
Learning Recommenders for Implicit Feedback with Importance
Resampling

Jin Chen
∗

University of Electronic Science and

Technology of China

chenjin@std.uestc.edu.cn

Defu Lian
†

University of Science and Technology

of China

liandefu@ustc.edu.cn

Binbin Jin

Huawei Cloud Computing

Technologies Co., Ltd.

jinbinbin1@huawei.com

Kai Zheng
†

University of Electronic Science and

Technology of China

zhengkai@uestc.edu.cn

Enhong Chen

University of Science and Technology

of China

cheneh@ustc.edu.cn

ABSTRACT
Recommendation is prevalently studied for implicit feedback re-

cently, but it seriously suffers from the lack of negative samples,

which has a significant impact on the training of recommendation

models. Existing negative sampling is based on the static or adaptive

probability distributions. Sampling from the adaptive probability

receives more attention, since it tends to generate more hard exam-

ples, to make recommender training faster to converge. However,

item sampling becomes much more time-consuming particularly

for complex recommendation models. In this paper, we propose

an Adaptive Sampling method based on Importance Resampling

(AdaSIR for short), which is not only almost equally efficient and

accurate for any recommender models, but also can robustly accom-

modate arbitrary proposal distributions. More concretely, AdaSIR

maintains a contextualized sample pool of fixed-size with impor-

tance resampling, from which items are only uniformly sampled.

Such a simple sampling method can be proved to provide approx-

imately accurate adaptive sampling under some conditions. The

sample pool plays two extra important roles in (1) reusing historical

hard samples with certain probabilities; (2) estimating the rank of

positive samples for weighting, such that recommender training can

concentrate more on difficult positive samples. Extensive empirical

experiments demonstrate that AdaSIR outperforms state-of-the-art

methods in terms of sampling efficiency and effectiveness.

CCS CONCEPTS
• Information systems→ Recommender systems.

∗
This work was done when the author Jin Chen was at University of Science and

Technology of China for intern.

†
Corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00

https://doi.org/10.1145/3485447.3512075

ACM Reference Format:
Jin Chen, Defu Lian, Binbin Jin, Kai Zheng, and Enhong Chen. 2022. Learn-

ing Recommenders for Implicit Feedback with Importance Resampling.

In Proceedings of the ACM Web Conference 2022 (WWW ’22), April 25–
29, 2022, Virtual Event, Lyon, France. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3485447.3512075

1 INTRODUCTION
Recommender systems play a crucial role in addressing informa-

tion overload, and have created considerable business revenue for

many high-tech companies. Since implicit feedback, such as the

behavior of click and purchase, is more ubiquitous and more easily

accessible, recommendation is more prevalently investigated for

implicit feedback [19, 29]. However, the lack of explicit negative

samples becomes an obstacle for training recommendation models.

Given the large number of items, explicit negative feedbacks are

extremely sparse. If we only consider the real negative samples, it

will cause biased selection [10]. One simple method is to treat all

the unobserved samples as negative [2, 5, 6, 24, 26, 41] but assign

them low confidence being negative. The learning efficiency can be

only improved by de-contextualizing the negative confidence and

only restricting the use of square loss and specified models such

as matrix factorization [15, 19, 22]. This significantly restricts the

representation capacity of recommendation models. Sampling a few

representative items from unobserved data (i.e., negative sampling)

is an efficient approach to accommodate any complex models and

loss functions [7–9, 14, 17, 25, 32, 34, 36, 37, 42].

Many negative sampling methods are usually based on the static

distributions, such as the uniform distribution and popularity-based

distribution [7, 17, 32]. Although they only take O(1) time to sam-

ple items, they are not adaptive to the update of recommendation

models. As a consequence, the sampled items are becoming eas-

ier to distinguish from positive samples, slowing down the con-

vergence of recommender training [31]. More effective samplers

adapt both to context and recommender models during the train-

ing [17, 25, 31, 42], so that high-scored items by recommenders,

which can contribute more to the gradients, are more likely to

be drawn. Since scores can be positive or negative, the sampling

probability distribution is usually defined by a softmax of recom-

mendation scores over items [30, 34]. However, it is time-consuming

to directly sample items from the softmax distribution, which is

https://doi.org/10.1145/3485447.3512075
https://doi.org/10.1145/3485447.3512075

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Jin Chen, Defu Lian, Binbin Jin, Kai Zheng, and Enhong Chen

contextualized and dynamically changing with the training of rec-

ommenders. Assuming the scores are computed by inner product,

sampling from the softmax distribution can be approximated by

rank mixture [31] or a quadratic-kernel based distribution [4]. How-

ever, the latter distribution does not well approximate the softmax

distribution when the scores are negative, and also suffers from

a large memory footprint due to the feature mapping of the qua-

dratic kernel. More seriously, both methods are difficult to adapt to

nonlinear scores, such as neural recommendation models [14].

One promising efficient approach to approximate the softmax of

nonlinear scores is the two-pass sampling [1, 11, 42], which first

samples a fixed size of items, i.e., sample pool, from the simple

static distribution, and then selects the item with the maximal

recommendation score from the sample pool. However, in these

samplers, many questions are remained to answer. First, how do

these samplers approximate the softmax distribution? Second, what

is the probability of each item being sampled? Finally, how are other

efficient proposals accommodated to the two-pass sampling?

To this end, we propose an Adaptive Sampling method based

on Importance Resampling (AdaSIR for short), which is not only

almost equally accurate for any recommender model, but also can

robustly accommodate arbitrary proposal distributions. More con-

cretely, AdaSIR maintains a fixed-size sample pool for each context

with importance resampling based on recommendation scores. The

sample pool is updated after each training epoch according to the

latest model, so that highly-informative samples are likely to be

kept for reuse in the next epoch of training. When training, items

are only uniformly sampled from the sample pool to pair with

positive samples. In spite of simplicity, AdaSIR can be proved to

provide approximately accurate adaptive sampling under some con-

ditions. Moreover, when the proposal is the uniform distribution, it

is possible to reuse the sample pool for estimating the rank of posi-

tive samples. This could benefit to the training of recommenders,

since it could concentrate more on difficult positive samples by

assigning larger weights to them. According to time complexity

analysis, AdaSIR only takes linear time w.r.t. pool size to sample an

item, which is much efficient for any complex recommender model.

AdaSIR is then evaluated with three real-world datasets, whose

results demonstrate the superiority of AdaSIR in terms of sampling

efficiency and effectiveness.

To summarize, the main contributions are three-fold:

• We propose an efficient two-pass sampling approach for implicit

feedback in recommendation system, where the importance re-

sampling is exploited to approximate the softmax distribution.

