sa
m

pl
in

g
Ti

m
e(

Se
co

nd
s)

(a) Sampling Time

200616 501540 802464 1003080 1504620
#Items

0

2

4

6

8

10

Sp
ee

du
p

Uniform
Popularity
MIDX-Uni
MIDX-Pop

(b) Training Speedup

Figure 4: Average Running Time v.s. Item numbers.

From the figure, we have the following finding: The MIDX-based
samplers contributes to faster convergence compared to the baseline
samplers. Compared with the static samplers, i.e. Uniform and Pop-

ularity, the MIDX-based samplers tends to sample more informative

items so that they defeat the samplers during the whole training

process. Although the Kernel sampler has a better estimation of the

softmax distribution and can capture the dynamics of the softmax

distribution, the sampling probability is not well attached for calcu-

lating the sampled softmax loss, so that it perform bad in terms of

the recommendation quality. On the more sparse dataset, Gowalla,

the MIDX_Uni and MIDX_Pop perform as well as the Multi-VAE

and even has slightly better performance. This may implies the

oversampling of the full softmax.

7.3.3 Efficiency Study of Samplers. Though MIDX-variant sam-

plers could produce a good approximation to the softmax, it is still

unclear how efficiently items are sampled. Therefore, we increase

the number of items in the Amazon dataset while keeping the sam-

ple size at 200. Experiments are run for 5 times and we report the

average running time of each epoch w.r.t the sampling and training

time in Figure 4. The training Time contains the sampling time

and inference time since the sampling procedure is implemented

after the user encoding. We compare the running time with the

Multi-VAE and report the speedup. The running time of the Kernel

sampler is not reported here because it is difficult to implement in

GPUs and is substantially longer than the other samplers.

From this figure, we have following findings: The MIDX_Uni is
efficient than MIDX_Pop sampler, but less efficient than static sam-
plers. The static samplers require less than 0.5 seconds to sample

items during each epoch, while the MIDX-based samplers take

about 1.5 seconds. Indeed, as the number of items increases, the

training time of Multi-VAE increases from 2.3(s) to 10.2(s), which

50 100 150 200
#Epoch

0.05

0.10

0.15

N
D

C
G

@
50 #Negative Samples

200
2000
5000
Sampler
MIDX_Uni
Uniform

(a) Number of Negative Samples

50 100 150 200
#Epoch

0.05

0.10

0.15

N
D

C
G

@
50

#Clusters
8
16
32
64
128

(b) Number of Clusters

Figure 5: Sensitive analysis on the Gowalla dataset.

is substantially longer than the sampling time. With the increas-

ing of items, the training process is substantially more accelerated.

The MIDX-based sampler also accelerates the training time more

than six times when the number of items reaches about 1.5 million,

confirming the suggested samplers’ great efficiency.

7.4 Sensitivity Analysis

7.4.1 Number of negative samples. We conduct experiments on

the Gowalla datasets with the Uniform and MIDX_Uni sampler, as

shown in Figure 5(a). The numbers of negative items are varied in

{200, 1000,5000}. Our proposed MIDX based samplers show superior
performances even if the number of sampled items is modest.With

the increasing of the sample numbers, the two samplers perform

better in terms of NDCG@50.When the number of negative items is

greatly small, the MIDX_Uni also improves dramatically, indicating

the good estimation of the softmax.

7.4.2 Number of clusters. The number of clusters can greatly influ-

ence the performance of the approximation, as analysed in the The-

orem 5.3. We further validate the influence of the cluster numbers

in terms of the recommendation quality. The numbers of clusters

are varied in {8, 16, 32, 64, 128}. We report the running curve in Fig-

ure 5(b). With the increasing of the cluster number, the MIDX_Uni

sampler performs better in the initial training epochs, indicating the

better estimation with more clusters. Meanwhile, the MIDX_Uni

also behave well with less clusters, demonstrating the robustness

of the MIDX_Uni sampler with respect to the cluster number.

8 CONCLUSION

In this paper, we discover the high-quality approximation of the

softmax distribution by decomposing the softmax probability with

the inverted multi-index, and design efficient sampling procedures,

from which items can be independently sampled in sublinear or

even constant time. These approximate samplers are exploited for

fast training the variational autoencoder for collaborative filtering.

