
Exact and Efficient Similar Subtrajectory Search:
Integrating Constraints and Simplification

Liwei Deng1, Fei Wang1, Tianfu Wang2, Yan Zhao1,B, Yuyang Xia1, Kai Zheng1,B

1University of Electronic Science and Technology of China, China
2University of Science and Technology of China, China

{deng liwei,xiayuyang}@std.uestc.edu.cn, phinnwang@gmail.com, tianfuwang@mail.ustc.edu.cn,
yanz@cs.aau.dk, zhengkai@uestc.edu.cn

Abstract—Similar subtrajectory search (SimSub) aims to find
a subtrajectory (i.e., a segment) from a data trajectory (the
trajectory to be queried) that closely resembles the query
trajectory. Compared with similar trajectory search, SimSub
can capture finer-grained similarity and is vital for various
trajectory analysis tasks, such as trajectory clustering and join.
However, SimSub may return a subtrajectory with extremely
limited length, e.g., a single point, which may not align with the
expectations of real-world applications. To solve this issue, we
propose a constrained SimSub (cSimSub) problem, where the
length of the returned subtrajectory must be greater than or
equal to a user-specified integer C. We demonstrate that this
problem can be solved exactly with a time complexity equivalent
to C times the complexity of the trajectory distance measurement,
given that the distance function can be computed using dynamic
programming (DP). We also observe that when C = 1, the
solution of cSimSub differs from the vanilla trajectory distance
computation (e.g., DTW) only in the state initialization of the DP
matrix. Moreover, SimSub focuses on finding a subtrajectory with
successive point indexes, which limits its applicability in certain
scenarios, e.g., trajectory simplification. Thus, we extend it to
sSimSub for trajectory simplification, aiming to find the most
similar non-continuous subsequence of a trajectory to itself, with
a length constraint of C. The subsequence, i.e., the simplified
subtrajectory, obtained from sSimSub can achieve the best self-
similarity. We conduct experiments on three public available
datasets to demonstrate the effectiveness of the proposals. The
results show that integrating sSimSub into typical query methods,
e.g., KNN query, can achieve higher accuracy of these methods in
simplified trajectory databases compared with other well-known
trajectory simplification algorithms.

Index Terms—Similar Subtrajectory Search, Dynamic Pro-
gramming, Constraint, Trajectory Simplification

I. INTRODUCTION

The prevalence of GPS-enabled devices and wireless com-
munication technologies generates massive trajectories, which
provides an opportunity for better understanding human mo-
bility patterns and stimulating a large number of trajectory
analysis tasks, such as route recommendation [1], trajectory
clustering [2]–[5] and location prediction [6]–[10]. In these
tasks, searching similar trajectories for a given query in a large

B Corresponding authors: Yan Zhao and Kai Zheng. Yan Zhao is with
Shenzhen Institute for Advanced Study, University of Electronic Science and
Technology of China. Kai Zheng is with Yangtze Delta Region Institute
(Quzhou), and School of Computer Science and Engineering, University of
Electronic Science and Technology of China.

trajectory database is an indispensable way to turn the blunt
information into knowledge. However, most of the existing
similar trajectory search studies treat a trajectory as a whole,
which ignore the fine-grained similarity between trajectories,
i.e., they fail to measure the similarity between trajectories at
segment-level. To solve this problem, the similar subtrajectory
search (SimSub) problem is studied recently [11], [12]. It
aims to find a subtrajectory (i.e., a segment) from a given
data trajectory (i.e., a trajectory to be queried), which is
most similar to the query trajectory compared with the other
subtrajectories in the data trajectory.

Searching similar subtrajectories is a basic unit for many
applications, such as subtrajectory clustering [3]–[5], [13]
and subtrajectory join [14]. A naive solution to the SimSub
problem is to enumerate all possible subtrajectories from the
data trajectory and then returns the most similar one to the
query trajectory. Despite its simplicity, the time complexity
O(mn3) is often unacceptable, where m and n denote the
lengths of the query and data trajectories, respectively. To
be more efficient, a previous study [11] proposes several
approximation algorithms to balance the searching accuracy
and efficiency. Specifically, they utilize reinforcement learn-
ing methods to examine the points in the data trajectory
sequentially and determine whether to perform a split op-
eration at each point, which achieves a time complexity of
O(mn). However, these methods lack a theoretical guarantee
regarding the accuracy of the searched subtrajectory. A recent
study [12] proposes an exact algorithm, called conversion-
matching algorithm (CMA), to solve the SimSub problem. Its
main idea is to find the optimal subtrajectory by computing
the minimum cost of converting the query trajectory into the
data trajectory, which achieves the time complexity of O(mn)
for many trajectory distance functions, such as weighted edit
distance (WED) and dynamic time warping (DTW). Despite
its efficiency in solving the SimSub problem, we notice that
the length of the returned subtrajectory can be extremely
limited, e.g., one point, which may not be expected for many
real applications, e.g., subtrajectory clustering. To solve this
problem, we extend the SimSub problem to a more general
case, i.e., constrained SimSub (cSimSub), where a user can
specify a minimal length C of the returned subtrajectory.
It should be noted that when C is set to 1, cSimSub will

degenerate to the original SimSub problem. To exactly solve
the cSimSub problem, we propose an algorithm based on
dynamic programming (DP) and theoretically show that our
method works in a time complexity of O(Cmn) as long
as the trajectory distance can be implemented in a dynamic
programming way.

Furthermore, in practice, two challenging concerns in tra-
jectory analysis are storing [15]–[20] and query [21]. These
problems can be effectively solved by trajectory simplification,
where the non-informative points in the original trajectory are
deleted. However, most of the existing studies ignore the effect
of trajectory simplification in terms of query accuracy, i.e.,
queries run on a simplified database may yield different results
compared to queries on the original database. In this study, we
extend the SimSub problem to sSimSub for trajectory simpli-
fication, which aims to find the most similar subsequence of
a trajectory to itself, with a specified length C. Through the
preservation of self-similarity, we empirically show that solv-
ing sSimSub yields superior query accuracy for KNN queries
compared to previous trajectory simplification algorithms like
Top-Down [22], Bottom-Up [23], and RLTS [24].

To summarize, we make the following contributions:
• We extend the SimSub problem to encompass a more gen-

eral case, termed cSimSub, and propose an exact algorithm
to solve it. We theoretically show that our method operates
with a time complexity of O(Cmn) for the majority of
trajectory distance metrics, provided these metrics can be
implemented in a dynamic programming way.

• We formulate a new problem definition, called sSimSub,
aiming at performing trajectory simplification. By solving
the sSimSub problem, we aim to derive a simplified trajec-
tory that closely resembles to the original trajectory.

• We conduct extensive experiments on three publicly avail-
able datasets to verify the superiority of our proposed meth-
ods. The results show that solving sSimSub for trajectory
simplification leads to better query accuracy in KNN query
experiments.

Organization. We review the related work in Section II and
provide preliminaries and the problem definition in Section III.
Section IV presents our algorithms to solve the cSimSub
and sSimSub problem. We report the experimental results in
Section V and conclude this paper in Section VI.

II. RELATED WORK

Trajectory Similarity Measurement. Measuring the sim-
ilarity between trajectories is a crucial aspect of various
trajectory analysis tasks and applications [25]–[33], which is
to effectively determine the resemblance between two trajecto-
ries [34]. Traditionally, classical solutions follow a matching-
and-measurement paradigm, such as DTW [35], LCSS [36],
EDR [37], and Frechet [38]. These methods aim to find the
optimal alignment through dynamic programming and quan-
tify the dissimilarity between corresponding points. Recently,
learning-based algorithms are proposed to accelerate similarity
computation [34], [39]–[47]. For example, Yao et al. [48]
utilize deep-metric-learning to approximate existing similarity