• We design the sampling pool with fixed size, where high infor-

mative historical items would be reused and the rank of positive

samples are efficiently accessible.

• Experiments conducted on the three public datasets demonstrate

the efficiency and effectiveness of the proposed sampling method,

showing superior performance over the state-of-the-art samplers.

2 PRELIMINARIES
2.1 Recommendation for Implicit Feedback
Recommender for implicit feedback aims to learn a scoring function

r (c, i |θ) to predict scores of unobserved items in a context c and
recommend the top-ranked items. The predicted score between a

context c ∈ C and an item i ∈ I reflects the preference for the

item, where a larger value indicates the higher preference. In the

personalized ranking algorithms, given the observed data D, the

objective function can be formulated as:

min

θ

∑
(c ,i)∈D

Ej∼Pns (j |c) [− lnσ (r (c , i |θ) − r (c , j |θ))] + λ ∥θ ∥
2,

where θ denotes the model parameters, σ (x) = 1

1+exp(−x) is the

sigmoid function, λ is a coefficient for the ℓ2 regularization. Pns
denotes the proposal distribution, from which negative items are

drawn. Minimizing the loss function encourages the positive items

to be ranked higher than others. In the following, r (c, i |θ) is denoted
as rci and r (c, i |θ) − r (c, j |θ) is denoted as rci j for short.

2.2 Negative Samplers in Recommenders
Static Sampler. The most widely-used sampling distribution is the

uniform distribution [32]. It enjoys high-efficient sampling but all

items are equally probable to be drawn. When the model is bet-

ter trained, the sampled items are easier to be distinguished from

positive samples, i.e., σ (rci j) → 1, so that they contribute little

to the gradients, i.e.,

(
1 − σ (rci j)

) ∂rci j
∂θ → 0. This would lead to

slow convergence of recommender training. The popularity distri-

bution [3] is another commonly-used static sampling distribution,

where popular items are more likely to be sampled. This is rea-

sonable to a certain extent from a crowd’s perspective because the

popular items are more easily exposed to users so that they are

not preferred by users if users do not have interactions with them.

However, the sampler can not be personalized, contextualized, and

more importantly, adaptive to model updating. Therefore, in spite

of sampling efficiency, they are far from the ideal negative sampler.

Adaptive Sampler. The adaptive samplers, which assume the

high-scored items by recommenders should be more likely to be

picked, show better performance in both recommendation and other

tasks. Since models’ outputs are not constrained, the probability of

an item i being sampled given a user is usually defined as [3, 25]:

P⋆ns (i |c) =
exp(rci)∑
j ∈I exp(rc j)

.

However, sampling from P⋆ns (i |c) is extremely time-consuming due

to personalization and frequent model updating. Softmax sam-

pling can be approximated by exploiting the grid or tree struc-

ture [4, 23, 28], achieving O(
√
N) or O(logN) time sampling if N

is the number of items. The recent work utilizes the quadratic ker-

nel [4] for approximation such that the softmax probability can

be efficiently computed through a balanced binary tree in a divide

and conquer way. However, these methods are challenging to be

extended to nonlinear scores instead of inner-product scores, such

as the ones used in GMF, MLP [14]. This problem could be miti-

gated by the efficient two-pass sampler [1, 42], where a collection

of items are first sampled from all candidate items according to

a static distribution and one item with the largest scores is then

selected from the collection as a negative one.

3 LEARNING RECOMMENDERS WITH
IMPORTANCE RESAMPLING

As aforementioned, the two-pass sampler is efficient and effective

for any complex recommendation model. However, it is unclear

Learning Recommenders for Implicit Feedback with Importance Resampling WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

what is the underlying sampling distribution and how it approxi-

mates the softmax distribution. Moreover, the sampler in the first

stage is usually the uniform distribution, it is also unclear how

they can accommodate other static or simple samplers. To answer

these questions, we propose an Adaptive Sampling method based

on Importance Resampling (AdaSIR for short). Technical details

will be elaborated below.

3.1 Generating Contextualized Sample Pools
with Importance Resampling

The key step of AdaSIR is to generate a fixed-size sample pool for

each context c , from which a few negative items can be drawn

for each training step. Initially, the items in the pool, denoted by

Kc , are sampled from a static distribution Q . In order to make

these samples follow the ideal softmax distribution, items in the

pool should be resampled to form the sample pool Rc . Accord-

ing to the importance sampling theory, the resampling probability

should follow the categorical distribution over a size-|Kc | sample

space, where each sampled item i is resampled with a probabil-

ity w(i |c) =
exp(rci−logQ (i))∑

j∈Kc exp(rc j−logQ (j))
. Note that their sizes are set to

be the same for simplicity (i.e. |Kc | = |Rc |). When Q is the uni-

form distribution, this means that the sampled items with larger

scores rci are more likely to be resampled. Before resampling, items

rarely appear more than one time, but after resampling, items with

larger scores rci probably appear multiple times. The underlying

frequency distribution can approximate the softmax distribution

based on the following theorem.

Theorem 3.1. When |Kc | → ∞, items in the sample pool Rc
follow the softmax distribution. That is, for any given set of items
S ⊆ I, assuming these items totally appear NS times in the pool Rc ,
then when |Kc | → ∞, we have

NS
|Kc |
= P⋆ns (S |c), where P

⋆
ns (S|c) =∑

i P
⋆
ns (i |c).

Proof.

NS
|Kc |

≈
∑

i∈Kc∩S

w (i |c) =
∑

i∈Kc∩S

exp (rci − logQ (i))∑
j∈Kc exp

(
rc j − logQ (j)

)
=

1

|Kc |
∑
i∈Kc I[i ∈ S] exp (rci − logQ (i))

1

|Kc |
∑
j∈Kc exp

(
rc j − logQ (j)

)
≈
Ei∼Q

[
I[i ∈ S] exp (rci − logQ (i))

]
Ej∼Q [exp

(
rc j − logQ (j)

)
]

=

∑
i∈S exp (rci)∑
j∈I exp

(
rc j

) = P⋆
ns (S |c)

where I[·] is an indicator function which equals 1 if the condition is

true and equals 0 otherwise. The approximately equal sign ≈ turns

to the equal sign = when |Kc | → ∞. □

Note that when the proposal Q becomes more informative, the

divergence between them could be more reduced according to the

theorem. When the sample pool is ready, a set of negative items,

denoted by Jci , are uniformly sampled from Rc for each positive

pair (c, i), each of which is assigned with the resampling weight

w(·|c), indicating the sampling probability of the two-pass sampler.

The uniform sampling from Rc can be considered equivalent to the

softmax sampling according to Lemma 3.2.