The experiments on the three public real-world datasets demon-

strate that the FastVAE outperforms the state-of-the-art baselines

in terms of sampling quality and efficiency.

ACKNOWLEDGMENTS

The work is supported by the National Natural Science Foundation

of China (No. 62022077, 61972069, 61836007 and 61832017), and

Shenzhen Municipal Science and Technology R&D Funding Basic

Research Program (JCYJ20210324133607021).

Fast Variational AutoEncoder with Inverted Multi-Index WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

REFERENCES

[1] Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the next gen-

eration of recommender systems: A survey of the state-of-the-art and possible

extensions. IEEE transactions on knowledge and data engineering 17, 6 (2005),

734–749.

[2] Artem Babenko and Victor Lempitsky. 2014. Additive quantization for extreme

vector compression. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 931–938.

[3] Artem Babenko and Victor Lempitsky. 2014. The inverted multi-index. IEEE
transactions on pattern analysis and machine intelligence 37, 6 (2014), 1247–1260.

[4] Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam

Koenigstein, Nir Nice, and Ulrich Paquet. 2014. Speeding up the xbox recom-

mender system using a euclidean transformation for inner-product spaces. In

Proceedings of RecSys’14. ACM, 257–264.

[5] Yoshua Bengio and Jean-Sébastien Senécal. 2008. Adaptive importance sampling

to accelerate training of a neural probabilistic language model. IEEE Transactions
on Neural Networks 19, 4 (2008), 713–722.

[6] Guy Blanc and Steffen Rendle. 2018. Adaptive sampled softmax with kernel based

sampling. In International Conference on Machine Learning. PMLR, 590–599.

[7] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab SMirrokni. 2004. Locality-

sensitive hashing scheme based on p-stable distributions. In Proceedings of the
Twentieth Annual Symposium on Computational Geometry. ACM, 253–262.

[8] Alexandre de Brébisson and Pascal Vincent. 2015. An exploration of softmax

alternatives belonging to the spherical loss family. arXiv preprint arXiv:1511.05042
(2015).

[9] Ian J Goodfellow. 2014. On distinguishability criteria for estimating generative

models. arXiv preprint arXiv:1412.6515 (2014).
[10] Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, and David Simcha. 2016. Quan-

tization based fast inner product search. In Artificial Intelligence and Statistics.
482–490.

[11] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and

Sanjiv Kumar. 2020. Accelerating large-scale inference with anisotropic vector

quantization. In International Conference on Machine Learning. PMLR, 3887–3896.

[12] Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation:

A new estimation principle for unnormalized statistical models. In Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics.
297–304.

[13] Y. Hu, Y. Koren, and C. Volinsky. 2008. Collaborative filtering for implicit feedback

datasets. In Proceedings of ICDM’08. IEEE, 263–272.
[14] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. 2015. On

Using Very Large Target Vocabulary for Neural Machine Translation. In Proceed-
ings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing. 1–10.

[15] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization

for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[16] Binbin Jin, Defu Lian, Zheng Liu, Qi Liu, Jianhui Ma, Xing Xie, and Enhong Chen.

2020. Sampling-decomposable generative adversarial recommender. Advances in
Neural Information Processing Systems 33 (2020), 22629–22639.

[17] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity

search with GPUs. arXiv preprint arXiv:1702.08734 (2017).
[18] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In

2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings.

[19] Xiang Li, Tao Qin, Jian Yang, and Tie-Yan Liu. 2016. LightRNN: Memory and

computation-efficient recurrent neural networks. In Advances in Neural Informa-
tion Processing Systems. 4385–4393.

[20] Defu Lian, Qi Liu, and Enhong Chen. 2020. Personalized ranking with importance

sampling. In Proceedings of The Web Conference 2020. 1093–1103.
[21] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.

Variational Autoencoders for Collaborative Filtering. In Proceedings of WWW’18.
International World Wide Web Conferences Steering Committee, 689–698.

[22] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[23] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed Representations of Words and Phrases and their Compositionality.

In Advances in Neural Information Processing Systems, C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger (Eds.), Vol. 26. 3111–3119.

[24] Andriy Mnih and Koray Kavukcuoglu. 2013. Learning word embeddings ef-

ficiently with noise-contrastive estimation. In Advances in neural information
processing systems. 2265–2273.

