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Abstract—With the rapid advancement of mobile networks
and the widespread use of mobile devices, spatial crowdsourcing,
which involves assigning location-based tasks to mobile workers,
has gained significant attention. However, most existing research
focuses on task assignment at the current moment, overlooking
the fluctuating demand and supply between tasks and workers
over time. To address this issue, we introduce an adaptive task
assignment problem, which aims to maximize the number of
assigned tasks by dynamically adjusting task assignments in
response to changing demand and supply. We develop a spatial
crowdsourcing framework, namely demand-based adaptive task
assignment with dynamic worker availability windows, which
consists of two components including task demand prediction
and task assignment. In the first component, we construct a
graph adjacency matrix representing the demand dependency
relationships in different regions and employ a multivariate
time series learning approach to predict future task demands.
In the task assignment component, we adjust tasks to workers
based on these predictions, worker availability windows, and the
current task assignments, where each worker has an availability
window that indicates the time periods they are available for
task assignments. To reduce the search space of task assignments
and be efficient, we propose a worker dependency separation
approach based on graph partition and a task value function with
reinforcement learning. Experiments on real data demonstrate
that our proposals are both effective and efficient.

Index Terms—task assignment, spatial crowdsourcing, task
demand,

I. INTRODUCTION

Along with the widespread availability of GPS-enabled
networked devices, e.g., smartphones, Spatial Crowdsourcing
(SC) has gained significant attention in both academia and
industry [1]–[7]. SC involves outsourcing location-based tasks
(such as picking up passengers or delivering food and parcels)
to individuals (i.e., crowd workers) through SC platforms like
Didi and Uber Eats. This process is called task assignment.
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In a typical SC scenario, tasks must be assigned to crowd
workers who are physically present in or near specific loca-
tions. The interaction between task requirements and worker
availability is reflected in the demand and supply dynamics,
describing how task availability and worker availability affect
each other. When there are more tasks available than workers
to complete them, there is high demand for workers, and
vice versa. This interaction affects how tasks are assigned
and completed in an SC platform. For instance, in ride-hailing
services, a surge in passenger demand in a specific area results
in high task demand, often causing a shortage of available
drivers. To address this issue, platforms must utilize real-time
data to increase the number of drivers nearby in the area.
Conversely, during low-demand periods, the platform reallo-
cates drivers to other areas, thereby reducing oversupply. This
real-time feedback mechanism optimizes resource allocation
and improves service efficiency. Similarly, in food delivery
services, peak hours like lunch and dinner times cause a spike
in orders and high task demand. During off-peak hours, fewer
orders lead to an oversupply of drivers, with some going
offline. This interaction shows how manage supply-demand
imbalances in real time to ensure timely deliveries and opera-
tional efficiency. Traditional task assignment methods [3]–[5],
[8]–[11] that focus on task assignment at the current moment
without considering future demand dynamics often struggle
to deal with the rapid and unpredictable changes in task
demand and worker availability, leading to inefficiencies and
suboptimal task assignments over the long term. It is important
to accurately predict future task demands and consider worker
availability to optimize current assignments. However, it is
non-trivial to accurately predict the demands due to uncertain
and dynamic spatio-temporal distributions, e.g., tasks might be
dispersed over large and possibly uneven geographical areas.

Some studies consider task and worker predictions [6], [7],
[12]–[14]. For example, Wei et al. [12] propose a location-and-
preference joint prediction model to predict workers’ locations
and preferences jointly at each time instance. Peng et al. [7]
introduce a spatio-temporal prediction strategy that combines



a gated recurrent unit and a variational autoencoder for crowd-
sourcing task prediction. However, they ignore the dynamics
of task demands, which is crucial for accurately predicting
the spatio-temporal distribution of tasks. The closest related
research to ours is the work [6], which proposes a Prediction-
based Task Assignment (PTA) approach that hybrids different
learning models to predict the locations and routes of future
workers and employs a graph embedding approach to estimate
the distribution of future tasks. Nevertheless, it differs from our
work in terms of the problem setting and assignment pattern.
Specifically, PTA aims to maximize the number of assigned
tasks by assigning a fixed task sequence to each worker, while
our work focuses on maximizing the number of assigned
tasks by assigning a dynamic task sequence to each worker
based on the dynamics of task demands and the availability of
workers. In SC, tasks and workers are continuously changing
and moving, necessitating real-time updates and processing to
ensure the optimal assignment.

This paper investigates the problem of Adaptive Task As-
signment (ATA) in SC by focusing on demand dynamics and
worker availability. Fig. 1 illustrates a running example of the
ATA problem with three workers denoted as {w1, w2, w3},
and nine tasks denoted as {s1, . . . , s9}. Each worker can only
perform tasks within a reachable distance of 1.2 units. In
addition, each spatial task, published and expired at different
time instances, is labeled with its location where it will be
performed only once. The straightforward approach, known
as Fixed Task Assignment (FTA) algorithm, is to assign each
worker a fixed sequence of tasks to be completed in order
while satisfying spatial-temporal constraints. In our example,
we assign the task sequence (s1, s3) to w1 and (s2, s4) to
w2, achieving the maximal number of assigned tasks at time
instance 1. Similarly, in the time instance 4, we assign task
s7 to w3. However, the remaining tasks are rejected because
no worker can reach the task locations after completing their
assigned task sequences. Consequently, the total number of
assigned tasks is 2 + 2 + 1 = 5.
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Fig. 1. Running Example

We show that the ATA problem is NP-hard (see Lemma 1).
To solve ATA, we propose an SC framework, namely Demand-
based Adaptive Task Assignment with dynamic Worker
Availability windows (DATA-WA), which adjusts task assign-
ment based on real-time and predicted task demand dynamics

as well as dynamic worker availability. For task demand
prediction, we employ a multivariate time series learning ap-
proach, Dynamic Dependency-based Graph Neural Network,
to predict future task demands across different regions. To the
best of our knowledge, our approach is the first to consider the
dependency relationships between task demands in different
regions. For task assignment, we use a Worker Dependency
Separation approach based on a graph partition technique.
This approach segregates workers into independent clusters
arranged in a tree structure based on their locations and
availability windows, where worker availability windows refer
to the specific time periods during which workers are available
to perform tasks. These windows can vary in duration and
may include specific start and end times. In the constructed
tree structure, workers in sibling nodes are independent, thus
reducing the search space. During the search process, we
utilize a trained Task Value Function to select the optimal
task sequence for workers and adaptively adjust current task
assignments, minimizing the need for multiple backtracking
processes. The DATA-WA framework can handle large vol-
umes of data efficiently, especially in urban areas with high
densities of tasks. Fig. 1 illustrates the task assignment results
by applying DATA-WA, which assigns eight tasks.