Lemma 3.2. Assume a list of items Λ are i.i.d. sampled from a
categorical distribution P over a size-K sample spaces, which are
denoted by Y = {y1, · · · ,yK }. When |Λ| → ∞, uniformly sampling
an item from Λ is equivalent to sampling an item from Y according
to the distribution P .

Proof. Denote by Nk the number of times yk appear in Λ such

that

∑K
k=1 Nk = |Λ|. Let Y be a random variable following the

distribution P , then obviously we have lim |Λ |→∞
Nk
|Λ | = P(Y =

yk). When uniformly sampling from Λ, an item k is picked with a

probability
Nk
|Λ | , which equals to P(Y = yk) as proved. □

Finally, based on the self-normalized importance sampling [25],

the objective function of the personalized ranking is formulated as:

min

θ

∑
(c ,i)∈D

∑
j∈Jci

−ŵ (j |c) lnσ
(
r̂ci − r̂c j

)
+ λ ∥θ ∥2,

ŵ (i |c) =
exp(r̂ci − logw (i |c))∑

j∈Jci exp(r̂c j − logw (j |c))
,

(1)

where r̂c · denotes the score outputted by the current model while

w(i |c) is computed with the score r̂ ′ci by the model in the imme-

diately preceding epoch. Assuming Q is the uniform distribution,

ŵ(i |c) ∝ exp (r̂ci − logw(i |c)) ∝ exp (r̂ci − r̂
′
ci). Therefore, items

with large increase of scores from last model will contribute more

to the loss function and thus the gradients.

3.2 Reusing Informative Historical Samples
Considering the practical situation that the size of sample pool is

finite, the proposed samplers may deviate much from the softmax

distribution. Although such a bias can be reduced via exploiting all

historical sampled items, it suffers from a large memory footprint.

Since static sampling can generate diverse items, only informative

items (i.e., high-scored items by recommenders) are more valuable

to keep. Noting that more informative items appear multiple times,

we can update the sample pool for each context by uniformly sam-

pling items from the merging set of the historical pool Rtc and

the current pool Rt+1c . This simple idea can be supported by the

following theoretical results.

Corollary 3.3. Assume the model does not update a lot between
two epochs such that the softmax distribution almost keeps the same.
The updated pool of samples are approximately drawn from the soft-
max distribution.

Proof. According to theorem 3.1, the items in both Rtc and R
t+1
c

are considered i.i.d. sampled from the softmax distribution when

the pool size is sufficiently large. It directly follows that the union

of Rtc and R
t+1
c also reach the same results. According to Lemma

3.2, uniformly sampling an item from the union of Rtc and R
t+1
c is

equivalent to sampling it from the softmax distribution. □

According to the corollary, the proposed pool updating approach

can mitigate the divergence caused by limited pool size. This is

also different from previous two-pass samplers, which simply fill

the sample pool with newly sampled items. The whole procedure

of the proposed sampler is detailed in Algorithm 1. It is worth

mentioning that the proposed sampler can be fully implemented

in the tensor-based deep learning library, remarkably accelerating

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Jin Chen, Defu Lian, Binbin Jin, Kai Zheng, and Enhong Chen

Algorithm 1: AdaSIR: Adaptive Sampling method based

on Importance Resampling

Input: Traindata D = {(c, i)}, Context set C, Epochs E
Output:Model parameters θ

1 Initialize model parameters θ , fixed-size sampling pool for

each context Rc = ∅ ;

2 for e = 1, 2, .., E do
// Update the sampling pool for each context

3 foreach c ∈ C do
4 Sample a set of items Kc following a simple

proposal distribution Q ;

5 Calculate the resampling weight

wi =
exp(rci−logQ (i))∑

j∈Kc exp(rc j−logQ (j))
,∀i ∈ Kc ;

6 Resample a set of items R ′c from Kc based onwi
with replacement;

// Reuse historical samples

7 if Rc = ∅ then
8 Rc ← {(i,wi)|i ∈ R

′
c }

9 else
10 Rc ← uniformly sample items from

Rc ∪ {(i,wi)|i ∈ R
′
c }

// Sample negative items and train the model

11 foreach (c, i) ∈ D do
12 Uniformly sample a set of negative samples Jci

from Rc ;

13 Update model parameters based on the objective

function L in Eq (1);

14 return θ

sampling by GPU computation and reducing the cost of data trans-

mission between GPU and CPU. This is also a significant advantage

over index-based approximate sampling.

3.3 Adaptive Rank Estimation
Different positive items can make different contributions to gradi-

ents in a mini-batch. Generally speaking, the bottom-ranked posi-

tive items can contribute more than top-ranked ones. As a conse-

quence, it can benefit from incorporating the rank of positive items.

However, it is challenging to estimate the rank of positive items

due to the large number of candidates. WARP [38] is a popular

method to approximate the rank based on the geometric distribu-

tion. Particularly, it counts the trials V of uniform sampling until

a violator occurs, and estimates the rank of the positive item as

rank(c, i) = ⌊ N−1V ⌋+1where N = |I | denotes the number of items.

However, when the recommendation models are better trained, it

takes more trials to find a violator for top-ranked items. Therefore,

a maximum value of V is set to ensure the efficiency but results in

an inaccurate estimation of rank. Moreover, such a method can not

make full use of the sample pool and thus efficiently integrate with

the developed proposals.

Therefore, in this section, we consider how to estimate the rank

of positive items given the sample pool. Suppose items in Kc are

drawn from the uniform distribution, the rank of the positive item

can be approximately estimated by the proportion of higher-scored

items than positive items inKc . Formally, given a positive item i , its
rank at the context c is defined as rank(c, i) =

∑
j ∈I I[r̂c j > r̂ci]+1.

In the first stage of uniform sampling, higher-scored items than item

i are picked with a probability p = rank (c ,i)−1
N−1 . Then the random

variable x which counts the number of higher-scored items than

the item i in the sample pool follows a binomial distribution of

parameter |Kc | and p. Then E[x] = |Kc |
rank (c ,i)−1

N−1 . This suggests

that the rank of item i can be approximated by

rank (c , i) ≈ ⌊
(N − 1) ×

∑
j∈Kc I[r̂c j > r̂ci]

|Kc |
⌋ + 1, (2)

where I[·] is an indicator function which equals 1 if the condi-

tion is true and equals 0 otherwise. Compared to WARP whose

approximation of rank is based on the expectation of the geometric

distribution, our proposed approximation is based on the expecta-

tion of the binomial distribution. Therefore, it is possible to derive

error bound of rank estimation.