[25] Frederic Morin and Yoshua Bengio. 2005. Hierarchical probabilistic neural net-

work language model.. In Aistats, Vol. 5. Citeseer, 246–252.
[26] Stanislav Morozov and Artem Babenko. 2018. Non-metric similarity graphs

for maximum inner product search. Advances in Neural Information Processing
Systems 31 (2018), 4721–4730.

[27] Stephen Mussmann and Stefano Ermon. 2016. Learning and inference via max-

imum inner product search. In International Conference on Machine Learning.
PMLR, 2587–2596.

[28] Behnam Neyshabur and Nathan Srebro. 2015. On Symmetric and Asymmetric

LSHs for Inner Product Search. In Proceedings of ICML’15. 1926–1934.
[29] R. Pan, Y. Zhou, B. Cao, N.N. Liu, R. Lukose, M. Scholz, and Q. Yang. 2008. One-

class collaborative filtering. In Proceedings of ICDM’08. IEEE, 502–511.
[30] Vineeth Rakesh, Suhang Wang, Kai Shu, and Huan Liu. 2019. Linked variational

autoencoders for inferring substitutable and supplementary items. In Proceedings
of the Twelfth ACM International Conference on Web Search and Data Mining.
438–446.

[31] Parikshit Ram and Alexander G Gray. 2012. Maximum inner-product search

using cone trees. In Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 931–939.

[32] Steffen Rendle and Christoph Freudenthaler. 2014. Improving pairwise learning

for item recommendation from implicit feedback. In Proceedings of the 7th ACM
international conference on Web search and data mining. 273–282.

[33] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. 2009. BPR:

Bayesian personalized ranking from implicit feedback. In Proceedings of UAI’09.
AUAI Press, 452–461.

[34] Noveen Sachdeva, Giuseppe Manco, Ettore Ritacco, and Vikram Pudi. 2019. Se-

quential variational autoencoders for collaborative filtering. In Proceedings of the
Twelfth ACM International Conference on Web Search and Data Mining. 600–608.

[35] Ilya Shenbin, Anton Alekseev, Elena Tutubalina, Valentin Malykh, and Sergey I

Nikolenko. 2020. RecVAE: A new variational autoencoder for Top-N recommen-

dations with implicit feedback. In Proceedings of the 13th International Conference
on Web Search and Data Mining. 528–536.

[36] Anshumali Shrivastava and Ping Li. 2014. Asymmetric LSH (ALSH) for sublinear

time Maximum Inner Product Search (MIPS). In Proceedings of the 27th Interna-
tional Conference on Neural Information Processing Systems-Volume 2. 2321–2329.

[37] Anshumali Shrivastava and Ping Li. 2014. Improved asymmetric locality sensitive

hashing (ALSH) for maximum inner product search (MIPS). arXiv preprint
arXiv:1410.5410 (2014).

[38] Ryan Spring and Anshumali Shrivastava. 2017. A new unbiased and efficient

class of lsh-based samplers and estimators for partition function computation in

log-linear models. arXiv preprint arXiv:1703.05160 (2017).
[39] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. Rotate: Knowl-

edge graph embedding by relational rotation in complex space. arXiv preprint
arXiv:1902.10197 (2019).

[40] Da Tang, Dawen Liang, Tony Jebara, and Nicholas Ruozzi. 2019. Correlated

variational auto-encoders. In International Conference onMachine Learning. PMLR,

6135–6144.

[41] Pascal Vincent, Alexandre de Brébisson, and Xavier Bouthillier. 2015. Efficient

Exact Gradient Update for training Deep Networks with Very Large Sparse

Targets. Advances in Neural Information Processing Systems 28 (2015), 1108–1116.
[42] Alastair J Walker. 1977. An efficient method for generating discrete random

variables with general distributions. ACM Transactions on Mathematical Software
(TOMS) 3, 3 (1977), 253–256.

[43] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng

Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying generative

and discriminative information retrieval models. In Proceedings of the 40th In-
ternational ACM SIGIR conference on Research and Development in Information
Retrieval. ACM, 515–524.

[44] Shoujin Wang, Liang Hu, Yan Wang, Longbing Cao, Quan Z. Sheng, and Mehmet

Orgun. 2019. Sequential recommender systems: challenges, progress and

prospects. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence. AAAI Press, 6332–6338.