measures. Fang et al. [49] employ deep attentive networks
to learn a spatio-temporal trajectory similarity metric in road
networks. Han et al. [44] propose GTS that enhances the
learned embeddings on the road network with POI information
and GNN. Zhang et al. [45] propose Traj2SimVec, which
incorporates the matching information of the ground-truth
measurement as an auxiliary supervision to train a better neural
networks. In this study, we only focus the exact solution
of the SimSub problem and its variants. Thus, we only
utilize the classical measurements computed using dynamic
programming as our distance functions.
Subtrajectory Search. A previous study [50] focuses on
finding the most similar subtrajectory from a whole database.
They propose a two-phases algorithm comprising filtering
and verification. The filtering phase prunes trajectories whose
distance from the query trajectory exceeds a predefined thresh-
old, while the verification phase identifies the most similar
subtrajectory from each searched trajectory. It should be noted
that all candidate subtrajectories within the searched trajectory
need to be checked. Another line of research [11], [12],
[51] aims to accelerate the verification phase, where given a
query and data trajectory, the goal is to find the most similar
subtrajectory from the data trajectory. For example, Wang et
al. [11] propose algorithms, e.g., ExactS, RLS, and RLS-Skip,
to speed up the search process within a data trajectory. Specifi-
cally, ExactS enumerates all possible candidate subtrajectories
and incrementally computes the similarity of subtrajectories
with the same prefix, which can solve the SimSub problem
exactly with a time complexity of O(mn2). RLS and RLS-
Skip are approximation algorithms that utilize reinforcement
learning to select appropriate splitting points, enhancing search
efficiency. Recently, Jin et al. [12] propose a conversion-
matching algorithm to exactly solve the SimSub problem
with time complexity of O(mn) for many trajectory distance
measurements, such as WED and DTW, which aims to find the
conversion-matching path with minimum cost for converting
the query trajectory into the data trajectory. However, CMA
is not applicable to certain trajectory distance measurements
like LCSS and LORS and needs to define numerous transition
cost functions for each measurement. Furthermore, despite
significant efforts in subtrajectory search, we should note that
existing solutions of the SimSub problem do not guarantee the
quality of the returned subtrajectory in terms of its length.
Trajectory Simplification. The increasing volume of trajec-
tory data introduces the challenges in terms of storing [15]–
[17] and query [21]. Trajectory simplification [21]–[24], [52]
offers a solution by dropping points from trajectories, thus
lowering the storage cost and expediting query processing.
Existing methods typically assume a storage budget and aim to
produce simplified trajectories to minimize the difference from
the original trajectory [21]. For example, Top-Down [22] starts
from the first and last points and then repeatedly inserts points
with the greatest error, measured by distance functions, such as
SED [53], [54], PED [55], [56], and DAD [57], [58], until the
predefined budget is exhausted. Conversely, Bottom-Up [23]
scans all points of the input trajectory, iteratively discarding

TABLE I
NOTATION TABLE

Notation Explanation
pi, qi A trajectory sample point
E(qi, pj) The Euclidean distance between two

sample points qi and pj
T A trajectory
Tq A query trajectory with length m
Td A data trajectory with length n
T [i, j] A subtrajectory starts from i and ends at j
T [i1, i2, · · · , ik] A subsequence of trajectory T with length k,

in which points pi1 , · · · , and pik are included
Θ(·, ·) An abstract trajectory distance or similarity

measurement, which can be instantiated
with a concrete measurement, such as DTW,
Frechet, and LCSS

C A user-specified positive integer
P A matrix in Rm×n to record the starting

point for each cell of the DP matrix

points with the smallest error. Recently, with the prevalence
of reinforcement learning (RL), advanced approaches based
on RL have emerged [21], [24], [59]. For example, Wang
et al. [24] adopt the Bottom-Up strategy and discard points
based on a learned policy rather than relying on heuristic
rules as seen in previous studies. Despite its effectiveness
in reducing storage cost, trajectory simplification can com-
promise query accuracy; for instance, the results of KNN
query from original and simplified databases often differ. Few
studies consider query accuracy when performing trajectory
simplification. In this study, we extend the SimSub problem
to the sSimSub problem for trajectory simplification. Solving
the sSimSub problem aims to optimize the similarity between
the simplified trajectory and its original trajectory. Notably, our
empirical findings demonstrate that maintaining self-similarity
can achieve better query accuracy in terms of KNN queries
compared with classical trajectory simplification methods.

III. PRELIMINARIES

We first formalize the problem of cSimSub and sSimSub
and then introduce trajectory similarity measurement that we
exploit in the proposed framework. To make the content more
clear, we conclude the main notations used in this paper in
Table I.

A. Problem Statement

Definition 1 (Trajectory). A trajectory T with length n is a
sequence of points, denoted as <p1, p2, · · · , pn>, in which
pi = (xi, yi, ti) means that the location is (xi, yi) at time ti.

Definition 2 (Subtrajectory). Given a trajectory T and 1 ≤
i ≤ j ≤ n, a subtrajectory is denoted as T [i, j], which is a
portion of T that starts from the i-th point and ends at the
j-th point, i.e., T [i, j] =< pi, pi+1, · · · , pj >.

Problem 1 (Similar Subtrajectory Search (SimSub) [11]).
Given a data trajectory (the trajectory to be queried) Td

with length n and a query trajectory Tq with length m, the
SimSub problem is to find a subtrajectory of Td, denoted as
T [i∗, j∗] (1 ≤ i∗ ≤ j∗ ≤ n), which is most similar to

Tq according to a trajectory distance measure Θ(·, ·), i.e.,
T [i∗, j∗] = argmin1≤i≤j≤n Θ(Tq, Td[i, j]).

From the definition of SimSub, we can observe that there
is no quality guarantee in terms of the length of the resulting
subtrajectory. Thus, the subtrajectory returned could consist of
just one point. This may be unexpected for some applications.
To deal with this situation, we extend the SimSub problem to
a more general case as follows.

Problem 2 (Constrained SimSub (cSimSub)). Given a data
trajectory Td, a query trajectory Tq , and a user-specified
integer C, the cSimSub problem is to find a subtrajectory,
T [i∗, j∗], which is most similar to Tq according to a trajectory
distance measure Θ(·, ·), in which j∗−i∗+1 ≥ C. It should be
noted that when C equals 1, the cSimSub problem will reduce
to the SimSub problem.

An intuitive solution to answer a user’s query to the whole
database is to scan the data trajectories, solve the SimSub
problem for each data trajectory, and update the most similar
subtrajectory found so far. This solution can be improved
through incorporating advanced indexing techniques [60],
[61], e.g., Grid-Based Pruning (GBP) [12] and Key Points
Filter (KPF) [12], to prune unpromising trajectories. It should
be noted that these pruning techniques are independent of the
solution to the SimSub problem. In this study, our focus lies
on solving the SimSub and its variants without developing
pruning algorithms.

Indeed, the SimSub problem can be regarded as a spe-
cial case of trajectory simplification, where both Tq and
Td represent the same trajectory T to be compressed. The
returned subtrajectory can be treated as the simplified version
of the original trajectory. However, there are two issues from
the original SimSub problem if it is applied to trajectory
simplification. First, the subtrajectory derived from SimSub
is a successive portion of the entire trajectory, leading to a
significant loss of information. Second, trajectory simplifica-
tion cannot be achieved through solving the origin SimSub
problem since it would simply return the entire trajectory T
itself, meaning that the most similar subtrajectory of T is T .
To achieve the goal of simplification, we modify the SimSub
problem as follows.

Definition 3 (Subsequence). Given a trajectory T with length
n and 1 ≤ i1 < i2 < · · · < ik ≤ n, a subsequence with
length k is denoted as T s[i1, · · · , ik] =< pi1 , pi2 , · · · , pik >.
It should be noted that the indexes do not necessarily need
to be consecutive. For example, pi2 and pi1+1 may not be the
same point, meaning that i2 may not be equal to i1 + 1.

When < pi1 , pi2 , · · · , pik > is clear from the context, we
use T s to denote T s[i1, · · · , ik].

Problem 3 (SimSub for Trajectory Simplification (sSimSub)).
Given a compression ratio r and a trajectory T with length
N to be compressed, the sSimSub problem is to find a
subsequence T s with length C, where C = ⌊N ∗ r⌋ and
T s is the most similar subsequence to T according to tra-

jectory distance measurement Θ(·, ·), i.e., T s[i1, · · · , iC] =
argmin1≤i1<···<iC≤n Θ(T, T s). Moreover, inspired by previ-
ous trajectory compression studies [22]–[24], the first and the
last points are preserved in the compressed trajectory, i.e.,
i1 = 1 and iC = n.

According to the definition of sSimSub, it is obvious that
the compressed trajectory Ts obtained by solving the sSimSub
problem can achieve optimal self-similarity under the user-
specified similarity measurement. In this study, we empirically
investigate whether preserving self-similarity in trajectory
compression can enhance query accuracy, specifically in terms
of KNN queries. A KNN query takes a query trajectory Tq as
a parameter and returns a set of k trajectories (denoted by R)
such that ∀Ti ∈ R, ∀Tj ∈ D − R, Θ(Tq, Ti) ≤ Θ(Tq, Tj),
where Θ(·, ·) represents a trajectory distance measure.