Theorem 3.4. Suppose x =
∑
j ∈Kc I[r̂c j > r̂ci] is a random vari-

able which counts the number of higher-scored items than the item
i in the sample pool. x is the empirical mean over n trials which is
defined as x = 1

n
∑n
k=1 x

(k). Then, the deviation between its empirical
mean and the expected value has an upper bound as follows:

P(|x − E[x]| ≥ t) ≤ exp(−
2nt2

|Kc |2
), s .t . t ≥ 0.

Proof. x (1), x (2), · · · , x (n) i.i.d. follows Binomial(|Kc |, p), where

p = rank (c ,i)−1
N−1 and x (k) is strictly bounded by [0,Kc]. The result

is then derived by directly applying the Hoeffding’s inequality [16].

□

The important goal is to estimate the rank(c, i), so we can trans-

form the inequality with the probability p, that is, by setting t =

|Kc |ε and defining p = x
|Kc |

P(|p − p | ≥ ε) ≤ 2 exp(−2nε2), s .t . ε ≥ 0.

The results show that given the fixed pool size |Kc |, the error of

approximating p with p can be exponentially reduced by generating

more sample pools for each context. This can be considered as

equivalent to increasing the size of the sample pool.

We also provide another explanation for this inequality by ap-

plying the Hoeffding’s inequality for Bernoulli random variables.

This is because the Binomial distribution represents the number

of successes (higher-scored than the item i) in |Kc | independent
Bernoulli trials. Then we have

P(
�� x

|Kc |
− p

�� ≥ ε) ≤ 2 exp(−2|Kc |ε
2), s .t . ε ≥ 0.

From this inequality, we directly observe with the increasing size

of the sample pool, the approximate error can decay exponentially.

According to the theorem, we can observe that setting a larger

pool size can reduce the error bound so that the estimation of the

rank can be more accurate. Following WARP, the adaptive weight

with respect to the rank is defined as J (k) =
∑
k

1

k . This function

Learning Recommenders for Implicit Feedback with Importance Resampling WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

pays more attention on the top of item list
1
, such that the bottom-

ranked positive items are assigned with more importance. Finally,

the objective function is then formulated as follows:

min

θ

∑
(c ,i)∈D

J (rank (c , i))
∑
j∈Jci

−ŵ (j |c) lnσ
(
r̂ci − r̂c j

)
+ λ ∥θ ∥2

(3)

To sum up, AdaSIR provides a good approximation to the softmax

distribution and can accommodate any proposal distribution. In

addition, AdaSIR has two extra advantages. On one hand, instead

of discarding the previously sampled items in the classic two-pass

sampler, AdaSIR reuses more informative items to improve recom-

mender training. On the other hand, the sampler can efficiently

estimate the rank of positive items such that the bottom-ranked

items are more emphasized during the training process.

3.4 Complexity Analysis
Time Complexity. The sampling and training phases dominate

the majority of running time. As for the sampling procedure, gener-

ating the sampling pool for each context c takes O(|Kc | · (TQ +Tr)),
whereTQ is the time of sampling an item from the proposal distribu-

tion, particularly O(1) for uniform sampling and popularity-based

sampling,Tr denotes the time for calculating the score function. An-

other important step for updating the sampling pool takes O(|Rc |).

For each training pair (c, i), it takes O(|Jci |) to sample items. Thus,

the time complexity for sampling procedure during each training

epoch is O(M · |Kc | · (TQ +Tr)+ |D| · |Jci |), whereM is the number

of users and |D| denotes the number of user-item pairs for training.

As for the training procedure, it takes O(|D| · |Jci | ·Tr) for infer-
ence. Since |D| >> M , the time complexity of sampling is less than

that of training. The ranking estimation takes O(|D| · |Kc | · Tr),
which is also greater than the sampling complexity.

Space Complexity. Apart from the dataset and model param-

eters, the main memory cost is the storage of the sampling pool

which takes O(M · |Rc |) to save the sampling pool and their resam-

pling weights respectively. It also takes O(M · |Kc |) to store Kc
to estimate the ranking scores of positive items. Totally, the space

complexity is O(M · (|Kc | + |Rc |)).

4 EXPERIMENT
The proposed AdaSIR is evaluated on three public sparse datasets in

recommender systems to figure out the following questions: (1) Can

the proposed AdaSIR outperform the competitive recommendation

models? (2) How efficiently the AdaSIR sample items? (3) What is

the accuracy of estimating the softmax distribution with AdaSIR?

4.1 Dataset
Three real-world datasets are utilized, as shown in Table 1, to val-

idate the proposed sampler. They vary in scale and sparsity. The

Gowalla2 dataset is the collection of user check-in histories. The

Yelp3 dataset records the point of interest. The Amazon4 dataset
includes the set of ratings for Amazon books and is sparser than the

other two datasets. Considering the ratings in the Amazon dataset

are integers ranging from 1 to 5, the books with ratings above 4

1
CML [18] utilizes an approximation of the formula with log(k + 1).

2Gowalla: http://snap.stanford.edu/data/loc-gowalla.html

3Yelp: https://www.yelp.com/dataset

4Amazon: http://jmcauley.ucsd.edu/data/amazon/

are regarded as the positive ones. We filter out the users and items

with less than 5 interactions to guarantee the test. For each user,

80% of items are randomly selected as the training set and the left

20% of items are the test set. 10% ratings of the training data are

collected for validation. The models are trained on the training set

and evaluated on the test set.

Table 1: Summary of Datasets

Dataset #User #Item #Train #Test Sparsity

Gowalla 29,858 40,988 822,358 205,106 99.9160%

Yelp 77,277 45,638 1,684,846 419,049 99.9403%

Amazon 130,380 128,939 1,934,404 481,246 99.9856%

As for the metrics, we focus on the quality of recommended

item list and select the widely-used metrics of ranking evaluation,

NDCG and Recall at a cutoff k. A higher top-ranked item rewards a

higher value of NDCG. The Recall is the fraction of positive items

in the top-k item list over the whole positive items in the test data.

The cutoff k is set to 50 by default.

4.2 Baselines
To verify the effectiveness of the proposed sampler, we choose the

following competitive algorithms. Unless otherwise specified, we

exploit matrix factorization as the recommender models.

• BPR [32], the Bayesian personalized ranking, is the classical

personalized ranking model for implicit feedback. It utilizes the

pair-wise loss and samples negative items with the static uniform

distribution.

• AOBPR [31] improves the sampling method in BPR through the

proposed adaptive oversampling. We use the version in librec
5
,

and λ for the geometric distribution is set to 500.

• WARP [38] exploits the weighted approximate-rank pair-wise

loss for implicit feedback. Given a positive item, it counts the

uniform sampling over all items util a negative item is collected to

estimate the rank. We use the public implementation in LightFM
6
.