Our contributions can be summarized as follows:
1) We identify and study in depth an Adaptive Task Assign-

ment (ATA) problem, considering task demand dynamics and
worker availability in the context of SC.

2) We design a multivariate time series learning method,
called Dynamic Dependency-based Graph Neural Network,
to capture demand dependencies among different regions on
future task demand prediction.

3) We design a demand-based adaptive task assignment
method considering dynamic worker availability windows to
assign tasks.

4) Experimental results demonstrate that our proposed ap-
proaches are both effective and efficient when applied to real
datasets.

The remainder of this paper is organized as follows. The
preliminary concepts and framework overview are introduced
in Section II. We then present the task demand prediction and
task assignment methodology in Section III and Section IV,
respectively, followed by the experimental results in Section V.
Section VI surveys the related work, and Section VII con-
cludes this paper.

II. PROBLEM STATEMENT

We proceed to present necessary preliminaries, define the
problem addressed and then give an overview of our frame-
work. Table I lists the major notations used throughout the
paper.

A. Preliminary

Definition 1 (Task): A Task, denoted by s = (l, p, e), has
a location s.l, a publication time s.p, and an expiration time
s.e.



TABLE I
SUMMARY OF NOTATIONS

Notation Definition
s Spatial task
s.l Location of spatial task s
s.p Publication time of spatial task s
s.e Expiration time of spatial task s
w Available worker
w.l Location of worker w
w.d Reachable distance of worker w
w.on Online time of worker w
w.off Departure time of worker w
S A task set

R(S) A task sequence on tasks in S
VR(w) A valid scheduled task sequence of worker w
Tw Availability window of worker w
∆T Time interval
t(l) Arrival time of location l

c(a, b) Travel time from a to b
td(a, b) Travel distance from a to b

A A spatial task assignment
A A spatial task assignment set

Definition 2 (Worker): A worker can be in an either online
or offline mode. A worker is considered offline when unable
to perform tasks, and online when ready to accept tasks. An
online worker, denoted by w = (l, d, on, off ), consists of a
location w.l, a reachable distance w.d, an online time w.on
and an offline time w.off .

Definition 3 (Task Sequence): Given an online worker w and
a set of assigned tasks Sw, a task sequence on Sw, denoted
as R(Sw), represents the order in which w performs the tasks
in Sw. The arrival time of w at the location of task si ∈ Sw

can be calculated in Eq. 1.

tR,w (si.l) =

{
tR,w (si−1.l) + c (si−1.l, si.l) i > 1

tnow + c (w.l, si.l) i = 1,
(1)

where tR,w (si.l) denoted the arrival time of w at si.l, c(a, b)
denotes the travel time from location a to location b, tnow is
the current time, and w.l denotes the current location of w,
from which w begins to accept the task assignment.

Definition 4 (Valid Task Sequence): A task sequence R(Sw)
is called a valid task sequence for a worker w, denoted as
VR(Sw), if it satisfies the following constraints:

i. all the tasks in this sequence can be completed before
their expiration times, i.e., tR,w(si.l) < si.e, and

ii. all the tasks in this sequence can be completed before the
offtime of worker w, i.e., tR,w(si.l) < w.off , and

iii. all the tasks in this sequence are located in the reachable
range of w, i.e., td(w.l, si.l) < w.d, where td(a, b) is the
travel distance between location a and b.

Definition 5 (Spatial Task Assignment): Given a set of
workers W and a set of tasks S, a spatial task assignment,
denoted by A, consists of a set of (w,VR(Sw)) pairs.

In this work, we follow the single task assignment
mode [15], where each task can be completed by only one
worker, and assume that each worker can perform at most
one task at a time, which is practical. Let A.S denote the
set of tasks that are assigned to all workers, i.e., A.S =

∪w∈WVR(Sw), and A denote all possible ways of assign-
ments. Our problem investigated in our paper can be formally
stated as follows.

Problem Statement. Given a set of tasks S and a set of
workers W , our Adaptive Task Assignment (ATA) problem
aims to find the global optimal assignment Aopt, such that
∀Ai ∈ A, |Ai.S| ≤ |Aopt.S|

Lemma 1: The ATA problem is NP-hard.
Proof 1: The hardness of the ATA problem can be proved by

constructing a polynomial time reduction from the Maximum
Coverage (MC) problem and showing that an solution to ATA
can be reduced to a solution to MC.

In the MC problem, we are given a collection of sets B =
{B1, B2, . . . , Bn} over a set of objects O, where Bi ⊆ O,
and a positive integer k. The MC problem is to find a subset
B′ ⊆ B such that |B′| ≤ k and the number of covered elements
in B′ (i.e., |∪Bi∈B′Bi|) is maximized.

Consider the following instance of our ATA problem. We are
given a collection of task sets VR = {VR1,VR2, . . .VRn}
over a set of tasks S, where VRi ⊆ S. We are also give a set
of k workers, W = {w1, w2, . . . , wk}. Our ATA problem is to
find a subset VR′ ⊆ VR such that

∣∣VR′∣∣ ≤ k and the number
of assigned tasks, i.e., |∪VRi∈VR′VRi |, is maximized.

Given an instance of the MC problem with a collection
of sets B = {B1, B2, . . . , Bn} and a positive integer k, we
construct an instance of the ATA problem, where VR, VRi,
S, and VR′ correspond to B, Bi, O, and B′ in the original
MC instance, respectively. Therefore, the instance of the ATA
problem can be reduced from the instance of MC.

A solution to the ATA problem would select a subset of
workers W ′ ∈ W (|W ′| ≤ |W |) and assign them tasks
VR′ = {VRw1 ,VRw2 , . . . ,VRw|W ′|}, where the task as-
signment maximizes the total assigned tasks. This is directly
equivalent to finding a subset B′ ⊆ B, with |B′| ≤ k, that
maximizes the number of covered elements.