B. Trajectory Similarity Measurement

The SimSub problem and its variants assume an abstract
trajectory distance measurement, in which any existing mea-
surements can be applied. In this study, we only consider tra-
ditional measurements that can be computed through dynamic
programming, such as DTW [35], LCSS [36], Frechet [38],
and EDR [37]. To make the whole manuscript self-contained,
we briefly introduce three well-known trajectory distance
measurements as follows.
DTW [35]. Given a query trajectory Tq =< q1, q2, · · · , qm >
and a data trajectory Td =< p1, p2, · · · , pn >, the DTW
distance is defined as below:

Di,j =



j∑
h=1

E(q1, ph) if i = 1

i∑
h=1

E(qh, p1) if j = 1

E(qi, pj) + min{Di−1,j−1, Di−1,j , Di,j−1} otherwise
(1)

where Di,j represents the DTW distance between Tq[1, i]
and Td[1, j], and E(qi, pj) is the Euclidean distance between
points qi and pj . Usually, E(·, ·) can be computed in time
complexity of O(1). Thus, the time complexity of DTW is
O(mn).
Frechet [38]. Given a query trajectory Tq and a data trajectory
Td, the Frechet distance is defined as below:

Di,j =



j
max
h=1

E(q1, ph) if i = 1

i
max
h=1

E(qh, p1) if j = 1

max{E(qi, pj),min{Di−1,j−1, Di−1,j , Di,j−1}}
otherwise

(2)

where Di,j represents the Frechet distance between Tq[1, i]
and Td[1, j]. The time complexity of Frechet is equivalent to
that of DTW.
LCSS [62]–[64]. Given a query trajectory Tq =<
q1, q2, · · · , qm >, a data trajectory Td =< p1, p2, · · · , pn >

4 6

4 6

6 7 2

2 2 3 4

2 3 1

5

3 4 52

1 3 4 61 1

3 4 2 61 1

76 1 1 2

2

2

1

3 1 2 32

!!

!"

1 3 1 1

1 3 2 1

1 1 5

1 5

1 2 3

!!

!"
Fig. 1. An illustrative example of DTW computation (left). The SimSub
problem under the DTW measurement (right).

and a threshold ϵ, the LCSS similarity is defined as below:

Di,j =



j
max
h=1

I1,h if i = 1

i
max
h=1

Ih,1 if j = 1

Di−1,j−1 + 1 if j > 1, i > 1, Ii,j = 1

max{Di−1,j , Di,j−1} if j > 1, i > 1, Ii,j = 0

where Ii,h = 1, if E(qi, ph) ≤ ϵ, otherwise Ii,h = 0

(3)

where Di,j represents the LCSS similarity between Tq[1, i]
and Td[1, j], and E(qi, pj) is the Euclidean distance between
point qi and pj . It should be noted that this definition is
similarity rather than distance, i.e., larger value of LCSS, more
similar between two trajectories. We can follow the previous
study [65] to convert the similarity into the distance as follows:

D(T1, T2) = 1−
Dm,n

m+ n−Dm,n
(4)

IV. METHODOLOGY

In this section, we first present an exact solution for SimSub,
followed by extensions of this solution to address cSimSub
and sSimSub. For clarity, we adopt DTW to measure the
distance between query trajectory Tq and data trajectory Td

in the SimSub problem as an example. Then, we show that
our algorithm works for almost all the trajectory distance
measurements as long as they can be computed through
dynamic programming.

A. An Exact Solution of SimSub

To better understand the to-be-solved problem and our
proposed solution, we first provide a perspective of DTW
computation from successive point-matching.

Definition 4 (Point-Matching Sequence (PMS)). Given a
query trajectory Tq with length m, a data trajectory Td

with length n, 1 ≤ i1 ≤ i2 · · · ≤ iz · · · ≤ m, and
1 ≤ j1 ≤ j2 · · · ≤ jz · · · ≤ n, a point-matching sequence,
i.e., PMS = [(i1, j1), (i2, j2), · · · , (iz, jz), · · ·], is to describe
the point-matching situation between trajectory Tq and Td, in
which (iz, jz) indicates Tq[iz] and Td[jz] is matched.

It should be noted that Definition 4 is a general definition of
point-matching, which has no extra constraint on the matched
points.

Definition 5 (Successive Point-Matching Sequence (SPMS)).
Successive point-matching sequence is a special PMS, where
ik+1 − ik ≤ 1 and jk+1 − jk ≤ 1.

With the above definitions, DTW can be understood
from the perspective of successive point-matching. DTW
is to find the optimal successive point-matching sequence,

i.e., SPMS = [(i1, j1), (i2, j2), · · · (iL, jL)], such that∑
z∈[1,L] E(qz, pz) is minimized, where i1 = j1 = 1, iL = m

and jL = n. An example of DTW computation can be
seen in Figure 1, where the value in each cell represents the
Euclidean distance between two matched points. DTW is to
find a successive path from the bottom-left (i.e., the blue cell)
to the upper-right (i.e., the green cell) to minimize the sum of
the matching distances.

Considering a subtrajectory such as Td[2, 4] = (p2, p3, p4)
in this example, the DTW distance between Tq and Td[2, 4]
is to find a successive path from cell [1, 2] to cell [5, 4]
with the minimal sum of the point distances as shown in the
left of Figure 1. When all possible subtrajectories in Td are
enumerated, the SimSub problem under the measurement of
DTW can be reformulated as follows:

Problem 4 (SimSub with DTW Distance). The SimSub
problem with the DTW distance is to find the opti-
mal successive point-matching sequence SPMS, such that∑

z∈[1,L] E(qz, pz) is minimized, where i1 = 1 and iL = m.

In contrast to the conventional DTW, the key distinction
in Problem 4 lies in the flexibility of choosing the starting
and ending cells from any position in the first and last rows,
respectively. An example is depicted on the right side of
Figure 1. The most similar subtrajectory can be identified by
starting from the second point and ending at the fourth point
in the data trajectory Td.

From Problem 4, it is obvious that this problem can be
solved through dynamic programming since the searched
subpath can be reused. Inspired by the state transformation
equations in DTW as shown in Equation 1, we define the
state of dynamic programming to solve SimSub as follows:

Definition 6 (State of DP for Solving SimSub). Given a
query trajectory Tq , a data trajectory Td, and a trajectory
distance measurement Θ(·, ·), Si,j is the state of DP to solve
the SimSub problem, which represents the minimal distance
between Tq[1, i] and any subtrajectory ending with Td[j], i.e.,
Si,j = minz∈[1,j] Θ(Tq[1, i], Td[z, j]).

Solution 1 (DP-based Solution for the SimSub problem with
DTW distance). Based on Definition 6, SimSub’s state transi-
tion equation with DTW distance can be expressed as follows:

Si,j =


E(q1, pj) if i = 1

i∑
h=1

E(qh, p1) if j = 1

E(qi, pj) + min{Si−1,j−1, Si−1,j , Si,j−1} otherwise

(5)

When Si,j is completely computed, the end index j∗ of the
most similar subtrajectory can be obtained through j∗ =
argminj S[m, j]. The starting index i∗ can be traced through
the reverse process starting from S[m, j∗] as shown in Algo-
rithm 1.

Algorithm 1: Tracing the most similar subtrajectory from
the DP matrix under DTW distance

Input: The DP matrix S ∈ Rm×n and the data trajectory Td

Output: The most similar subtrajectory Td[i
∗, j∗]

1 j∗ ← argminj S[m, j];
2 i← m, j ← j∗;
3 while i > 1 and j > 1 do
4 z ← argmin{Si,j−1, Si−1,j−1, Si−1,j};
5 if z == 0 then
6 j ← j − 1;
7 end
8 else if z == 1 then
9 i← i− 1;

10 j ← j − 1;
11 end
12 else
13 i← i− 1;
14 end
15 end
16 i∗ ← j;
17 return Td[i

∗, j∗];

Proof. When i equals 1,

S1,j = min
z∈[1,j]

DTW (T1[1, 1], Td[z, j])

= min
z∈[1,j]

j∑
h=z

E(q1, ph) = E(q1, pj)
(6)

When j equals 1,

Si,1 = min
z∈[1,j]

DTW (Tq [1, i], Td[1, 1])

= DTW (Tq [1, i], Td[1, 1]) =
i∑

h=1

E(qh, p1)
(7)

For the other situations,
Si,j = min

z∈[1,j]
DTW (Tq [1, i], Td[z, j])

= min{DTW (Tq [1, i], Td[j, j]), min
z∈[1,j−1]

DTW (Tq [1, i], Td[z, j])}

= E(qi, pj) + min{ min
z∈[1,j]

DTW (Tq [1, i− 1], Td[z, j]),

min
z∈[1,j−1]

DTW (Tq [1, i], Td[z, j − 1]),

min
z∈[1,j−1]

DTW (Tq [1, i− 1], Td[z, j − 1])}

= E(qi, pj) +min{Si−1,j , Si,j−1, Si−1,j−1}
(8)

From the formulation of the Equations 1 and 5, an interest-
ing fact we can observe is that the only difference between
the DTW computation and the SimSub computation under
the DTW distance is the computation of the elements in
the first row, i.e., when i equals 1. This phenomenon can
also be observed when employing other trajectory distance
measurements, e.g., Frechet, in the SimSub problem, as below.

Solution 2 (DP-based Solution for SimSub problem with
Frechet distance). Based on the state definition above, the
state transition equation of SimSub with Frechet distance can
be formulated as follows:

Si,j =


E(q1, ph) if i = 1

i
max
h=1

E(qh, p1) if j = 1

max{E(qi, pj),min{Si−1,j−1, Si−1,j , Si,j−1)}}
otherwise

(9)

The intrinsic reason of this phenomenon is that, in contrast
to the DP-based trajectory distance measurement Θ(·, ·), the
SimSub problem under Θ(·, ·) only changes the starting cell
(cf. Figure 1).