• IRGAN [34] generates the negative data with the GAN style

model. It uses the generative network that generates items for

the user and sends the items into a discriminative network to

judge whether the sample is from the real data. We utilize the

code released by the authors
7
.

• DNS [42] is the dynamic negative sampler which samples a set

of items uniformly and chooses the item with the highest score

according to the current model parameters to update the model.

The candidate size is set to 10 by default.

• SRNS [11] is the state-of-the-art sampling method to select in-

formative negative items by considering the variance of the pre-

dicted score during the recent epochs. We use the released code
8
.

• PRIS [25] utilizes the importance sampling to the pair-wise rank-

ing loss for personalized ranking and assigns the sampling weight

to the sampled items. We adopt the uniform and popularity-based

distribution as the proposal distribution for training models, de-

noted as PRIS(U) and PRIS(P) respectively.

5
https://github.com/guoguibing/librec

6
https://github.com/lyst/lightfm

7
https://github.com/geek-ai/irgan

8
https://github.com/dingjingtao/SRNS

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Jin Chen, Defu Lian, Binbin Jin, Kai Zheng, and Enhong Chen

Table 2: Overall performance w.r.t. NDCG@50 and Recall@50.

Gowalla Yelp Amazon

NDCG@50 RECALL@50 NDCG@50 RECALL@50 NDCG@50 RECALL@50

BPR 0.1214±0.0017 0.1985±0.0023 0.0520±0.0017 0.1070±0.0030 0.0473±0.0024 0.1108±0.0050

AOBPR 0.1385±0.0020 0.2417±0.0016 0.0677±0.0015 0.1346±0.0009 0.0563±0.0023 0.1303±0.0011

WARP 0.1248±0.0052 0.2240±0.0011 0.0636±0.0004 0.1332±0.0009 0.0542±0.0010 0.1267±0.0025

IRGAN 0.1443±0.0019 0.2242±0.0018 0.0695±0.0012 0.1367±0.0020 0.0627±0.0018 0.1395±0.0032

DNS 0.1412±0.0015 0.1839±0.0025 0.0693±0.0016 0.1425±0.0029 0.0615±0.0015 0.1378±0.0043

SRNS 0.1317±0.0007 0.2152±0.0013 0.0493±0.0006 0.1017±0.0009 0.0344±0.0017 0.0774±0.0011

PRIS(U) 0.1334±0.0032 0.2217±0.0024 0.0639±0.0015 0.1273±0.0030 0.0607±0.0013 0.1377±0.0014

PRIS(P) 0.1385±0.0032 0.2282±0.0027 0.0673±0.0016 0.1342±0.0029 0.0697±0.0025 0.1463±0.0033

Kernel 0.1399±0.0024 0.2264±0.0025 0.0658±0.0004 0.1315±0.0012 0.0700±0.0013 0.1495±0.0018

AdaSIR(U) 0.1489±0.0012 0.2500±0.0011 0.0732±0.0024 0.1523±0.0048 0.0731±0.0026 0.1505±0.0052

AdaSIR(P) 0.1519±0.0016 0.2516±0.0021 0.0731±0.0027 0.1525±0.0043 0.0740±0.0024 0.1534±0.0054

AdaSIR-W 0.1503±0.0009 0.2543±0.0005 0.0761±0.0012 0.1529±0.0041 0.0795±0.0027 0.1655±0.0053

• Kernel [4]-based sampler approximates the softmax distribu-

tion with the non-negative quadratic kernel. It constructs a tree

structure for fast sampling.

We test three versions of AdaSIR
9
to validate the recommendation

quality of implicit collaborative filtering. AdaSIR(U) and AdaSIR(P)

respectively sample candidate items from the uniform and popular-

ity distribution and minimize the loss function in Eq. (1). AdaSIR-W

draws items from the uniform distribution and estimates the rank

of positive items, minimizing the loss function in Eq. (3).

4.3 Implementation Details
The algorithm is implemented based on PyTorch in a Linux operat-

ing system (2.10 GHz Intel Xeon Gold 6230 CPUs and a Tesla V100

GPU). We apply the Adam optimizer to optimize all parameters.

In this paper, we first choose the matrix factorization model, i.e.

rci = pTc qi . We additionally choose the GMF as the scoring func-

tion for extension. Since we do not focus on the feature modeling

of the users and items, we do not utilize other contextual infor-

mation of users. Without the loss of generality, the dimension of

the user and item embedding is fixed to 32. The batch size is fixed

to 4096 for all three datasets and the learning rate is set to 0.001

by default. The number of training epochs is fixed to 200 for fair

comparisons. The coefficient of the regularization of all algorithms

is tuned over {0.1, 0.01, 0.001, 0.0001}. For each positive pair (c, i),
we sample 5 negative items for the pair-wise ranking loss. The size

of the sample pool for each user is set to 200, 200, 600 for Gowalla,

Yelp and Amazon respectively. That is to say, nearly 0.5% of items

are drawn during each epoch to update the sample pool. As for

the popularity-based distribution for PRIS and AdaSIR, we choose

log(1 + fi) [27] to calculate the popularity score, where fi is the
number of occurrences of item i in the training data.

The recommendation models are trained on the training data

and evaluated on the test data. 10% of the training data is used for

validation. The hyperparameters of baselines are carefully tuned

depending on NDCG@50. The learning rate for all baselines is fixed

to 0.001 by default.

9
Implementation for AdaSIR: https://github.com/HERECJ/AdaSIR

4.4 Performance comparison
Experiments are conducted on all the real-world datasets, where

each algorithm is run for 5 competitions with different random

seeds. We report the average value with the standard deviation in

Table 2. Obviously, our proposed AdaSIR consistently outperforms

all baselines. Compared with the best baseline, AdaSIR achieves a

relative 5.2%, 9.8% and 11.81% improvements respectively in terms

of NDCG@50 on three datasets. This superior performance demon-

strates the effectiveness of the proposed methods, where informa-

tive items are drawn and benefit to the convergence of recommen-

dation models. In addition, we have the following observations.

Observation 1: The adaptive samplers show better performances

than the static samplers. For example, the best sampler with the

static proposal distribution only has a performance of 0.1385 in

terms of NDCG@50 on the Gowalla dataset while almost all the

dynamic samplers outperform the baselines. This observation im-

plies the necessity of capturing the dynamics of the model and thus

more informative items can be sampled to strengthen the learning.