[45] Jason Weston, Samy Bengio, and Nicolas Usunier. 2010. Large scale image

annotation: learning to rankwith joint word-image embeddings.Machine learning
81, 1 (2010), 21–35.

[46] Xianwen Yu, Xiaoning Zhang, Yang Cao, and Min Xia. 2019. VAEGAN: A Collab-

orative Filtering Framework based on Adversarial Variational Autoencoders.. In

IJCAI. 4206–4212.
[47] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based rec-

ommender system: A survey and new perspectives. ACM Computing Surveys
(CSUR) 52, 1 (2019), 1–38.

[48] Ting Zhang, Chao Du, and Jingdong Wang. 2014. Composite Quantization for

Approximate Nearest Neighbor Search. In Proceedings of ICML’14. 838–846.
[49] Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. 2013. Optimizing top-n

collaborative filtering via dynamic negative item sampling. In Proceedings of
the 36th international ACM SIGIR conference on Research and development in
information retrieval. 785–788.

A APPENDIX

In the appendix, we provide the proofs of theorem 5.1, theorem

5.2,theorem 5.3 and theorem 5.4.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Jin Chen, Binbin Jin, Xu Huang, et al.

For better illustration, we review some important notations here.

In the following, denote by I the set of items, zu a vector of the

user u, qi a vector of the item i . The softmax probability with the

inner-product logits can be compudated by:

Q(yi |zu) =
exp(z⊤uqi)∑
j ∈I exp(z

⊤
uqj)

.

Particularly, qi can be decomposed based on the codebooks. It is

formulated as qi = c1k1
⊕ c2k2

+ q̃i where ciki
is the ki -th codeword

index of i-th codebook and q̃i is the residual vector.

Theorem A.1 (Theorem 4.1). Assume zu = z1u ⊕ z
2

u is a vector
of a user u, qi = c1k1

⊕ c2k2
+ q̃i is a vector of an item i , Ωk1,k2 is

the set of items which are assigned to c1k1 in the first subspace and

c2k2
in the second subspace. The softmax probability Q(yi |zu) can be

decomposed as follows:

Q(yi |zu) = P1u (k1) · P
2

u (k2 |k1) · P
3

u (yi |k1,k2),

P1u (k1) =
ψk1 exp(z

1

u
⊤
c1k1
)∑K

k=1ψk exp(z
1

u
⊤
c1k)
,

P2u (k2 |k1) =
ωk1,k2 exp(z

2

u
⊤
c2k2
)

K∑
k=1

ωk1,k exp(z
2

u
⊤
c2k)︸ ︷︷ ︸

ψk
1

,

P3u (yi |k1,k2) =
exp(z⊤u q̃i)∑

j ∈Ωk
1
,k
2

exp(z⊤u q̃j)︸ ︷︷ ︸
ωk

1
,k
2

.

(6)

Proof.

Q (yi |zu) =
exp(z⊤u qi)∑
j∈I exp(z

⊤
u qj)

=
exp(z 1u

⊤
c 1k1
) exp(z 2u

⊤
c 2k2
) exp(z⊤u q̃i)∑K

k=1 exp(z
1

u
⊤
c 1k)

K∑
k′=1

exp(z 2u
⊤
c 2k′)

∑
j∈Ωk ,k′

exp(z⊤u q̃j)︸ ︷︷ ︸
Ψk

=
Ψk1 exp(z

1

u
⊤
c 1k1
)∑K

k=1 Ψk exp(z 1u
⊤
c 1k)
·
exp(z 2u

⊤
c 2k2
) exp(z⊤u q̃i)

Ψk1

=P 1

u (k1) ·
exp(z 2u

⊤
c 2k2
) exp(z⊤u q̃i)∑K

k=1 exp(z
2

u
⊤
c 2k)

∑
j∈Ωk

1
,k

exp(z⊤u q̃j)︸ ︷︷ ︸
ωk

1
,k

=P 1

u (k1) ·
ωk1 ,k2 exp(z

2

u
⊤
c 2k2
)∑K

k=1 ωk1 ,k exp(z 2u
⊤
c 2k)
·
exp(z⊤u q̃i)

ωk1 ,k2

=P 1

u (k1) · P
2

u (k2 |k1) · P
3

u (yi |k1, k2).