When LCSS measurement is adopted in the SimSub prob-
lem, intuitively, the computation of solving the SimSub prob-
lem should be the same as the calculation of LCSS without
any modification since this measurement is defined as the
longest common subsequence. However, this intuition is not
theoretically proved before. To bridge this gap, in this section,
we will provide strict proof to demonstrate this intuition. In the
following, we obtain the solution based on the similarity ver-
sion of LCSS (cf. Equation 18) since the distance conversion
can be easily obtained after the DP procedure is completed.
To make our algorithm work in the similarity condition, we
modify our original state definition (cf. Definition 6).

Definition 7 (State of DP to Solve SimSub under LCSS
measurement). Given a query trajectory Tq , a data trajectory
Td and a trajectory similarity measurement Θ(·, ·), Si,j is
the state of DP to solve SimSub problem, which represents
the maximal similarity between Tq[1, i] and any subtrajectory
ending with Td[j], i.e., Si,j = maxz∈[1,j] Θ(Tq[1, i], Td[z, j]).

Solution 3 (DP-based Solution for SimSub problem with
LCSS measurement). Based on the state definition above, the
state transition equation of SimSub with LCSS similarity can
be expressed as follows:

Si,j =



j
max
h=1

I1,h if i = 1

i
max
h=1

Ih,1 if j = 1

Si−1,j−1 + 1 if j > 1, i > 1, Ii,j = 1

max{Si−1,j , Si,j−1} if j > 1, i > 1, Ii,j = 0

where Ii,h = 1, if E(qi, ph) ≤ ϵ, otherwise Ii,h = 0

(10)

When ∀i,jSi,j is completely computed, the end index j∗ of
the most similar subtrajectory can be obtained through j∗ =
argmaxj S[n, j]. The start index i∗ can be traced through the
reverse process starting from S[n, j∗].
Proof. When i = 1,

Si,j = max
z∈[1,j]

LCSS(Tq [1, 1], Td[z, j])

= max
z∈[1,j]

j
max
h=z

I1,h

=
j

max
h=1

I1,h

(11)

When j = 1,

Si,j = LCSS(Tq [1, i], Td[1, 1])

=
i

max
h=1

Ih,1
(12)

When j > 1, i > 1, Ii,j = 1,

Si,j = max
z∈[1,j]

LCSS(Tq [1, i], Td[z, j])

= max{ max
z∈[1,j−1]

LCSS(Tq [1, i− 1], Td[z, j − 1]) + 1,

LCSS(Tq [1, i], Td[j, j])}
= max{Si−1,j−1 + 1, LCSS(Tq [1, i], Td[j, j])}
= Si−1,j−1 + 1

(13)

The equation above from the penultimate line to the last
line is based on a fact that: LCSS(Tq[1, i], Td[j, j]) ≤ 1 ≤
Si−1,j−1 + 1. When j > 1, i > 1, Ii,j = 0,

Si,j = max
z∈[1,j]

LCSS(Tq [1, i], Td[z, j])

= max{ max
z∈[1,j−1]

max(LCSS(Tq [1, i− 1], Td[z, j]),

LCSS(Tq [1, i], Td[1, j − 1])), LCSS(Tq [1, i], Td[j, j])}
= max{max(Si−1,j , Si,j−1), LCSS(Tq [1, i], Td[j, j])}
= max{Si−1,j , Si,j−1, LCSS(Tq [1, i− 1], Td[j, j])}
= max{Si−1,j , Si,j−1}

(14)

The penultimate line above is obtained from the condition
Ii,j = 0. The last line is induced from LCSS(Tq[1, i −
1], Td[j, j]) ≤ Si−1,j .

B. An Exact Solution to cSimSub

Since the quality of the returned subtrajectory in terms
of length cannot be guaranteed through solving the SimSub
problem, a new problem called cSimSub is proposed, in which
the length of the returned subtrajectory is no less than a user-
specified integer C. To solve this problem, in this section, we
extend the solution for SimSub and redefine the DP state.

Definition 8 (State of DP for Solving cSimSub). Given a
query trajectory Tq , a data trajectory Td, and a trajectory
distance measurement Θ(·, ·), Si,j,k is the state of DP for
solving the cSimSub problem, which represents the minimal
distance between Tq[1, i] and any subtrajectory whose length
is no less than a positive integer k ending with Td[j], i.e.,
Si,j,k = minz∈[1,j−k+1] Θ(Tq[1, i], Td[z, j]).

Solution 4 (DP-based Solution for the cSimSub problem with
DTW distance). It is obvious that when k equals 1, the
cSimSub problem degenerates to the SimSub problem, which
can be solved as stated above. In this solution, we only need
to consider the situation when k ≥ 2. Based on the state
definition above, the state transition equation for cSimSub with
DTW distance can be represented as follows:

Si,j,k =


E(q1, pj) + Si,j−1,k−1 if i = 1, j ≥ k

+∞ if j < k

E(qi, pj) + min{Si−1,j,k, Si−1,j−1,k−1, Si,j−1,k−1}
otherwise

(15)
Once all elements of Si,j,k are completely computed (i.e., k ∈
[1, C]), the end index j∗ of the most similar subtrajectory can
be obtained through j∗ = argminj Sm,j,C . The start index
i∗ can be traced in a similar manner to the solution of the
SimSub problem.

Proof. When i = 1 and j ≥ k,

Si,j,k = min
z∈[1,j−k+1]

DTW (Tq [1, 1], Td[z, j])

= DTW (Tq [1, 1], Td[j − k + 1, j])

= E(q1, pj) +DTW (Tq [1, 1], Td[j − k + 1, j − 1])

= E(q1, pj) + min
z∈[1,j−k]

DTW (Tq [1, 1], Td[z, j − 1])

= E(q1, pj) + Si,j−1,k−1

(16)

When j < k, the subtrajectroy ending with j does not
satisfy the length constraint. Thus, we directly initialize these
elements as an infinite value. Otherwise, we have:

Si,j,k = min
z∈[1,j−k+1]

DTW (Tq [1, i], Td[z, j])

= E(qi, pj) + min{ min
z∈[1,j−k+1]

DTW (Tq [1, i− 1], Td[z, j]),

min
z∈[1,j−k+1]

DTW (Tq [1, i− 1], Td[z, j − 1]),

min
z∈[1,j−k+1]

DTW (Tq [1, i], Td[z, j − 1])}

= E(qi, pj) + min{Si−1,j,k, Si−1,j−1,k−1, Si,j−1,k}
(17)

Example 1. Figure 2 depicts a running example of the solution
for the cSimSub problem under DTW measurement when k
varies from 1 to 2, where N indicates the positive infinite
value. For the state S3,2,2, when performing the state transition
from left and left-down, it obtains the value from previous
state matrix, i.e., S3,1,1 and S2,2,1, since the length of the
matched subtrajectory will increase by 1 with these two
directions. When performing the state transition from down,
it obtains the value from current state matrix, i.e., S3,1,2.
Then, according to the definition of DTW, i.e., it minimizes the
sum of the point-matching distances (see Problem 4), S3,2,2 is
obtained according to the equation: S3,2,2 = E(Tq[3], Td[2])+
min{S3,1,1, S2,2,1, S3,1,2} = 7 +min{10, 4, 3} = 10.

The solution for other trajectory distance measurements can
be derived in a similar way, which is omitted for its simplicity.
When similarity measurement is considered, e.g., LCSS, the
state of cSimSub should be slightly modified. We provide the
example of LCSS as follows.

Definition 9 (State of DP to Solve cSimSub under LCSS
measurement). Given a query trajectory Tq , a data trajectory
Td and a trajectory similarity measurement Θ(·, ·), Si,j,k is
the state of DP to solve cSimSub problem, which represents
the maximal similarity between Tq[1, i] and any subtrajectory
whose length is no less than a positive integer k and ending
with Td[j], i.e., Si,j,k = maxz∈[1,j−k+1] Θ(Tq[1, i], Td[z, j]).

Solution 5 (DP-based Solution for cSimSub problem under
LCSS measurement). In this solution, we only consider the
situation that k ≥ 2. Based on the state definition above, the
state transition equation of cSimSub with LCSS similarity can
be expressed as follows:

Si,j,k =


max{I1,j , S1,j−1,k−1} if i = 1, j ≥ k

−∞ if j < k

Si−1,j−1,k−1 + 1 if j ≥ k, i > 1, Ii,j = 1

max{Si−1,j,k, Si,j−1,k−1} if j ≥ k, i > 1, Ii,j = 0

where Ii,h = 1, if E(qi, ph) ≤ ϵ, otherwise Ii,h = 0
(18)

When all elements of Si,j,k are completely computed (i.e., k ∈
[1, C]), the end index j∗ of the most similar subtrajectory can
be obtained through j∗ = argmaxj Sm,j,C . The start index i∗
can be traced in a similar way to the solution of the SimSub.

11 11

7 11

9 6

3 4 5

2 3 1

12 14 6 8

11 12 5 7

3 5 10

2 7

1 2 3

𝑇!