Observation 2: The adoption of the popularity-based distribution

has slight improvements for AdaSIR. Utilizing the popularity dis-

tribution as the proposal for AdaSIR leads to an average relative

1.04% improvement in terms of NDCG@50 compared with the uni-

form distribution on three datasets. The relative improvements for

the PRIS achieve an average of 8.7% which is larger than that of

AdaSIR. The popularity distribution benefits to figuring out more

informative items, but the performance of our proposed sampler is

not greatly affected by the initial proposal distribution, indicating

the robustness of the AdsSIR with different proposal distributions.

Observation 3: The rank estimation of positive items helps distin-

guish the positive items, leading to the better performance. WARP

and AdaSIR-W both assign different importance to the positive

items and achieve better performances compared with BPR and

AdaSIR(U). The weights correspond with the ranking of the positive

pair where the higher ranked items are high quality positive data for

training. This implies paying more attention to the bottom-ranked

positive items benefits to the model training.

Observation 4: The AdaSIR performs better on sparser datasets.

When the dataset is more sparse, it becomes more difficult to select

Learning Recommenders for Implicit Feedback with Importance Resampling WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

PRIS(U
)

PRIS(P)

Ada
SIR

(U
)

Ada
SIR

(P)

Ada
SIR

-w
DNS

Kern
el

SRNS

Sampler

0

2

4

6

8

10

Lo
ga

rit
hm

 o
f T

im
e(

Se
co

nd
)

Figure 1: Time Consumption.

0 10000 20000 30000 40000
Items

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Softmax
Uniform
Popular
AdaSIR(U)
AdaSIR(P)
Kernel
DNS

Figure 2: Approximate distributions
of different sampling methods.

NDCG@50 RECALL@50
Metric

15%

20%

25%

Sc
or

e

PRIS
AdaSIR(U)
AdaSIR(P)
AdaSIR-W

Figure 3: Extension on GMF.

the informative items. Among the experiments over three datasets,

the performance on the Amazon dataset has been improved the

most with AdaSIR, achieving a relative 13.6% improvement on

NDCG@50 compared with the best baseline. Hopefully, the AdaSIR

may achieve promising performance on much sparse large-scale

data. This demonstrates the good performance of approximation for

the softmax distribution to select hard negatives from numerous

candidates and demonstrates the effectiveness of capturing the

difference between positive user-item pairs.

4.5 Running Time Comparison
Another major concern in negative sampling is the sampling effi-

ciency and we conduct experiments to compare the running time of

different samplers. We further conduct experiments to compare the

different running time of the sampling procedure and the training

procedure to figure out the efficiency of the sampling algorithm.

We choose PRIS, DNS, Kernel and SRNS to report the results. The

IRGAN and SRNS are implemented in TensorFlow and more time-

consuming than our proposed method. Specifically, the SRNS takes

over 3 minutes training the Gowalla dataset each epoch with with

a Tesla V100 GPU. Each algorithm is run for 20 epochs on the

Gowalla dataset and we report the average and the std. over 5 times

experiments in Figure 1. We report the time in logarithmic scale.

All the proposed AdaSIR-based methods show the superior per-

formance of the running time, even being comparable to the uni-

formly sampling method. The Kernel based sampler costs more time

on training since it requires O(D2
logN) to sample one item, where

D denotes the embedding size and N denotes the item number.

The high computational overload of PRIS(P) is the competitive

multinomial sampling procedure for each positive pair and the time

complexity is O(n |D|TQ) for one epoch where n is the number of

sampled items, TQ represents the time of sampling from the multi-

nomial distribution, such as O(1) with the Vose-Alias method [33]

or O(logN) with the binary search. AdaSIR(P) is our proposed

method which also regards the popularity as the proposal. How-

ever, its sampling procedure is only performed once for each epoch

and the time complexity (i.e. O(|Kc |TQ)) is related to the size of

sample pool rather than the data size so that it achieves remark-

able speedup. Overall, we provide an extremely efficient sampling

method with the simple proposal and significantly enhance the

accuracy of approximating the adaptive softmax distribution, even

taking almost the same time as the uniformly sampling method.

Table 3: Running Time of one epoch (Seconds) w.r.t. Sam-
plers of seperate phases on the Gowalla dataset.

Phase AdaSIR(U) AdaSIR(P) AdaSIR-W

Sampling 0.0741±0.0003 0.0734±0.0003 0.0637±0.0004

Training 0.7572±0.0277 0.7475±0.0180 1.3787±0.0180

To demonstrate the efficiency of the proposed sampling approach,

we validate the different running time of the training phase and

sampling phase. We conduct experiments on the Gowalla dataset

and report the actual running time (in seconds) for one epoch. We

run the experiments for 5 epoches and provide the average results

with the standard derivation, as shown in Table 3. The results

illustrate high efficiency of the proposed sampler, since sampling

takes substantially less time than training.

4.6 Approximation performance
Since the sampling distribution plays an important role in improv-

ing the quality of items, we conduct experiments to figure out the

divergence between the proposal distribution and the softmax dis-

tribution. We choose the user embeddings and item embeddings

from the well-trained models on the Gowalla dataset and keep them

fixed. Then, we randomly pick a user from the user set and com-

pute his/her softmax distribution. Afterwards, we draw 10 items for

5,000 times. Regarding the proposed AdaSIR, the sample pool with

a fixed size of 200 is updated each time. The occurrence numbers of

the items are approximated as the proposal distribution. We report

the cumulative probability distribution of the softmax and proposal

distributions in Figure 2. The items are ordered by the popularity.

AdaSIR-based samplers are much closer to the softmax distribu-

tion than the other samplers. This indicates the good performance

of the proposed sampler in reducing the bias between the proposal

distribution and the softmax distribution. Although the sampler of

DNS requires low time complexity, there exists a huge deviation

from the softmax distribution. When the number of the candidates

increases, the popular items are more likely to be sampled which

will exacerbate the long tail effect. The kernel-based sampler also

has a huge divergence between the proposal and softmax distri-

bution. A reason may lie in that the embedding mapped with the

quadratic kernel to ensure the non-negative scores leads to the bad

estimation. Those items with negative scores have larger probabil-

ities to be sampled but contain less information. These superior

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Jin Chen, Defu Lian, Binbin Jin, Kai Zheng, and Enhong Chen

100 200 400 1000 2000
pool size

14%

15%

16%

17%

N
D

C
G

@
50

AdaSIR(U)
AdaSIR(P)
AdaSIR-W

(a) NDCG@50

100 200 400 1000 2000
pool size

24%

25%

26%

27%

R
EC

A
LL

@
50

AdaSIR(U)
AdaSIR(P)
AdaSIR-W

(b) Recall@50

100 200 400 1000 2000
pool size

0

50

100

150

Ti
m

e(
s)

AdaSIR(U)
AdaSIR(P)
AdaSIR-W

(c) Running Time

Figure 4: Comparison results of AdaSIR w.r.t. the pool size on the Gowalla dataset.

performances of the proposed samplers when approximating the

softmax distribution empowers the strong capability of capturing

the dynamics during model training and high-quality items can be

sampled for better convergence.