□

TheoremA.2 (Theorem5.1). Suppose P1(·) and P2(·|k1) remain
the same as that in Theorem 4.1, P3(·|k1,k2) is replaced with a uniform
distribution, i.e. P3(yi |k1,k2) = 1

|Ωk
1
,k
2
|
where |Ωk1,k2 | denotes the

number of items in the set. Then, the proposal distribution is equivalent
to:

Quni(yi |zu) =
exp(z1u

⊤
c1k1
) exp(z2u

⊤
c2k2
)∑

k ,k ′ |Ωk ,k ′ | exp(z
1

u
⊤
c1k) exp(z

2

u
⊤
c2k ′)

=
exp(z⊤u (qi − q̃i))∑
j ∈I exp(z

⊤
u (qj − q̃j))

.

Proof.

Quni (yi |zu) = P1(k1) · P2(k2 |k2) · P3(yi |k1,k2)

=
Ψ′k1

exp(z1u
⊤
c1k1
)∑K

k=1 Ψ
′
k exp(z

1

u
⊤
c1k)
·

ω ′k1,k2
exp(z2u

⊤
c2k2
)∑K

k=1 ω
′
k1,k

exp(z2u
⊤
c2k)
·

1

|Ωk1,k2 |

=
exp(z1u

⊤
c1k1
) exp(z2u

⊤
c2k2
)∑K

k=1
∑K
k ′=1 |Ωk ,k ′ | exp(z

1

u
⊤
c1k) exp(z

2

u
⊤
c2k ′)

=
exp(z⊤u (qi − q̃i))∑
j ∈I exp(z

⊤
u (qj − q̃j))

.

□

TheoremA.3 (Theorem5.2). Suppose P1(·) and P2(·|k1) remain
the same as that in Theorem 4.1, P3(·|k1,k2) is replaced with a distribu-
tion derived from the popularity, i.e. P3(yi |k1,k2) =

pop(i)∑
j∈Ωk

1
,k
2

pop(j)

where pop(i) can be any metric of the popularity. Then, the proposal
distribution is equivalent to:

Qpop(yi |zu) =
exp(z⊤u (qi − q̃i) + logpop(i))∑

j ∈I exp(z
⊤
u (qj − q̃j) + logpop(j))

.

Proof.

Qpop (yi |zu) = P1(k1) · P2(k2 |k2) · P3(yi |k1,k2)

=
Ψ′k1

exp(z1u
⊤
c1k1
)∑K

k=1 Ψ
′
k exp(z

1

u
⊤
c1k)
·

ω ′k1,k2
exp(z2u

⊤
c2k2
)∑K

k=1 ω
′
k1,k

exp(z2u
⊤
c2k)
·

pop(i)∑
j ∈Ωk

1
,k
2

pop(j)

=
pop(i) exp(z1u

⊤
c1k1
) exp(z2u

⊤
c2k2
)∑K

k=1
∑K
k ′=1

∑
j ∈Ωk

1
,k
2

pop(j) exp(z1u
⊤
c1k) exp(z

2

u
⊤
c2k ′)

=
exp(z⊤u (qi − q̃i) + logpop(i))∑

j ∈I exp(z
⊤
u (qj − q̃j) + logpop(j))

.

□

Theorem A.4 (Theorem 5.3). Assuming that the residual em-
bedding ∥q̃i ∥ ≤ C , the Kullback–Leibler divergence from the softmax
distribution Q(y · |zu) to the proposed distribution Quni(y · |zu) can be
bounded from above:

0 < DKL [Quni(y · |zu)| |Q(y · |zu)] ≤ 2C ∥zu ∥.

Proof.