𝑇"

11 11

7 11

N 10 6

N 3 6 5

N 4 4

N 14 6 8

N 13 5 7

3 4 10

7

3 3 5

𝑇"

3

10

4

𝐾 = 1 𝐾 = 2

11 11

7 11

N 10 6

N 3 6 5

N 4 4

N 14 6 8

N 13 5 7

3 4 10

7

3 3 5

𝑇"

3

𝐾 = 2
(a) Inter-state Transition (b) Inner-state TransitionFig. 2. A running example of cSimSub under the DTW measurement.

Proof. When i = 1, j ≥ k,
Si,j,k = max

z∈[1,j−k+1]
LCSS(Tq [1, 1], Td[z, j])

= max{ max
z∈[1,j−k]

LCSS(Tq [1, 1], Td[z, j]),

LCSS(Tq [1, 1], Td[j, j])}
= max{S1,j−1,k−1, I1,j}

(19)

When j < k, the subtrajectory with length at least k is
impossible ending with j. Thus, we set these values to infinity.

When j ≥ k, i > 1, Ii,j = 1,

Si,j,k = max
z∈[1,j−k+1]

LCSS(Tq [1, i], Td[z, j])

= max{ max
z∈[1,j−k]

LCSS(Tq [1, i], Td[z, j]),

LCSS(Tq [1, i], Td[j − k + 1, j])}
= max{ max

z∈[1,j−k]
LCSS(Tq [1, i− 1], Td[1, j − 1]) + 1,

LCSS(Tq [1, i− 1], Td[j − k + 1, j − 1]) + 1}
= max

z∈[1,j−k]
LCSS(Tq [1, i− 1], Td[1, j − 1]) + 1

= Si−1,j−1,k−1 + 1

(20)

When j ≥ k, i > 1, Ii,j = 0,

Si,j,k = max
z∈[1,j−k+1]

LCSS(Tq [1, i], Td[z, j])

= max{ max
z∈[1,j−k]

LCSS(Tq [1, i], Td[z, j]),

LCSS(Tq [1, i], Td[j − k + 1, j])}
= max{ max

z∈[1,j−k]
max{LCSS(Tq [1, i− 1], Td[z, j]),

LCSS(Tq [1, i], Td[z, j − 1])},max{LCSS(Tq [1, i− 1],

Td[j − k + 1, j]), LCSS(Tq [1, i], Td[j − k + 1, j − 1])}}
= max

z∈[1,j−k]
max{LCSS(Tq [1, i− 1], Td[z, j]),

LCSS(Tq [1, i], Td[z, j − 1])}
= max{Si−1,j,k, Si,j−1,k−1}

(21)

Pruning. According to the state definition of cSimSub, we
have an observation: if the length of the most similar sub-
trajectory induced from Si,j,k is greater than k + 1, the
value of Si,j,k+1 will equal Si,j,k. Based on this observation,
we develop a pruning algorithm to reduce the redundant
computation when k > 1. Specifically, we utilize a matrix
P ∈ Rm×n to record the starting point for each Si,j,k, i.e.,
Td[P [i, j], j] is the most similar subtrajectory ending with pj ,
in which only one copy for the latest k exists. When DTW
is used as the trajectory distance measurement, its calculation
can be expressed as follows:

Pi,j =



j if i = 1

1 if j = 1

Pi,j−1 if z = 0

Pi−1,j−1 if z = 1

Pi−1,j if z = 2

(22)

Algorithm 2: Pruning-based Solution for cSimSub under
DTW distance

Input: A query trajectory Tq with length m, a data trajectory Td

with length n, and constraint length C
Output: The most similar subtrajectory Td[i

∗, j∗]
1 for c in [1, C] do
2 if c==1 then
3 S, P ← 0 ∈ Rm×n;
4 for i in [1,m] do
5 for j in [1, n] do
6 update S[i, j] according to Equation 5;
7 update P [i, j] according to Equation 22;
8 end
9 end

10 j∗ ← argminj S[m, j];
11 i∗ ← P [m, j∗];
12 if j∗ − i∗ + 1 ≥ C then
13 break;
14 end
15 end
16 else
17 S′ ← 0 ∈ Rm×n;
18 for i in [1,m] do
19 for j in [1, n] do
20 if j − P [i, j] + 1 ≥ c then
21 continue;
22 end
23 update S′[i, j] according to Equation 15;
24 update P [i, j] according to Equation 22;
25 end
26 end
27 S ← S′;
28 end
29 end
30 j∗ ← argminj S[m, j];
31 i∗ ← P [m, j∗];
32 Return Td[i

∗, j∗];

where z = argmin (Si,j−1,k, Si−1,j−1,k, Si−1,j,k) if k = 1,
and z = argmin (Si,j−1,k−1, Si−1,j−1,k−1, Si−1,j,k) when
k > 1. By introducing P , we can quickly verify the length of
the most similar subtrajectory, e.g., if j − Pi,j + 1 ≥ k, there
is no need to update the value of Si,j,k since the identified
most similar subtrajectory ending with pj already satisfies
the length constraint. Apart from pruning during the element
computation, we can utilize P to easily trace the most similar
subtrajectory when the computation of all Si,j,k is completed.
Specifically, we first obtain the ending index of the most
similar subtrajectory j∗ = argminj Sm,j,C and then read the
starting index from P as P [m, j∗]. It should be noted that
this pruning method can also be adapted to other trajectory
distance measurements, such as Frechet and EDR, without any
modification.

Specifically, we elaborate our pruning algorithm for the
cSimSub problem under DTW distance as shown in Algo-
rithm 2, which takes a query trajectory Tq , a data trajectory
Td, and a user-specified minimal length of the searched sub-
rajectory C as inputs. It loops from 1 to the length constraint
C (lines 1). When current length c equals 1, we update S and
P according to Equation 5 and Equation 22, respectively, for
all elements (lines 2-9). Then, we will check the length of the
searched most similar subtrajectory (lines 10-14). Specifically,
we obtain the ending index of the most similar subtrajectory

(line 10) and read the starting index from P (line 11). If the
length of the most similar subtrajectory has already satisfied
the user’s requirement, the loop procedure will break (lines 12-
14). Otherwise, we will continue to update the DP matrix until
the length constraint is satisfied (lines 16-28). Specifically,
S′ representing the DP matrix with the length constraint c is
firstly initialized (line 17). When looping at the element [i, j],
the length of the corresponding subtrajectory will be checked
first (lines 20-22). If the length of the searched most similar
subtrajectory ending with j is no less than c, the updating
of S′ and P will be ignored. Otherwise, the element of S′

and P (i.e., S′[i, j] and S[i, j] represent Si,j,k and Si,j,k−1 in
Equation 15, respectively) will be updated. Finally, the most
similar subtrajectory can be obtained when the loop procedure
is finished (lines 31-32).

C. An Exact Solution of sSimSub

In this section, we provide a DP-based solution to solve the
sSimSub problem to find a simplified trajectory that exhibits
the highest similarity to itself. We empirically demonstrate that
the self-similarity preserving is beneficial in improving the
downstream query tasks, e.g., KNN query, as demonstrated in
Section V-B2. Here, we introduce the state definition of DP
to solve sSimSub as follows.

Definition 10 (State of DP for Solving sSimSub). Given a
query trajectory Tq , a data trajectory Td and a trajectory
distance measurement Θ(·, ·), Si,j,k denotes the state of DP
used to solve the sSimSub problem, which represents the
minimal distance between Tq[1, i] and any subsequence of
length k (k is a positive integer), starting at Td[1] and
ending at Td[j], i.e., Si,j,k = min1<pi2

···<pik−1
<j Θ(Tq[1, i],

T s
d < p1, pi2 , · · · , pik−1

, pj >).

Solution 6 (DP-based Solution for the sSimSub problem
with DTW distance). Since the sSimSub problem compulsively
includes the first and last points in the compressed trajectory,
we deal with the cases of k = 1, k = 2, and others, separately.
Specifically, when k = 1 and k = 2, we have the following
state transition equations.

Si,j,k =


i∑

h=1

E(qi, p1) if j = 1, k = 1

+∞ if j ̸= 1, k = 1

(23)

Si,j,k =


E(qi, pj) + Si,1,k−1 if i = 1, j ̸= 1, k = 2

+∞ if j = 1, k = 2

E(qi, pj) + min{Si,1,k−1, Si−1,1,k−1, Si−1,j,k}
otherwise

(24)

When k > 2, we have a universal state transition equations
as follows.

Si,j,k =

E(qi, pj) + min{∀j−1
h=k−1Si,h,k−1} if i = 1, j ≥ k, k > 2

+∞ if j < k, k > 2

E(qi, pj) + min{Si−1,j,k, vi,j,k} otherwise
(25)

where vi,j,k = min{∀j−1
h=k−1Si,h,k−1,∀j−1

h=k−1Si−1,h,k−1}.
When all elements of Si,j,k are completely computed (i.e.,

k ∈ [1, C]), we trace the most similar subsequence, starting
from Sm,n,C to include the last point pn in the returned
subsequence, thereby satisfying the requirement of sSimSub.