4.7 Extensions with Various scoring function
Previous works propose adaptive samplers for simple score func-

tions, which are designed for matrix factorization but cannot fit in

arbitrary recommendation models. In this section, we additionally

adopt the GMF as the score function to validate the effectiveness

of AdaSIR with different types of recommendation models. The

experiments are conducted on the Gowalla. The dimension of the

embeddings is set to 32. The experiments are run for 200 epochs.

As shown in Figure 3, AdaSIR-based samplers show better perfor-

mances than PRIS, the competing and latest baselinemethod, achiev-

ing at least a relative 13.06% improvement in terms of NDCG@50.

We also observe similar improvements with the matrix factoriza-

tion models, where This indicates the adaptability of the proposed

samplers for complicated scoring functions. In the future, we will

explore AdaSIR with more complex models (e.g., NCF, GNN-based

models) which enhance the expressiveness of embeddings and im-

prove the recommendation quality.

4.8 Varying the pool size
To figure out the influence of different sizes of the sample pool, we

evaluate the recommendation quality and running time of AdaSIR

on the Gowalla dataset. We vary the pool size in {100, 200, 400, 1000,

2000} for the AdaSIR-based methods.

Figure 4(a) and 4(b) report the performance of the recommen-

dation quality. With the increase of the pool size, all AdaSIR based

methods perform better. Since more items are collected, the pro-

posal distribution gets closer to the softmax distribution and thus

more informative items can be sampled. Overall, the AdaSIR-W

competes with the other two methods in terms of NDCG@50 and

Recall@50 when the pool size is 1000. The AdaSIR-W consistently

shows good performance on Recall@50. The reason may lie in

that the rank estimation gets more accurate when the pool size

becomes large so that the high-quality positive items can be distin-

guished during training. The higher Recall@50 implies the good

performance of distinguishing the ground-truth positives in testing.

Figure 4(c) shows the running time of different sizes of sample

pool. The AdaSIR-W estimates the rank of the positive item by

enumerating the negative items in Kc , which has the same size

as the sample pool, so that it takes almost linear time to perform

the rank estimation. An exciting point is that the AdaSIR(U) and

AdaSIR(P) take almost the same time when the size of sample pool

increases. The two-pass sampling procedure dramatically reduces

the computational overload and shows a superior advantage in the

great number of the sample pool.

5 RELATEDWORK
The main concern of recommendation from implicit feedback is

the lack of the negative items. Despite the existence of the expilict

negative behaviors, such as non-clicks and low ratings, consider-

ing the enormous number of candidate items, these feedbacks are

extremely sparse. If we only consider these feedbacks as negative

samples, it will cause selection bias [10]. Fortunately, the commu-

nity agrees on the importance of unobserved items when learning

the recommendation models from both academic [10, 12] and in-

dustrial researchers [13, 20, 35, 39, 40]. The proposed algorithms

for item recommendation differ in how to exploit the unobserved

items. WRMF [19] and OCCF [29], which are proposed more than

ten years, treat all the unobserved items as negative feedbacks. A

series of works [2, 5, 22] design implicit regularizers to penalize the

high ratings of the unobserved items. However, these algorithms get

trapped in the high computational cost given great number of items.

Negative sampling is then proposed and has been investigated in

the recommender systems [21, 25, 31, 32, 42]. These samplers differ

in the the proposal distribution and the re-weights of the items.

6 CONCLUSION
In this work, we propose an Adaptive Sampling method based on

the Importance Resampling, an efficient sampling approach based

on two-stage sampling method. The AdaSIR method provides an

accurate approximation of the adaptive distribution and thus sam-

ples more informative items, which benefits the model training.

The proposed sampler supports the reuse of high-quality items and

the rank approximation for positive items through the maintained

sampling pool with fixed size. Experiments are conducted on the

three real-world datasets, showing superior performance in terms

of efficiency and effectiveness.

Learning Recommenders for Implicit Feedback with Importance Resampling WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

ACKNOWLEDGMENTS
The work is supported by the National Natural Science Foundation

of China (No. 62022077, 61972069, 61836007 and 61832017), and

Shenzhen Municipal Science and Technology R&D Funding Basic

Research Program (JCYJ20210324133607021).

REFERENCES
[1] Yu Bai, Sally Goldman, and Li Zhang. 2017. Tapas: Two-pass approximate adaptive

sampling for softmax. arXiv preprint arXiv:1707.03073 (2017).
[2] Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. 2017. A

generic coordinate descent framework for learning from implicit feedback. In

Proceedings of the 26th International Conference on World Wide Web. 1341–1350.
[3] Yoshua Bengio and Jean-Sébastien Senécal. 2008. Adaptive importance sampling

to accelerate training of a neural probabilistic language model. IEEE Transactions
on Neural Networks 19, 4 (2008), 713–722.

[4] Guy Blanc and Steffen Rendle. 2018. Adaptive sampled softmax with kernel based

sampling. In International Conference on Machine Learning. PMLR, 590–599.

[5] Jin Chen, Defu Lian, and Kai Zheng. 2019. Improving one-class collaborative filter-

ing via ranking-based implicit regularizer. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33. 37–44.

[6] Jin Chen, Defu Lian, and Kai Zheng. 2020. Collaborative filtering with ranking-

based priors on unknown ratings. IEEE Intelligent Systems 35, 5 (2020), 38–49.
[7] Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong. 2017. On sampling strategies

for neural network-based collaborative filtering. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. 767–
776.

[8] Xuanhao Chen, Yan Zhao, Guanfeng Liu, Rui Sun, Xiaofang Zhou, and Kai Zheng.

2020. Efficient Similarity-aware Influence Maximization in Geo-social Network.

TKDE (2020).

[9] Yue Cui, Hao Sun, Yan Zhao, Hongzhi Yin, and Kai Zheng. 2021. Sequential-

knowledge-aware Next POI Recommendation: A Meta-learning Approach. TOIS
(2021).

[10] Jingtao Ding, Yuhan Quan, Xiangnan He, Yong Li, and Depeng Jin. 2019. Rein-

forced Negative Sampling for Recommendation with Exposure Data.. In IJCAI.
2230–2236.

[11] JingtaoDing, YuhanQuan, Quanming Yao, Yong Li, andDepeng Jin. 2020. Simplify

and Robustify Negative Sampling for Implicit Collaborative Filtering. In Advances
in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,

M. F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 1094–1105.

[12] JingtaoDing, YuhanQuan, Quanming Yao, Yong Li, andDepeng Jin. 2020. Simplify

and Robustify Negative Sampling for Implicit Collaborative Filtering. arXiv
preprint arXiv:2009.03376 (2020).