If we can solve the ATA problem instance efficiently (i.e.,
in polynominal time), we can solve a MC problem by trans-
forming it to the corresponding ATA problem instance and
then solve it efficiently. This contradicts the fact that the MC
problem is NP-hard [16], and so there cannot be an efficient
solution to the ATA problem instance that is then NP-hard.
Since the ATA problem instance is NP-hard, the ATA problem
is also NP-hard.

B. Framework Overview

We propose a framework, namely Demand-based Adaptive
Task Assignment with dynamic Worker Availability windows
(DATA-WA), to adaptively assign tasks to workers based on
demand dynamics. We first give an overview of the framework
and then provide specifics on each component in the following
sections.

The innovation of our proposed framework lies in its
consideration of the future task’s demand dynamics. It assigns
a dynamic task sequence to each worker, updating and process-
ing this sequence in real-time to ensure optimal assignment.
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The main challenges involve accurately predicting the spatio-
temporal demand of future tasks and strategically planning
assignments for both current and predicted tasks for current
workers. To address these challenges, we introduce a novel SC
framework with two key components: task demand prediction
and task assignment, as illustrated in Fig. 2.

The first component focuses on predicting future task de-
mands using historical data. We consider the dependency
relationships of task demands across different regions and
employ a multivariate time series learning approach to forecast
future demands. To model these dependency relationships,
we use a demand dependency learning module to estimate
a graph adjacency matrix based on historical data. We then
develop a Dynamic Dependency-based Graph Neural Network
(DDGNN) to capture both spatial and temporal dependencies,
aiding in predicting the locations and times of tasks.

The second component involves planning a suitable task se-
quence for each worker in real-time to achieve global optimal
task assignments. First, in the Worker Dependency Separation
phase, we compute the Maximal Valid Task Sequence for all
workers and construct a worker dependency graph. We then
apply a graph partitioning technique to divide workers into
independent clusters, which are then organized into a tree
structure. Next, we perform a depth-first search algorithm to
traverse the tree and assign the optimal task sequences for each
worker. This data is then used to train a Task Value Function
(TVF). Finally, during the adaptive algorithm phase, we use
the trained TVF to select the optimal task sequence for all
workers and adaptively adjust their task assignments based on
changes in supply and demand. This approach minimizes the
need for multiple backtracking processes, ensuring a global
optimal task assignment.

III. TASK DEMAND PREDICTION

Predicting future dynamic task demands is crucial for dy-
namically adjusting the task sequence for workers to achieve
optimal task assignments. We approach task prediction using a
grid-based method by partitioning the study area into disjoint
and uniform grids. Each grid represents a specific type of
area, such as schools, shopping malls, or food streets, thereby
reflecting real-world scenarios. The historical task data from
multiple grid cells can be treated as a multivariate time
series, which will be detailed in the following preliminaries.

Predicting this multivariate time series is essentially equivalent
to addressing the task demand prediction problem. To address
this, we propose a two-module method to predict future task
demands across different regions. As shown in Fig. 2, the
proposed method consists of a Demand Dependency Learning
Module and a Dynamic Dependency-based Graph Neural
Network (DDGNN), which work together to predict task
demands based on the spatio-temporal distribution of tasks. In
the following sections, we first give some preliminaries and
then detail the two modules.

A. Preliminaries

Task Multivariate Time Series. Unlike models such as
LSTM [17] that only consider one variable, multivariate time
series incorporates multiple variables at each time step [18]–
[20]. Deriving from the multivariate approach, we propose the
Task Multivariate Time Series for multiple grids. In each grid
cell i ∈ {1, . . . ,M}, we define a multivariate time series:
Ci = ⟨ct0i , ct0+k∆T

i , . . . , c
t0+(P−1)k∆T
i ⟩ (we use bold letters

C and c to denotes vectors). It consists of a sequence of
vectors c in increasing time order (starting from time t0), with
each vector having k (user-specified, and k > 1) dimensions.
Each dimension corresponds to the task occurrence in a
specific time interval ∆T , and a binary value (1 for yes, 0
for no) is assigned to each dimension based on whether tasks
occur during this time interval. For example, ct0+(P−1)k∆T

i

has k dimensions, which shows the task occurrence during
the time interval from t0 + (P − 1)k∆T to t0 +Pk∆T , with
each dimension denoting the task occurrence in ∆T . Given a
task set S that occur in cell i during time interval [t0, t0 +
Pk∆T ] (t0 + Pk∆T is the right time boundary of vector
c
t0+(P−1)k∆T
i ), the binary value of j dimension (j ∈ 1, . . . , k)

of vector cti[j] (t ∈ {t0, t0 + k∆T, . . . , t0 +(P − 1)k∆T}) is
defined in Eq. 2.

cti[j] =

{
1 ∃s ∈ S; t+ (j − 1)∆T ≤ s.p < t+ j∆T

0 otherwise
(2)

Then for each vector in the task multivariate time series,
it covers k∆T time intervals. Based on P historical record
vectors in Ci, our goal is to predict the next vector during
time interval from t0 + Pk∆T to t0 + (P + 1)k∆T , i.e.,
ct0+Pk∆T
i .



For example, as shown in Fig. 3, we set k = 3, which
indicates that we consider three time intervals 3∆T for each
vector c. Specifically, between t0 and t0+∆T , there are tasks
published in grid i, resulting in the first dimension of the first
vector being 1. Similarly, for the second dimension in the first
vector, tasks are published between t0 +∆T and t0 + 2∆T ,
so this value is also 1. However, in the third dimension of
the first vector, no tasks are published, yielding a value of
0. Therefore, the time series is represented as a vector c =
⟨1, 1, 0⟩, reflecting the presence of tasks across these three
time intervals.
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Fig. 3. Example of Task Multivariate Time Series (k = 3)

Grid Graph. A grid graph is denoted as G = (V,E), where
V is a set of nodes representing grid cells, and E is a set
of edges representing the task demand dependencies between
these cells. An edge eij = (vi, vj) exists if the task demands
in grid cells vi and vj affect each other. Specifically, if an
increase in task demands in one grid cell (e.g., a region in
a city) leads to a change in task demands in another grid
cell after some time, it indicates a strong dependency between
these cells, and they are connected in the grid graph. For
simplicity, we refer to grid graph as graph when the context
is clear.

Graph Adjacency Matrix. The adjacency Matrix at time
instance t is denoted by At ∈ RM×M , where M is the number
of nodes (grid cells) in graph G. For any two nodes vi and
vj , At

ij = 1 if (vi, vj) ∈ E; At
ij = 0 if (vi, vj) /∈ E.