Q (yi |zu) =
exp(z⊤u qi)∑
j∈I exp(z

⊤
u qj)

,

Quni(yi |zu) =
exp(z⊤u (qi − q̃i))∑
j∈I exp(z

⊤
u (qj − q̃j))

,

Fast Variational AutoEncoder with Inverted Multi-Index WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

Quni(yi |zu)
Q (yi |zu)

=

∑
j∈I exp(z

⊤
u qj)∑

k∈I exp(z
⊤
u (qk − q̃k))

· exp(−z⊤u q̃i)

=
∑
j∈I

exp(z⊤u (qj − q̃j)) ·
exp(z⊤u q̃j)∑

k∈I exp(z
⊤
u (qk − q̃k))

· exp(−z⊤u q̃i)

=
∑
j∈I

exp(z⊤u (qj − q̃j)) ·
exp(z⊤u (q̃j − q̃i))∑

k∈I exp(z
⊤
u (qk − q̃k))

≤
∑
j∈I

exp(z⊤u (qj − q̃j)) ·
exp(|z⊤u (q̃j − q̃i) |)∑
k∈I exp(z

⊤
u (qk − q̃k))

≤
∑
j∈I

exp(z⊤u (qj − q̃j)) ·
exp(|z⊤u q̃j | + |z

⊤
u q̃i |)∑

k∈I exp(z
⊤
u (qk − q̃k))

=
∑
j∈I

exp(z⊤u (qj − q̃j)) ·
exp(2C ∥zu ∥)∑

k∈I exp(z
⊤
u (qk − q̃k))

= exp(2C ∥zu ∥),

DKL [Quni(y· |zu) | |Q (y· |zu)] =
∑
i∈I

Quni(yi |zu) log
Quni(yi |zu)
Q (yi |zu)

≤
∑
i∈I

Quni(yi |zu) log exp(2C ∥zu ∥)

=
∑
i∈I

Quni(yi |zu)2C ∥zu ∥

=2C ∥zu ∥
∑
i∈I

Quni(yi |zu)

=2C ∥zu ∥ .

DKL [Quni(y · |zu)| |Q(y · |zu)] > 0 holds due to the non-negativity

of the Kullback–Leibler divergence. □

Theorem A.5 (Theorem 5.4). Assuming that the residual em-
bedding | |q̃i | | ≤ C , the Kullback–Leibler divergence from the softmax

distribution Q(y · |zu) to the proposed distribution Qpop(y · |zu) can be
bounded from above:

0 < DKL
[
Qpop(y · |zu)| |Q(y · |zu)

]
≤ 2C | |zu | | + log

maxpop(·)

minpop(·)
.

Proof.

Denote E(i) = exp(z⊤u (qi − q̃i) + logpop(i)),

Qpop(yi |zu)
Q (yi |zu)

=

∑
j∈I exp(z

⊤
u qj) · exp(−z

⊤
u q̃i + logpop(i))∑

k∈I exp(z
⊤
u (qk − q̃k) + logpop(k))

=

∑
j∈I E(j)∑
k∈I E(k)

·
exp(z⊤u q̃j − logpop(j))
exp(z⊤u q̃i − logpop(i))

=

∑
j∈I E(j)∑
k∈I E(k)

· exp(z⊤u (q̃j − q̃i)) ·
pop(i)
pop(j)

≤

∑
j∈I E(j)∑
k∈I E(k)

· exp(2C ∥zu ∥) ·
maxpop(·)
minpop(·)

=
maxpop(·)
minpop(·)

· exp(2C ∥zu ∥),

DKL
[
Qpop(y· |zu) | |Q (y· |zu)

]
=
∑
i∈I

Qpop(yi |zu) log
Qpop(yi |zu)
Q (yi |zu)

≤
∑
i∈I

Qpop(yi |zu) log exp(2C ∥zu ∥ + log
maxpop(·)
minpop(·)

)

= log exp(2C ∥zu ∥ + log
maxpop(·)
minpop(·)

)
∑
i∈I

Qpop(yi |zu)

=2C ∥zu ∥ + log
maxpop(·)
minpop(·)

.

□

	Abstract
	1 Introduction
	2 Related Work
	2.1 Efficient Softmax Training
	2.2 Negative Sampling in RS
	2.3 Maximum Inner Product Search

	3 Preliminaries
	3.1 Mult-VAE
	3.2 Sampled Softmax

	4 Exact Sampling with Inverted Multi-Index
	5 Approximate Sampling with Inverted Multi-Index
	5.1 MIDX with Uniform
	5.2 MIDX with Popularity
	5.3 Theoretical Analysis

	6 FastVAE
	7 Experiments
	7.1 Experimental Settings
	7.2 Comparisons with Baselines
	7.3 Comparisons with Different Samplers
	7.4 Sensitivity Analysis

	8 Conclusion
	Acknowledgments
	References
	A Appendix