Proof. In the context of sSimSub, k = 1 implies simplifying
a trajectory into a single point, which contradicts the require-
ment of sSimSub that the simplest trajectory should include
the first and last points of the original trajectory. Thus, in this
situation, we only initialize the elements in the first column,
which will be used when k = 2. When j = 1 and k = 1,

Si,j,k = DTW (Tq [1, i], Td[1, 1])

=

i∑
h=1

E(qi, p1)
(26)

When j = 1, k = 2, the subsequence ending with j fails to
satisfy the length constraint. Thus, we directly initialize these
elements with an infinite value. When i = 1, j ̸= 1, k = 2,
there is only one possible subsequence in Si,j,k, i.e., a sub-
sequence that starts with p1 and ends with pj , due to the
constraint on the starting point of subsequence.

Si,j,k = DTW (Tq [1, 1], T
s
d < p1, pj >)

= E(q1, pj) + E(q1, p1) = E(qi, pj) + Si,1,k−1
(27)

For the other situation when k = 2,
Si,j,k = DTW (Tq [1, i], T

s
d < p1, pj >)

= E(qi, pj) + min{DTW (Tq [1, i], T
s
d < p1 >),

DTW (Tq [1, i− 1], T s
d < p1 >),

DTW (Tq [1, i− 1], T s
d < p1, pj >)}

= E(qi, pj) + min{Si,1,k−1, Si−1,1,k−1, Si−1,j,k}

(28)

When j < k, k > 2, the subsequence ending with j does not
satisfy the length constraint. Thus, the corresponding Si,j,k is
set to an infinity value. When i = 1, j ≥ k, k > 2, we have

Si,j,k = min
1<pi2 ···<pik−1

<j
DTW (Tq [1, 1], T

s
d < p1, pi2 , · · · , pj >)

= E(qi, pj)+

min
1<pi2 ···<pik−1

<j
DTW (Tq [1, 1], T

s
d < p1, pi2 , · · · , pik−1

>)

= E(qi, pj) + min(∀j−1
h=k−1Si,h,k−1)

(29)
In other situations where k > 2, we have

Si,j,k = min
1<pi2 ···<pik−1

<j
DTW (Tq [1, i], T

s
d < p1, pi2 , · · · , pj >)

= min
1<pi2 ···<pik−1

<j
E(qi, pj) + min{

DTW (Tq [1, i− 1], Td < p1, · · · , pik−1
, pj >),

DTW (Tq [1, i], Td < p1, · · · , pik−1
>),

DTW (Tq [1, i− 1], Td < p1, · · · , pik−1
>)}

= E(qi, pj) + min{Si−1,j,k, ∀j−1
h=k−1Si,h,k−1,

∀j−1
h=k−1Si−1,h,k−1}

= E(qi, pj) + min{Si−1,j,k, vi,j,k}
(30)

Example 2. Figure 3 depicts a running example of the
solution for the sSimSub problem under DTW measurement
when k varies from 1 to 3. DTW defines three directions to
transform to current state, i.e., left, left-down, and down. The
left indicates that the previously matched pair must be Tq[i]

N N

N N

N N

N N N

2 N N

11 N N N

11 N N N

N N N

N N

N N N

𝑇!

𝑇"

13 17

12

N 6

N 4 5 6

N 5 3

N 14 8 11

N 7 10

5 9

3 7

3 4 5

𝑇"

12 13

8 11

N N 5

N 5 6 7

N 6 4

N N 7 7

N N 6

4 4 8

N 8

N 5 6

𝑇"
𝐾 = 1 𝐾 = 2 𝐾 = 3

10

4

10

9

5

13 6

Fig. 3. A running example of sSimSub under the DTW measurement.

and Td[j
′], where 1 ≤ j′ < j rather than j′ = j − 1 due

to the property of subsequence (see Definition 3). Similarly,
the left-down indicates that the previously matched pair must
be Tq[i − 1] and Td[j

′], where 1 ≤ j′ < j. For these
two situations, the distance values have been obtained in
previous state matrix S∗,∗,k−1. The down indicates that the
previously matched pair must be Tq[i − 1] and Td[j], which
can also be obtained through the previous computation of
current state matrix S∗,∗,k. Thus, for the state S3,3,2 in this
example, we can obtained through the equation: S3,3,2 =
E(Tq[3], Td[3]) + min{S3,2,1, S3,1,1, S2,2,1, S2,1,1, S2,3,2} =
1 +min{Inf, 10, Inf, 4, 4} = 5.

D. Time Complexity Analysis

For the SimSub problem, the time complexity of our so-
lution is equivalent to that of the original trajectory distance
measurement, as the only difference lies in the initialization
of the DP matrix in the first row. Thus, we can achieve
a time complexity of O(mn) when well-known distance
measurements, such as DTW, Frechet, EDR, and LCSS, are
adopted.

In the case of the cSimSub problem, we extend the state of
DP to a 3-dimensional matrix with dimensions m × n × C,
where each element is scanned only once, and the computation
of each element is in a constant time complexity, i.e., O(1).
Thus, this problem can be solved with a time complexity
of O(Cmn) at most. Furthermore, by applying the pruning
technique, our algorithm for solving cSimSub can run even
faster.

Regarding the sSimSub problem, except for the computation
of vi,j,k (see Equation 25) that is an intermediate value
tracking the previous minimum state value of DP based on
the current state value, the remaining components exhibit
the same time complexity as the algorithm for solving the
cSimSub problem. Additionally, it is observed that vi,j,k can
be recursively computed in time complexity of O(1), since
vi,j,k = min{vi,j−1,k−1, Si,j−1,k−1, Si−1,j−1,k−1}, where
Si,j,k denotes the current state value of DP. Thus, the total
time complexity of our algorithm for solving the sSimSub
problem is O(Cmn).

Moreover, we also provide more comprehensive reviews of
existing studies on the similar subtrajectory search problem
as shown in Table II. In this table, we include a set of
trajectory distance measurements, which can be computed
through dynamic programming, such as STLCSS [36], [68],
[69], and NetERP [50].

TABLE II
SUMMARY OF SIMILAR SUBTRAJECTORY SEARCH ALGORITHMS.

Algorithms Accuracy Constraint Trajectory Distance Measurements
LCSS LORS DTW Frechet EDR ERP STLCSS NetERP

Ours Exact Yes O(mn) O(mn) O(mn) O(mn) O(mn) O(mn) O(mn) O(mn)
CMA [12] Exact No - - O(mn) O(mn) O(mn) O(mn) O(mn) O(mn)

ExactS [11] Exact Yes O(mn2) O(mn2) O(mn2) O(mn2) O(mn2) O(mn2) O(mn2) O(mn2)
Spring [66] Exact No - - O(mn) - - - - -

GB [67] Exact No - - - O(mn) - - - -
PSS [11] Approx. Yes O(mn) O(mn) O(mn) O(mn) O(mn) O(mn) O(mn) O(mn)
POS [11] Approx. Yes O(mn) O(mn) O(mn) O(mn) O(mn) O(mn) O(mn) O(mn)

POS-D [11] Approx. Yes O(mn) O(mn) O(mn) O(mn) O(mn) O(mn) O(mn) O(mn)
RLS [11] Approx. Yes O(mn) O(mn) O(mn) O(mn) O(mn) O(mn) O(mn) O(mn)

RLS-Skip [11] Approx. Yes O(mn) O(mn) O(mn) O(mn) O(mn) O(mn) O(mn) O(mn)

V. EXPERIMENTS

A. Experimental Settings

Dataset. Our experiments are conducted on three real-
world trajectory datasets, i.e., ChengDu1, Porto2, and Geo-
life3. ChengDu consists of around 1.2 million taxi trajectories
located in Chengdu, China, from 2016-11-01 to 2016-11-07,
with the average length around 82 released by DiDi Chuxing.
Porto contains over 1.7 million trajectories collected from
2013 to 2014 in Porto, Portugal, with a sampling interval of
15s and the average length around 51. Geolife is collected
from 182 users during a period of five years from 2007 to
2012 with the average length around 1,400 in Beijing.
Compared Methods. For the cSimSub problem, we compare
our algorithms4 with the following existing methods with
slight modification to satisfy the length constraint.
• ExactS [11]. Enumerating all possible subtrajectories and

computes the similarities between the subtrajectories and
query trajectory incrementally as much as possible, in which
the subtrajectory whose length is less than C is eliminated.

• SizeS [11]. Restricting the length of searched subtrajectories
within the range [m− ξ,m+ ξ], where ξ is a user-specified
hyperparameter, in which the subtrajectory whose length is
less than C is ignored.

• PSS, POS, and POS-D [11]. The splitting-based algorithms
sequentially scan points in the data trajectory and find
a splitting point to reduce the distance between searched
subtrajectory and query trajectory, in which PSS considers
both the prefix and suffix subtrajectories, POS and POS-D
only consider the prefix subtrajectory. The splitting point
will be ignored if the length of the resulting subtrajectory
is less than C.