Dilated Causal Convolution. Dilated Causal Convolu-
tion [21] effectively captures a node’s temporal trends by
allowing an exponentially large receptive field as layer depth
increases. It handles long-range sequences efficiently in a
non-recursive manner. Specifically, given a sequence input
x = {x1, x2, . . . , xJ} and a filter function f(·) ∈ RK (K
is the dimension of filter that is set to 3 in our work), the
output of dilated causal convolution operation of x with f(·)
at step j is represented as follows:

yj =

K−1∑
i=0

f(i) · xj−i·d, (3)

where d is the dilation factor that controls the skipping
distance.

B. Demand Dependency Learning Module.

Tasks across different regions are interconnected, meaning
that changes in task demands in one area can affect those in
others. For instance, in a city, when university classes end,
students often head to a nearby restaurant district, causing an
initial surge in ride requests from the university. Later, when

the students finish dining and socializing, they request rides
home, leading to increased demand in the restaurant district.
This example illustrates how rising demand in one region can
subsequently impact another.

Graph-based methods for capturing relationships between
different observations have become prevalent in multivariate
time series prediction [21], [22]. In this paper, we propose
a dynamic time-based adjacency matrix, At, to represent the
dependencies of task demands across different regions at each
time instance t. We develop a demand dependency learning
module that learns the graph adjacency matrix through end-
to-end learning using stochastic gradient descent.

First, we initialize two node embedding features (i.e., M1

and M2) with neural networks from historical task data
Ct = {ct1, ct2, ..., ctM} at time instance t, where cti denotes
the encoding feature of ith cell at time instance t and M is
the number of grid cells, as illustrated below:

M1 = Fθ1(Ct) (4)

M2 = Fθ2(Ct), (5)

where Fθ is a neural network (e.g., fully connected layer) with
parameters θ.

Second, we designate M1 as the source node embedding
and M2 as the target node embedding. By multiplying M1

and M2, we calculate the spatial dependency weights between
the source nodes and the target nodes in Eq. 6.

At = SoftMax(tanh(M1MT
2 +M2MT

1 )), (6)

where the tanh activation function maps the results to a range
between −1 and 1, and the SoftMax activation function is
applied to normalize the adjacency matrix.
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C. Dynamic Dependency Graph Neural Network

Dilated causal convolution has proven effective in cap-
turing temporal trends [21], [23]. In our proposed Dynamic
Dependency-based Graph Neural Network (DDGNN) model,
we employ dilated causal convolution to identify the temporal



dependencies. Then, we utilize a graph propagation approach
to integrate a node’s information with that of its neighbors,
thereby addressing task demand dependencies within the
graph, as illustrated in Fig 4.

Gating mechanisms are crucial in multivariate time series
forecasting as they regulate the information flow within the
dilated causal convolution network. We utilize dilated causal
convolution to identify the temporal dependencies in cell i, as
represented by Eq. 7.

Zi = tanh(θ1Ci, b1)⊙ σ(θ2Ci, b2), (7)

where θ1, θ2, b1, and b2 are dilated causal convolution param-
eters, ⊙ is the element-wise product, tanh(·) is the activation
function, and σ(·) is the sigmoid function that determines the
proportion of information flow to the next layer.

Next, we use Approximate Personalized Propagation of
Neural Predictions (APPNP) [24] as the propagation layer to
extract a node’s feature by aggregating and transforming its
neighborhood information. The propagation step is defined as
follows:

Z(h+1)
t = αZ(0)

t + (1− α)ÂtZ(h)
t (8)

Z(H)
t = ReLU(αZ(0)

t + (1− α)ÂtZ(h−1)
t ), (9)

where Z(0)
t ∈ RM×k represents the input hidden states at time

instance t output by the previous layer, and Z(H)
t are the output

feature by propagation. The Ât = D̂−1/2(At + I)D̂−1/2 is
the normalized adjacency matrix, where D̂ is the diagonal
degree matrix D̂ii = 1 +

∑
j At

ij , α is a hyper-parameter for
controlling the restart probability, and H defines the number
of power iteration steps and h ∈ [0, H − 2].

After applying the DDGNN approach, we obtain the vector
ct0+pk∆T
i for the ith cell. If ct0+pk∆T

i [j] exceeds a given
threshold (i.e, 0.85 in our experiments), we predict that a task
will be published in the ith cell during the time interval from
t0 + pk∆T to t0 + (p + 1)k∆T . Both predicted and current
tasks are considered in the next task assignment process.

IV. TASK ASSIGNMENT

In this section, we introduce a task assignment compo-
nent designed to address the ATA problem by planning a
dynamically valid task sequence for all available workers. This
component considers current and predicted tasks alongside
worker availability windows to achieve optimal task assign-
ments. Each worker’s availability window reflects the time
periods they are available for task assignments and can change
dynamically due to factors such as breaks, shifts, or unforeseen
circumstances.

We first present the Worker Dependency Separation (WDS)
approach, which uses tree-based graph partitioning to divide
workers into independent clusters and construct a hierarchical
tree structure. A depth-first search algorithm is then employed
to gather optimal results. Additionally, we incorporate a rein-
forcement learning approach to train a Task Value Function
(TVF) based on these optimal results. Finally, we propose an

adaptive algorithm for task assignment that adjusts the allo-
cation of tasks to workers in response to changes in demand
and supply, ensuring the most efficient task distribution.

A. Worker Dependency Separation

The primary computational challenge lies in enumerating
all possible valid task combinations for each worker, leading
to an exponentially expanding search space as the number of
workers and tasks increases. In practice, however, a worker
typically shares tasks with only a limited number of other
workers who have similar or intersecting travel routes. To ad-
dress this issue, we first construct a worker dependency graph
and apply a graph partitioning method. We then organize the
workers within each subgraph into a tree structure, ensuring
that workers in sibling nodes are independent of one another.

1) Maximal Valid Task Sequence Generation: In this sec-
tion, we first find reachable tasks, based on which the maximal
valid task sequences for each worker are generated.