[13] Miao Fan, Jiacheng Guo, Shuai Zhu, Shuo Miao, Mingming Sun, and Ping Li.

2019. MOBIUS: towards the next generation of query-ad matching in baidu’s

sponsored search. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2509–2517.

[14] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[15] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast ma-

trix factorization for online recommendation with implicit feedback. In Proceed-
ings of the 39th International ACM SIGIR conference on Research and Development
in Information Retrieval. 549–558.

[16] Wassily Hoeffding. 1994. Probability inequalities for sums of bounded random

variables. In The Collected Works of Wassily Hoeffding. Springer, 409–426.
[17] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and

Deborah Estrin. 2017. Collaborative metric learning. In Proceedings of the 26th
international conference on world wide web. 193–201.

[18] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and

Deborah Estrin. 2017. Collaborative Metric Learning. In Proceedings of the 26th
International Conference on World Wide Web (WWW ’17). International World

Wide Web Conferences Steering Committee, Republic and Canton of Geneva,

CHE, 193–201. https://doi.org/10.1145/3038912.3052639

[19] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for

implicit feedback datasets. In 2008 Eighth IEEE International Conference on Data
Mining. Ieee, 263–272.

[20] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin,

Janani Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. 2020. Embedding-

based retrieval in facebook search. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2553–2561.

[21] Binbin Jin, Defu Lian, Zheng Liu, Qi Liu, Jianhui Ma, Xing Xie, and Enhong Chen.

2020. Sampling-decomposable generative adversarial recommender. Advances in
Neural Information Processing Systems 33 (2020), 22629–22639.

[22] Walid Krichene, Nicolas Mayoraz, Steffen Rendle, Li Zhang, Xinyang Yi, Lichan

Hong, John Anderson, et al. 2018. Efficient Training on Very Large Corpora via

Gramian Estimation. In International Conference on Learning Representations.
[23] Xiang Li, Tao Qin, Jian Yang, Xiaolin Hu, and Tie-Yan Liu. 2016. LightRNN:

Memory and Computation-Efficient Recurrent Neural Networks. In NIPS.
[24] Defu Lian, Jin Chen, Kai Zheng, Enhong Chen, and Xiaofang Zhou. 2021. Ranking-

based Implicit Regularization for One-Class Collaborative Filtering. IEEE Trans-
actions on Knowledge and Data Engineering (2021).

[25] Defu Lian, Qi Liu, and Enhong Chen. 2020. Personalized ranking with importance

sampling. In Proceedings of The Web Conference 2020. 1093–1103.
[26] Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. 2016. Mod-

eling user exposure in recommendation. In Proceedings of the 25th international
conference on World Wide Web. 951–961.

[27] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.

Distributed representations of words and phrases and their compositionality.

arXiv preprint arXiv:1310.4546 (2013).
[28] Frederic Morin and Yoshua Bengio. 2005. Hierarchical probabilistic neural net-

work language model.. In Aistats, Vol. 5. Citeseer, 246–252.
[29] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,

and Qiang Yang. 2008. One-class collaborative filtering. In 2008 Eighth IEEE
International Conference on Data Mining. IEEE, 502–511.

[30] Dae Hoon Park and Yi Chang. 2019. Adversarial sampling and training for semi-

supervised information retrieval. In The World Wide Web Conference. 1443–1453.
[31] Steffen Rendle and Christoph Freudenthaler. 2014. Improving pairwise learning

for item recommendation from implicit feedback. In Proceedings of the 7th ACM
international conference on Web search and data mining. 273–282.

[32] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. 2009. BPR:

Bayesian personalized ranking from implicit feedback. In Proceedings of UAI’09.
AUAI Press, 452–461.

[33] Alastair J Walker. 1977. An efficient method for generating discrete random

variables with general distributions. ACM Transactions on Mathematical Software
(TOMS) 3, 3 (1977), 253–256.

[34] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng

Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying generative

and discriminative information retrieval models. In Proceedings of the 40th In-
ternational ACM SIGIR conference on Research and Development in Information
Retrieval. ACM, 515–524.

[35] Jinpeng Wang, Jieming Zhu, and Xiuqiang He. 2021. Cross-Batch Negative

Sampling for Training Two-Tower Recommenders. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 1632–1636.

[36] Shoujin Wang, Liang Hu, Yan Wang, Longbing Cao, Quan Z. Sheng, and Mehmet

Orgun. 2019. Sequential recommender systems: challenges, progress and

prospects. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence. AAAI Press, 6332–6338.

[37] Jason Weston, Samy Bengio, and Nicolas Usunier. 2010. Large scale image

annotation: learning to rankwith joint word-image embeddings.Machine learning
81, 1 (2010), 21–35.

[38] Jason Weston, Samy Bengio, and Nicolas Usunier. 2011. Wsabie: Scaling up to

large vocabulary image annotation. In Twenty-Second International Joint Confer-
ence on Artificial Intelligence.

[39] Ji Yang, Xinyang Yi, Derek Zhiyuan Cheng, Lichan Hong, Yang Li, Simon Xiaom-

ing Wang, Taibai Xu, and Ed H Chi. 2020. Mixed negative sampling for learning

two-tower neural networks in recommendations. In Companion Proceedings of
the Web Conference 2020. 441–447.

[40] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale

recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974–983.

[41] Hsiang-Fu Yu, Mikhail Bilenko, and Chih-Jen Lin. 2017. Selection of negative

samples for one-class matrix factorization. In Proceedings of the 2017 SIAM Inter-
national Conference on Data Mining. SIAM, 363–371.

[42] Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. 2013. Optimizing top-n

collaborative filtering via dynamic negative item sampling. In Proceedings of
the 36th international ACM SIGIR conference on Research and development in
information retrieval. 785–788.

https://doi.org/10.1145/3038912.3052639

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Recommendation for Implicit Feedback
	2.2 Negative Samplers in Recommenders

	3 Learning Recommenders with Importance Resampling
	3.1 Generating Contextualized Sample Pools with Importance Resampling
	3.2 Reusing Informative Historical Samples
	3.3 Adaptive Rank Estimation
	3.4 Complexity Analysis

	4 Experiment
	4.1 Dataset
	4.2 Baselines
	4.3 Implementation Details
	4.4 Performance comparison
	4.5 Running Time Comparison
	4.6 Approximation performance
	4.7 Extensions with Various scoring function
	4.8 Varying the pool size

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