• RLS5 [11]. RLS is based on reinforcement learning and
induced from the splitting-based algorithms, in which the
splitting points are determined by the learned policy. We
train a universal RLS model for all constraint lengths and
constrain the searched process in the inference phase.

1https://gaia.didichuxing.com
2http://www.geolink.pt/ecmlpkdd2015-challenge
3https://www.microsoft.com/en-us/research/publication/geolife-gps-

trajectory-dataset-user-guide/
4https://github.com/LIWEIDENG0830/SimSub-DP
5https://github.com/zhengwang125/SimSub

• CMA6 [12]. CMA is an exact method to solve SimSub.
Specifically, it aims to find the optimal subtrajectory by
computing the minimum cost of converting the query tra-
jectory into the data trajectory, in which a set of costs, such
as deletion, substitution, and insertion, for each trajectory
measurement, are defined.
For the sSimSub problem, we compare our method with the

following classical competitors.
• Top-Down [22]. It repeatedly inserts a point with the largest

error until the size of the simplified trajectory reaches the
storage budget.

• Bottom-Up [23]. It scans all points of the input trajectory
and repeatedly drops the point with the smallest error until
the number of remaining points is within the storage budget.

• RLTS7 [24]. It adopts the Bottom-Up strategy and drops
points based on a learned policy instead of using heuristic
rules.

Parameter Settings. For all competitors, we follow their
original paper to set the hyper-parameters. Specifically, for
SizeS, we set ξ = 5. For POS-D, we set the parameter D
to 5. For RLS, we randomly sample 25K trajectory pairs
for training and use a feedforward neural network with 2
layers, in which the ReLU activation with 20 neurons and
Sigmoid activation with 2 neurons are used in the first and
second layers, respectively. For RLTS, we randomly sample
1K trajectory pairs for training and use a feedforward neural
network with 2 layers to implement the model architecture,
in which the Tanh activation with 20 neurons and Softmax
activation are used in the first and second layers, respectively.
Evaluation Metrics. For the cSimSub problem, following
previous studies [11], we randomly sample 10K trajectory
pairs from each dataset. In each pair, two trajectories are used
as query and data, respectively. Then, the algorithm is per-
formed to solve the cSimSub problem. We adopt three widely-
used metrics, i.e., Approximate Ratio (AR), Mean Rank (MR),
and Relative Rank (RR), to evaluate the effectiveness [11],
[12]. To specific, AR is defined as the ratio between the
dissimilarity of the solution wrt a query trajectory, which is
returned by an approximate algorithm and the optimal one. MR

6https://github.com/inabao/trajcSimilar
7https://github.com/zhengwang125/RLTS

2 4 6
Constraint Length C

0

500

1000

1500

2000

M
R

Chengdu (DTW - MR)

Algorithm
Ours RLS SizeS POS PSS POS-D CMA

2 4 6
Constraint Length C

1.00

1.05

1.10

1.15

1.20

A
R

Chengdu (DTW - AR)

Distance
DTW Frechet

2 4 6
Constraint Length C

0.00

0.10

0.20

0.30

0.40

0.50

R
R

Chengdu (DTW - RR)

2 4 6
Constraint Length C

0

500

1000

1500

2000

M
R

Chengdu (Frechet - MR)

2 4 6
Constraint Length C

1.00

1.05

1.10

1.15

1.20

A
R

Chengdu (Frechet - AR)

2 4 6
Constraint Length C

0.00

0.10

0.20

0.30

0.40

0.50

R
R

Chengdu (Frechet - RR)

2 4 6
Constraint Length C

0

200

400

600

800

M
R

Porto (DTW - MR)

2 4 6
Constraint Length C

1.00

1.10

1.20

1.30

1.40

1.50

A
R

Porto (DTW - AR)

2 4 6
Constraint Length C

0.00

0.10

0.20

0.30

0.40

0.50

R
R

Porto (DTW - RR)

2 4 6
Constraint Length C

0

200

400

600

800

M
R

Porto (Frechet - MR)

2 4 6
Constraint Length C

1.00

1.10

1.20

1.30

1.40

1.50

A
R

Porto (Frechet - AR)

2 4 6
Constraint Length C

0.00

0.10

0.20

0.30

0.40

0.50

R
R

Porto (Frechet - RR)

Fig. 4. Effectiveness of algorithms in terms of varying the constraint length.

2 4 6
Constraint Length C

102

103

104

105

Ti
m

e
(s

)

Porto (DTW)

Algorithm
Ours
Ours/wo P
SizeS
PSS
POS
POS-D
CMA
RLS
ExactS

2 4 6
Constraint Length C

102

103

104

105

Ti
m

e
(s

)

Porto (Frechet)
Distance

DTW
Frechet

2 4 6
Constraint Length C

102

103

104

105

Ti
m

e
(s

)

ChengDu (DTW)

2 4 6
Constraint Length C

102

103

104

105

Ti
m

e
(s

)

ChengDu (Frechet)

Fig. 5. Efficiency with varying length of constraint

is defined as the rank of the solution found by the algorithm,
where all subtrajectories are sorted in ascending order of
their dissimilarities wrt a query trajectory. RR is a normalized
version of MR by the total number of subtrajectories of a data
trajectory. A smaller MR or RR indicates a better algorithm.
For the sSimSub problem, following the recent study [21], we
perform KNN queries to study the query accuracy. Specifically,
we randomly sample 11K trajectories from ChengDu (resp.
11K from Porto and 1.1K from Geolife), in which 1/11 of
trajectories are used as query and the rest is as database.
To evaluate the query performance, we use accuracy (ACC)
for measuring the difference between query results in an
original database D and those on a simplified database D′.
We denote Ro and Rs as the trajectory sets returned by KNN
queries from D and D′, respectively. ACC can be calculated
as ACC = |Ro ∪Rs|/|Ro|.

Evaluation Platform. We implement our methods and base-
lines in C++ and Python 3.7. The platform runs the Ubuntu
16.04 operating system with 48-cores Intel(R) CPU E5-2650
v4 @ 2.20GHz 256GB RAM.

B. Experimental Results

1) Effect of cSimSub: Firstly, we report the experimental
results of cSimSub on ChengDu and Porto datasets for dif-
ferent algorithms with each distance function to evaluate the
effectiveness of the proposed method, in which the constraint
length C varies from 1 to 7 as shown in Figure 4. From these
results, we can observe that compared with other approxima-
tion algorithms, RLS performs best when C = 1. For the
other constraint values, the performance of RLS deteriorates
sharply since it may need a special design to deal with the
length constraint condition in the training process. Moreover,
the performance of the other approximation algorithms is
relatively stable with the varying of C, which demonstrates
the robustness of these approaches. Compared with all the
approximation competitors, both CMA and our algorithm
show superior performance when C = 1 since they can
provide the exact solution for SimSub under DTW and Frechet
distance measurements. However, CMA does not work when
C ̸= 1, while our algorithm is flexible to fit users’ different
requirements in terms of the minimal length of the searched
subtrajectory.

In addition, we also report the running time of all competi-
tors as shown in Figure 5, in which ours/woP represents our
algorithm without the proposed pruning algorithm. Compared
with ExactS, the other algorithms achieve more than 10×
speed improvement. When the constraint length C equals
1, the efficiency of CMA and our algorithm is comparable,
in which ours/woP achieves slightly faster than our original
algorithm since the pruning technique only works when C > 1
and requires extra records and updates in terms of the matrix

0.25% 0.35% 0.45%
Compression Ratio r

0.50

0.55

0.60

0.65

0.70

0.75

D
TW

Geolife (DTW - ACC5)

Algorithm
Ours Top-Down Bottom-Up RLTS

0.25% 0.35% 0.45%
Compression Ratio r

0.60

0.70

0.80

0.90

Fr
ec

he
t

Geolife (Frechet - ACC5)

Distance
DTW Frechet

0.1 0.2 0.3
Compression Ratio r

0.40

0.50

0.60

0.70

0.80

D
TW

Porto (DTW - ACC5)

0.1 0.2 0.3
Compression Ratio r

0.50

0.60

0.70

0.80

0.90

Fr
ec

he
t

Porto (Frechet - ACC5)

0.1 0.2 0.3
Compression Ratio r

0.60

0.65

0.70

0.75

0.80

D
TW

Chengdu (DTW - ACC5)

0.1 0.2 0.3
Compression Ratio r

0.85

0.90

0.95

1.00

Fr
ec

he
t

Chengdu (Frechet - ACC5)

0.25% 0.35% 0.45%
Compression Ratio r

0.55

0.60

0.65

0.70

0.75

D
TW

Geolife (DTW - ACC10)

0.25% 0.35% 0.45%
Compression Ratio r

0.70

0.75

0.80

0.85

0.90

Fr
ec

he
t

Geolife (Frechet - ACC10)

0.1 0.2 0.3
Compression Ratio r

0.50

0.60

0.70

0.80

D
TW

Porto (DTW - ACC10)

0.1 0.2 0.3
Compression Ratio r

0.50

0.60

0.70

0.80

0.90

Fr
ec

he
t

Porto (Frechet - ACC10)

0.1 0.2 0.3
Compression Ratio r

0.65

0.70

0.75

0.80

0.85

D
TW

Chengdu (DTW - ACC10)

0.1 0.2 0.3
Compression Ratio r

0.90

0.95

1.00

Fr
ec

he
t

Chengdu (Frechet - ACC10)

Fig. 6. Effectiveness of trajectory simplification algorithms in KNN query.