Finding Reachable Tasks. Due to the constraints of work-
ers’ reachable distance, offline time, and tasks’ expiration time,
each worker w can only complete a subset of tasks in their
availability window Tw from the current assignment time to
their offline time. The reachable task subset for a worker
w, denoted by RSw, should satisfy the following constraints:
∀s ∈ RSw,

i. the task can be completed before its expiration time, i.e.,
c(w.l, s.l) ≤ s.e− tnow (where c(a, b) denotes the travel
time between location a and location b, and tnow is the
current time) and

ii. the task can be completed within Tw time interval, i.e.,
c(w.l, s.l) ≤ Tw and

iii. all the tasks in this sequence are located in the reachable
range of w, i.e., td(w.l, s.l) ≤ w.d, where td(a, b) is the
travel distance between location a and b.

Find Maximal Valid Task Sequence. Given the reachable
task set RSw for worker w, we can derive the valid task
sequence set VR(RSw) = {VR(RSw)} (see Definition 4).
When the context is clear, we use VR to denote VR(RSw).
We define the set of Maximal Valid Task Sequences for worker
w as Qw = {q1, q2, . . . , q|Qw|}, where q ∈ VR, and it obtains
the minimal cost among all sequences in VR that consist of
the same set of elements. Specifically, assuming that the order
of q is (s1, s2, ..., s|q|), then ∀VR′ ∈ VR, the arrival time of
both sequence should follow Eq. 10.

tq,w(s|q|) ≤ tVR′,w(s|VR′|), (10)

where the sequences q and VR′ contain the same set of
elements in different orders.

2) Worker Dependency Graph Construction: Given a
worker set W and a task set S, we can construct a Worker
Dependency Graph (WDG), G(W,E), where each node rep-
resents a worker. An edge e(u, v) ∈ E exists between nodes
u and v if the corresponding workers are dependent on each
other. Two workers are considered dependent if they share
the same reachable tasks; otherwise, they are independent.
The time complexity of WDG construction is O(|W |2 · |RS|),



where |RS| is the average number of reachable tasks for each
worker.

3) Graph Partition: In this part, we use the maximum
cardinality search (MCS) algorithm [25] to iteratively find
maximal cliques. MCS consists of the following two steps:

i. Given a worker dependency graph (WDG), add appropri-
ate new edges to create a corresponding chordal graph. A
chordal graph is a graph in which every cycle of four or
more vertices has at least one chord, where a chord is an
edge that connects two non-adjacent vertices in the cycle.

ii. Find all maximal cliques in the chordal graph.
4) Tree Construction: In this step, our objective is to

organize the groups of workers in a tree structure so that the
workers in sibling nodes are independent of each other. This
setup allows us to independently solve the optimal assignment
sub-problem for each sibling node. To achieve this, we use the
following Recursive Tree Construction (RTC) [26] algorithm.

i. Try to remove the cliques Xi ∈ X (generated by the
graph partition step) from the WDG, and the graph will be
separated into several components. Select the cliques X ′

that result in the highest number of components. Consider
X ′ as the parent node for each output of the recursive
procedure in the next step.

ii. Apply the MCS algorithm to each sub-graph by removing
workers of X ′ and recursively applying the algorithm to
the output of the MCS algorithm.

iii. Return X ′ as the root node of this sub-tree.
Given the worker dependency graph WDG, we construct

a tree structure from the RTC algorithm, denoted by Γ(with
a set of nodes NΓ = {N1, N2, ..., N|NΓ|}), that satisfies the
following properties:

i. ∪i∈|NΓ|Ni = W ; and
ii. workers in sibling nodes are independent of each other.

The time complexity of RTC in the ith recursion is O(|Xi|+
|Gi| · (|V i|+ |Ei|)), where |Xi| represents the size of cliques
generated by the graph partition step, Gi is the subgraph set
by performing step 1 in the ith recursion, |Ei| is the number
of edges in the chordal graph obtained and |V i| is the number
of nodes in that chordal graph.

B. Task Value Function Learning

Recursive search can often lead to significant computational
complexity and instability. In Reinforcement Learning (RL),
the value function evaluates the long-term value of a state-
action pair, which is essential for guiding the agent in choosing
the optimal action. To improve task assignment efficiency, we
use a depth-first search method to gather training data and
train a Task Value Function (TVF) based on this data.

In RL, the value function evaluates the long-term value of
a state-action pair. It consists of three parts: state, action, and
reward. In task assignment, the “state” consists of the states of
all remaining workers and tasks (i.e., locations and publication
times). The “action” involves selecting a specific worker and
determining a task sequence for them. The “reward” represents
the assigned number of tasks reflecting the effectiveness of

the task assignment process. The state-action value function
TVF (st, at) represents the expected value of the cumulative
reward that the agent may obtain in the future after performing
action at in state st:

TVF (st, at) = E [V | ST = st, AT = at] , (11)

where V denotes the cumulative reward, and the expectation
is taken over the distribution of possible future states and
rewards.

We explain the depth-first search method, DFSearch , in
Algorithm 1. The algorithm starts by computing the remaining
available workers WC of all nodes excluding WN in the tree
(lines 2–4). If there are still workers to be probed, we will
sequentially examine each available worker in WN (lines 5–6).
We use depth-first-search to determine the optimal assignment
number (line 8) and define the current state as (WN +WC , S)
and action as (w, q), which corresponds to a RL process that
appends current state, action, and reward (i.e., st, at, and opt)
to training data U (lines 9–11). On the other hand, if all the
workers have been considered, the algorithm will initiate the
DFSearch process on each child node of N (lines 15–16).

Algorithm 1: DFSearch
Input : A node N , a set of tasks S, A set of workers WN

Output: opt
1 opt← 0;WC ← ∅;U ← ∅;
2 for each child node Ni of N do
3 WC+←WNi ;
4 end
5 if WN ̸= ∅ then
6 for each worker w ∈WN do
7 for each sequence q ∈ Qw do
8 opt←

max{DFSearch(N,S−q,WN−w)+|q|, opt};

9 st← (WN +WC , S);
10 at← (w, q);
11 U+← (st, at, opt);
12 end
13 end
14 else
15 for each child node Ni of N do
16 opt+← DFSearch(Ni, S,WNi);
17 end
18 end
19 return opt;

During learning, we apply Q-learning [27] updates on
samples (or mini-batches) of experience (st, at, opt), drawn
uniformly at random from the stored samples generated by
DFSearch . The Q-learning update uses the following loss
function:

L (θ) = E(st,at,opt)∼U

[
(opt− TVF (st, at; θ))

2
]
, (12)

where θ are the parameters of the TVF.
The memory consumption for storing all state-action pairs

in Algorithm 1 is O(|U | × (|W | + |S| + |RS|)), where |U |
represents the size of the training data U , and |RS| denotes
the average number of reachable tasks for each worker.



We then use the trained TVF to solve the assignment
problem, referred to as DFSearch TVF , as outlined in Al-
gorithm 2. The inputs include the root node N of the sub-tree
to be traversed, the remaining unassigned task set S, and the
remaining available workers WN at node N . The output is the
assignment result SA within the sub-tree rooted at node N .

The algorithm begins by computing the remaining available
workers, WC , for all nodes in the tree, excluding WN (lines 2–
4). If there are still workers to be probed, we will examine
the first available worker in WN (lines 5–6). We define the
current state as {WN +WC , S} and the action as {w, q}, cor-
responding to reinforcement learning (RL). The value function
TVF is then used to calculate the optimal task sequence qbest ,
which maximizes the reward from the valid task sequence set
Qw (lines 7–8). We then append the best assigned result to
output and recursively call the DFSearch TVF approach by
passing in the updated remaining task set S−qbest and worker
set WN −w (lines 9–10). Conversely, if all the workers have
been counted, the algorithm will initiate the DFSearch TVF
process on each child node of N (lines 12–14).

Algorithm 2: DFSearch TVF
Input : A node N , a set of tasks S, A set of workers WN

Output: SA
1 SA← ∅;WC ← ∅;
2 for each child node Ni of N do
3 WC+←WNi ;
4 end
5 if WN ̸= ∅ then
6 w ←WN [0];
7 st← (WN +WC , S);
8 qbest ← argmaxq∈QW TVF (st, (w, q));
9 SA+← {w, qbest};

10 SA+← DFSearch TVF (N,S − qbest,WN − w);
11 else
12 for each child node Ni of N do
13 SA+← DFSearch TVF (Ni, S,WNi);
14 end
15 end
16 return SA;

C. Adaptive Algorithm

In SC, tasks and workers are continuously changing and
moving, requiring real-time updates and processing to ensure
optimal assignment. This section describes the procedure of
an adaptive algorithm that adjusts the task assignment based
on current and predicted tasks, responding to fluctuations in
supply and demand.

Algorithm 3 outlines the complete process of the adaptive
algorithm. The input is a continuous stream of arriving workers
and tasks, and the output is the corresponding assignment
result. When a worker or task appears on the platform,
the optimal task planning assignment PA is calculated by
Algorithm 4 to achieve the global maximum revenue based
on current and future tasks (lines 3–9). For each idle worker,
the first task in their current planned sequence is executed
(lines 10–14). Finally, we remove all workers and tasks with
past deadlines, as well as completed tasks (line 15).

Algorithm 3: Adaptive Algorithm
Input : A stream of arriving objects {δi|δi ∈ {w, s}}
Output: Task assignment A

1 PA← ∅;A← ∅;W ← ∅;S ← ∅;
2 for each arrive object δ do
3 if δ is a worker then
4 W ←W + δ;
5 PA← TPA(W,S);
6 else
7 S ← S + δ;
8 PA← TPA(W,S);
9 end

10 for {wi,VR(wi)} ∈ PA do
11 if wi is ready to accept tasks and len(VR(wi)) ≥ 1

then
12 A.wi ← A.wi +VR(wi)[0];
13 end
14 end
15 Remove all workers/tasks whose deadlines have passed

and completed tasks;
16 end
17 return A;

Algorithm 4: Task Planning Assignment (TPA) Algo-
rithm

Input : A set of workers W , a set of tasks S
Output: PA

1 opt← 0;PA← ∅;
2 for each worker w ∈W do
3 RSw ← compute the reachable tasks for w;
4 Qw ← compute the set of maximal valid task sequences

for w;
5 end
6 G← construct worker dependency graph;
7 for each connected graph g ∈ G do
8 Xg ← decompose g into vertex cluster;
9 Ng ← organize Xg into a tree;

10 PA+← DFSearch TVF (Ng, S,WNg );
11 end
12 return PA;

Next, we elaborate on the details of the task planning
assignment in Algorithm 4. The inputs are the worker set W
and the task set S. The output is the optimal task planning
assignment PA, which aims to maximize the total expected
revenue from both current and future tasks. We compute the
reachable task set RSw and the set of maximal valid task
sequence Qw for each worker w (lines 3–4), followed by
constructing the worker dependency graph (line 6). Then, for
each connected component g ∈ G, we decompose g into a
set of vertex clusters using the MCS algorithm (line 8) and
organize them into a tree with the RTC algorithm (line 9).
Finally, we apply the DFSearch TVF algorithm to find the
optimal assignment for each sub-problem (line 10). Finally,
we can get the optimal task assignment (line 12).

V. EXPERIMENTAL EVALUATION

In this section, we conduct experiments to evaluate the
effectiveness and efficiency of our proposed methods on two



real datasets. All the experiments are implemented on an AMD
Ryzen 7 CPU 3.20 GHz with 16GB RAM.

A. Experimental Setup

The experiments are conducted using two ride-hailing
datasets: Yueche and DiDi1. For the Yueche dataset, generated
between 9:00 and 11:00 on November 1st, 2016, each worker
and task is associated with key information such as location,
start time, due time, and the worker’s reachable distance.
The DiDi dataset has a similar information description akin
to the Yueche dataset but covers the period from 21:00 to
23:00 on November 1st, 2016. In both datasets, the driver
and passenger matches are used to simulate our problem,
where we assume that passengers are tasks and drivers are
workers in the SC system since drivers who pick up passengers
at different locations may be good candidates to perform
spatial tasks in the vicinity of those locations. The locations
of workers correspond to where they are informed to pick
up passengers. For each passenger, we use the location of
the passenger and the time of the pick-up request as the
task’s location and publication time, respectively. We use the
data from the preceding hour (i.e., from 8:00 to 9:00 in
DiDi dataset and from 20:00 to 23:00 in Yueche dataset)
as historical data to train the task demand prediction model.
Table II provides detailed information about these two real
datasets, and Table III shows our experimental settings, where
the default values of all parameters are underlined.

TABLE II
REAL DATASETS

Dataset |W | |S| Time range Region
Yueche 624 11,052 9:00 - 11:00 Chengdu
DiDi 760 8,869 21:00 - 23:00 Chengdu

TABLE III
EXPERIMENT PARAMETERS

Parameters Values
Time interval ∆T (s) 5, 6, 7, 8, 9
Number of tasks |S| (Yueche) 7K, 8K, 9K, 10K, 11K
Number of tasks |S| (DiDi) 5K, 6K, 7K, 8K 9K
Number of workers |W | (Yueche) 200, 300, 400, 500, 600
Number of workers |W | (DiDi) 300, 400, 500, 600, 700
Reachable distance of workers (km) 0.05, 0.1, 0.5, 1, 5
Available time of workers off − on (h) 0.25, 0.5, 0.75, 1, 1.25
Valid time of tasks e− p (s) 20, 40, 60, 80, 100

B. Experimental Results

1) Performance of Task Demand Prediction: We evaluate
the performance of the task demand prediction phase and its
impact to the subsequent task assignment. We choose 80%
location data of workers/tasks for training and 20% for testing.

Evaluation Methods. We study the performance of the
following methods.

i. LSTM [17]: A Long Short-Term Memory model featuring
a fully connected layer and an activation function.

ii. Graph-Wavenet [22]: A spatial-temporal graph convolu-
tional network, which integrates diffusion graph convolu-
tions with 1D dilated convolutions.

iii. DDGNN: Our Dynamic Dependency Graph Neural Net-
work, which is based on multivariate time series learning.

1https://github.com/Yi107/Dataset-for-PCOM

Metrics. To evaluate the accuracy of task demand pre-
diction, we adopt the metric, Average Precision (AP), an
important indicator used to measure the overall performance
of the predictor at different thresholds. AP is calculated based
on Precision and Recall. Precision is the ratio of correctly
predicted positive examples (true positives) to all predicted
positive examples, denoted by Precision = TP

TP+FP , where
TP denotes the number of true positives and FP denotes
the number of false positive examples. Recall is the ratio
of correctly predicted positive examples to all actual positive
examples, denoted by Recall = TP

TP+FN , where FN denotes
the number of false negative examples. To calculate AP, we
calculate Precision and Recall at each threshold and then
integrate the area under the Precision-Recall curve to get the
AP value. The accuracy threshold is generated from the range
[0, 1] with the initial value 0 and step 0.01, which means the
threshold is 0, 0.01, 0.02, ..., 1. We also evaluate the efficiency,
including the training and testing time.
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Fig. 5. Performance of Task Demand Prediction: Effect of ∆T

on Yueche
Effect of ∆T . In the first set of experiments, we vary

the time interval ∆T and study its effect on task demand
prediction. As shown in Figs. 5(a) and 6(a), the average
precision for all approaches shows a similar increasing trend
as ∆T grows. Regardless of the time intervals, DDGNN
consistently achieves the highest average precision, followed
by Graph-Wavenet and LSTM in both Yueche and DiDi
datasets, which demonstrates the superiority of DDGNN for
predicting task demand. The task assignment results of all
methods are not affected by the time intervals, as shown in
Figs. 5(b) and 6(b). However, the assignment results heavily
depend on the average precision for a specific ∆T , as higher
average precision generally correlates with more accurately
predicted tasks. DDGNN outperforms all other methods across
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Fig. 6. Performance of Task Demand Prediction: Effect of ∆T

on DiDi
all values of ∆T , confirming the effectiveness of our proposed
algorithm. In Figs. 5(c) and 6(c), the training time decreases
with longer time interval ∆T , due to the corresponding
reduction in training data. Figs. 5(d) and 6(d) show that the
testing time remains constant across different time intervals,
because the model parameters are fixed.

2) Performance of Task Assignment: In this section, we
evaluate the effectiveness and efficiency of the task assignment
algorithms.

Evaluation Methods. We study the following methods.
i. Greedy: The Greedy task assignment method that assigns

each worker the maximal valid task set from the unas-
signed tasks until all the tasks are assigned or all the
workers are exhausted.

ii. FTA: The Fixed Task Assignment method that involves
assigning each worker a fixed, predetermined sequence
of tasks to be completed in order while satisfying spatio-
temporal constraints, which utilizes the worker depen-
dency separation and DFSearch techniques for task as-
signments.

iii. DTA: The Dynamic Task Assignment method that dy-
namically adjusts the task sequence for each worker in
real-time according to the spatio-temporal distributions
of workers and tasks, without relying on prediction,
which also employs the worker dependency separation and
DFSearch techniques to refine task assignments.

iv. DTA+TP: The DTA method that assigns tasks based on
the task demand prediction.

v. DATA-WA: The DTA+TP method integrates the task
value function (TVF) into task assignment.

Metrics. Two main metrics are compared for the above
methods, i.e., the total number of assigned tasks and CPU
time for finding task assignments. Specially, the CPU time is
the average time cost of performing task assignment at each
time instance.

Effect of |S|. To study the scalability of the compared
methods, we generate five datasets containing 7,000 to 11,000
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Fig. 7. Performance of Task Assignment: Effect of |S|

tasks by randomly selecting from the Yueche dataset and five
datasets containing 5,000 to 9,000 tasks from the DiDi dataset.
In Figs. 7(a) and 7(c), as |S| increases, it is more likely
that each worker will be assigned more tasks, resulting in an
increase in the number of assigned tasks across all methods
for both the Yueche and DiDi datasets. DTA+TP outperforms
the others, demonstrating the effectiveness of our proposed
method. In terms of CPU cost, as shown in Figs. 7(b) and 7(d),
the CPU time for DTA, Greedy and FTA remains relatively
constant regardless of |S|. However, for the DTA+TP and
DATA-WA methods, the CPU time exhibits an increasing trend
with |S| due to the need to search more tasks. DATA-WA
achieves a similar number of assigned tasks as DTA+TP with
less computation, highlighting the effectiveness of RL-based
optimization.

Effect of |W |. To study the effect of |W |, we generate five
datasets containing 200 to 600 workers by random selection
from the Yueche dataset and five datasets containing 300 to
700 workers from the DiDi dataset. In Figs. 8(a) and 8(c), as
|W | increases, more tasks can be assigned to more workers.
Thus, the number of assigned tasks of all methods increases
in both Yueche and DiDi datasets. DTA+TP results in the
highest number of assigned tasks, followed by DATA-WA,
DTA, FTA and Greedy. DTA assigns more tasks than FTA
since workers can adjust their task sequence when demand
and supply change. Although DTA+TP assigns more tasks
than DATA-WA, it is more time-consuming than DATA-WA,
as shown in Figs. 8(b) and 8(d). The CPU time of DATA-WA
is only 42.4%–65.7% of that of DTA+TP. Greedy is the fastest
algorithm and is almost unaffected by |W |, but it assigns the
fewest tasks. Although Greedy and FTA are more efficient
than our proposed approaches, they assign fewer tasks. DATA-
WA achieves the best balance between task assignment and
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computational cost compared to other methods.
Effect of d. We also study the effect of workers’ reachable

distance d. As shown in Figs. 9(a) and 9(c), the numbers of as-
signed tasks generated by all methods have a growing tendency
as d increases. This is due to the fact that workers with larger
reachable distances have more available task assignments.
However, we also notice that the effect of d becomes less
significant on all methods when d is greater than or equal to 0.5
km, indicating that the methods remain unaffected beyond this
threshold. In addition, when d exceeds 0.5 km, DTA+TP and
DATA-WA outperform the others, demonstrating the effective-
ness of our proposed algorithms again. In Figs. 9(b) and 9(d),
the CPU cost of all approaches increases with larger reachable
distances. This is because that the number of available tasks
to be assigned in a given time instance grows when d gets
larger, leading to longer computational cost.

Effect of off−on . We further evaluate the effect of workers’
available time. As shown in Figs. 10(a) and 10(c), the number
of assigned tasks of all methods gradually increases as the
available time of workers increases. This is because that more
workers are available for each task. DTA+TP and DATA-WA
achieve similar numbers of assigned tasks, but DATA-WA has
significantly lower CPU time compared to DTA+TP, as shown
in Figs. 10(b) and 10(d). This reduction in CPU time is due
to the task value function minimizing multiple backtracking
processes. In addition, the CPU time for all methods gradually
increases since the number of available workers for each task
increases, resulting in a more extensive search space.

Effect of e−p. We then analyze the impact of the valid time
e−p of tasks. As shown in Figs. 11(a) and 11(c), the number of
assigned tasks increases across all methods as the valid time
extends. This is because tasks have a higher probability of
being assigned to suitable workers when they have more valid
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time. Similar to the previous results, our proposed DTA+TP
and DATA-WA outperform the others, which confirms the
superiority of our proposals. In Figs. 11(b) and 11(d), the CPU
times for all approaches increase with longer task valid times,
due to the higher number of worker-task assignments.

VI. RELATED WORK

Spatial Crowdsourcing (SC) is an innovative form of crowd-
sourcing that utilizes smart device carriers as workers who
travel to specific locations to complete spatial tasks [6],
[26], [28]–[41]. SC can be categorized based on the task
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publication mode into Server Assigned Tasks (SAT) mode
and Worker Selected Tasks (WST) mode. In SAT mode,
the server assigns tasks to nearby workers with the aim of
optimizing system performance. This includes objectives such
as maximizing the total number of tasks assigned [6], [26] or
maximizing the overall payoff from these assignments [33],
[34]. Research in this area has also explored factors like
worker preference [5], fairness [34], social networks [42]–[44],
and worker cooperation [45] in task assignment. Ye et al. [46]
propose a reinforcement learning based method to achieve the
task allocation, and propose a graph neural network method
with the attention mechanism to learn the embeddings of
allocation centers, delivery points and workers. Zhao et al. [47]
utilize graph convolutional network to model the geographical
distance between out-of-town POIs, generating the out-of-
town POI embeddings and to learn workers’ out-of-town
preferences. Wang et al. [48] propose a novel communication-
based multi-agent deep reinforcement learning method for data
acquisition in urban environments. Rao et al. [49] propose
an online framework by extending multi-agent reinforcement
learning with careful augmentation to optimize the profit of
order-serving and the data utility of crowdsensing.

However, most of the research conducted so far is based on
the assumption of static offline scenarios, where the demand
and supply between workers and tasks are known a prior.
These studies focus on immediate task assignments, often
struggling to adapt to the rapid and unpredictable changes
in task demand and worker availability. This highlights the
urgent need for further exploration and innovation in this field
to ensure optimal task assignments over the long term.

However, SC is a real-time platform where workers and
tasks occur dynamically. Recent studies consider task and
worker prediction to solve online task assignment problems
in SC. Zhai et al. [50] propose a novel deep learning model to

address the task prediction problem, which captures the tem-
poral dependencies of historical task appearance in sequences
at several time scales. Wei et al. [12] propose a location-and-
preference joint prediction model to predict workers’ locations
and preference jointly at each timestamp. They also design
a greedy multi-attribute joint task assignment algorithm to
maximize the average number of completed tasks under con-
straints. Peng et al. [7] introduce a spatio-temporal prediction
strategy that combines a gated recurrent unit and a variational
autoencoder for crowdsourcing task prediction. However, the
previous studies only concentrate on predicting task distribu-
tion, neglecting task demand dynamics, which is essential for
accurately forecasting the spatio-temporal distribution of tasks.

To solve the problem of task demand prediction, Yang et
al. [51] divide supply and demand into five degrees and use
a Markov Predictor to predict the future degree of supply
and demand. However, they do not consider the demand
dependency in different regions, which is essential for predict-
ing task demand. The closest related research to ours is the
work [6], which hybrids different learning models to predict
the locations and routes of future workers and employs a graph
embedding approach to estimate the distribution of future tasks
but assigns each worker a fixed task sequence. However, in this
work, we predict future task demands and update the assigned
task sequence in real time for workers to ensure optimal task
assignment over long time.

VII. CONCLUSION

We propose and offer solutions to a problem termed Adap-
tive Task Assignment (ATA) in spatial crowdsourcing (SC),
which aims to maximize the number of assigned tasks by dy-
namically adjusting task assignments in response to changing
demand and supply. An SC framework, namely Demand-based
Adaptive Task Assignment with dynamic Worker Availability
windows (DATA-WA), is proposed. It consists of two phases:
task demand prediction and task assignment. To the best of
our knowledge, our approach is the first to consider the depen-
dency relationships between task demands in different regions.
We employ a multivariate time series learning approach to
predict future task demands and then adjust task assignments
based on real-time and predicted task demand dynamics, as
well as dynamic worker availability. An empirical study on
real data confirm that our proposed framework significantly
improves the effectiveness and efficiency of task assignment.
In our future studies, we plan to extend our validation by
conducting experiments with human participants or other real-
world datasets to understand how our solutions perform in
practical scenarios.
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