P . Compared with our algorithm without pruning, and with
the increasing of C, the curve of our algorithm integrating
the pruning technique is more flattened since it can reduce
the number of updates of the DP matrix S. This observation
demonstrates the effectiveness of our proposed pruning algo-
rithm. Moreover, we can observe that the running time of other
algorithms is stable when C varies from 1 to 7. However, we
should notice that these algorithms are approximate, i.e., they
have no guarantee in terms of the similarity of the searched
subtrajectory. Despite the running time of our algorithm in-
creases with the increase of constraint length C, its efficiency
is still comparable with the approximation algorithms like PSS.

2) Effect of sSimSub: In this section, we study the effec-
tiveness of the trajectory simplification algorithms in terms of
the KNN query. The results on three datasets under different
trajectory measurements are shown in Figure 6, in which K
in KNN query is set to 5 and 10, denoted as ACC5 and
ACC10, respectively. We can observe that compared with
other competitors, the simplified trajectory through solving
sSimSub with our algorithm can achieve the best query
accuracy in most cases. This observation may indicate that
self-similarity preserving is useful to maintain the trajectory
distance distribution in the whole database. Moreover, our
algorithm can achieve the largest improvement when DTW is
adopted as the distance measurement. When Frechet distance
is adopted, the competitors can also achieve good performance.
This is because the Frechet distance is defined as the maximal
distance among all matched points and the principle in these
simplified trajectory algorithms, e.g., PED [55], [56], ensures
that the removed points will not stray significantly from
the original trajectory. Hence, the maximal distance among
matched points between two trajectories remains relatively
unaffected. In addition, we can observe that RLTS achieves
a similar performance with Bottom-Up since RLTS adopts

the Bottom-Up strategy with a learned policy to simplify
trajectories.

VI. CONCLUSION

This paper explores the SimSub problem and extends its
scope by introducing two variants, i.e., cSimSub and sSimSub.
Specifically, cSimSub is a more general case of SimSub, in
which users can control the minimal length of the most similar
subtrajectory by specifying a positive integer C. We propose
an algorithm based on dynamic programming to address
the cSimSub problem with a time complexity of O(Cmn).
Our algorithm demonstrates adaptability to various trajectory
distances, including DTW, Frechet, EDR, and LCSS, as long
as dynamic programming can be implemented. Notably, from
the solution equations, an interesting fact can be found that the
only difference between our solution with the original distance
computation lies in the the initialization of the first row of
the DP matrix. As for the other variant, sSimSub, the goal
is to find the most similar subsequence with length C from
the trajectory itself, facilitating trajectory simplification. The
empirical study shows that trajectory simplification through
self-similarity preservation yields superior query accuracy in
KNN queries compared with traditional trajectory simplifica-
tion methods.

VII. ACKNOWLEDGEMENT

This work is partially supported by NSFC (No. 62472068),
Shenzhen Municipal Science and Technology R&D Fund-
ing Basic Research Program (JCYJ20210324133607021),
and Municipal Government of Quzhou under Grant (No.
2023D044), and Key Laboratory of Data Intelligence and
Cognitive Computing, Longhua District, Shenzhen.

REFERENCES

[1] H. Zhou, Y. Zhao, J. Fang, X. Chen, and K. Zeng, “Hybrid route
recommendation with taxi and shared bicycles,” Distributed and Parallel
Databases, vol. 38, pp. 563–583, 2020.

[2] D. Yao, C. Zhang, Z. Zhu, J. Huang, and J. Bi, “Trajectory clustering
via deep representation learning,” IJCNN, pp. 3880–3887, 2017.

[3] P. K. Agarwal, K. Fox, K. Munagala, A. Nath, J. Pan, and E. Tay-
lor, “Subtrajectory clustering: Models and algorithms,” Proceedings of
the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, 2018.

[4] K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, and J. Luo, “De-
tecting commuting patterns by clustering subtrajectories,” International
Journal of Computational Geometry & Applications, vol. 21, no. 03, pp.
253–282, 2011.

[5] A. Liang, B. Yao, B. Wang, Y. Liu, Z. Chen, J. Xie, and F. Li, “Sub-
trajectory clustering with deep reinforcement learning,” VLDBJ, 2024.

[6] Y. Xu, J. Xu, J. Zhao, K. Zheng, A. Liu, L. Zhao, and X. Zhou, “Metaptp:
An adaptive meta-optimized model for personalized spatial trajectory
prediction,” KDD, 2022.

[7] D. Yang, B. Fankhauser, P. Rosso, and P. Cudré-Mauroux, “Location
prediction over sparse user mobility traces using rnns: Flashback in
hidden states!” in IJCAI, 2020.

[8] D. Qiu, Y. Wang, Y. Zhao, L. Deng, and K. Zheng, “Citycross:
Transferring attention-based knowledge for location-based advertising
recommendation,” in 2022 23rd IEEE International Conference on
Mobile Data Management (MDM). IEEE, 2022, pp. 254–261.

[9] Y. Cui, H. Sun, Y. Zhao, H. Yin, and K. Zheng, “Sequential-knowledge-
aware next poi recommendation: A meta-learning approach,” ACM
Transactions on Information Systems (TOIS), vol. 40, no. 2, pp. 1–22,
2021.

[10] Y. Qin, Y. Fang, H. Luo, F. Zhao, and C. Wang, “Next point-of-
interest recommendation with auto-correlation enhanced multi-modal
transformer network,” in Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in Information Re-
trieval, 2022, pp. 2612–2616.

[11] Z. Wang, C. Long, G. Cong, and Y. Liu, “Efficient and effective similar
subtrajectory search with deep reinforcement learning,” VLDB, vol. 13,
pp. 2312 – 2325, 2020.

[12] J. Jin, P. Cheng, L. Chen, X. Lin, and W. Zhang, “Efficient non-learning
similar subtrajectory search,” VLDB, vol. 16, no. 11, pp. 3111–3123,
2023.

[13] J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering: a partition-
and-group framework,” in SIGMOD, 2007.

[14] P. Tampakis, C. Doulkeridis, N. Pelekis, and Y. Theodoridis, “Distributed
subtrajectory join on massive datasets,” TSAS, vol. 6, no. 2, pp. 1–29,
2020.

[15] D. Zhang, M. Ding, D. Yang, Y. Liu, J. Fan, and H. T. Shen, “Trajectory
simplification: An experimental study and quality analysis,” VLDB,
vol. 11, pp. 934–946, 2018.

[16] X. Lin, S. Ma, J. Jiang, Y. Hou, and T. Wo, “Error bounded line
simplification algorithms for trajectory compression: An experimental
evaluation,” TODS, vol. 46, pp. 1 – 44, 2021.

[17] Y. Zhao, S. Shang, Y. Wang, B. Zheng, Q. V. H. Nguyen, and K. Zheng,
“Rest: A reference-based framework for spatio-temporal trajectory com-
pression,” KDD, 2018.

[18] X. Ding, L. Chen, Y. Gao, C. S. Jensen, and H. Bao, “Ultraman: A
unified platform for big trajectory data management and analytics,”
Proceedings of the VLDB Endowment, vol. 11, no. 7, pp. 787–799, 2018.

[19] K. Zheng, Y. Zhao, D. Lian, B. Zheng, G. Liu, and X. Zhou, “Reference-
based framework for spatio-temporal trajectory compression and query
processing,” TKDE, vol. 32, no. 11, pp. 2227–2240, 2019.

[20] Y. Zhao, S. Shang, Y. Wang, B. Zheng, Q. V. H. Nguyen, and K. Zheng,
“Rest: A reference-based framework for spatio-temporal trajectory com-
pression,” in SIGKDD, 2018, pp. 2797–2806.

[21] Z. Wang, C. Long, G. Cong, and C. S. Jensen, “Collectively simplifying
trajectories in a database: A query accuracy driven approach,” ICDE,
2024.

[22] J. Hershberger and J. Snoeyink, “Speeding up the douglas-peucker line-
simplification algorithm,” 1992.

[23] E. J. Keogh, S. Chu, D. M. Hart, and M. J. Pazzani, “An online algorithm
for segmenting time series,” ICDE, pp. 289–296, 2001.

[24] Z. Wang, C. Long, and G. Cong, “Trajectory simplification with rein-
forcement learning,” ICDE, pp. 684–695, 2021.

[25] L. Deng, H. Sun, Y. Zhao, S. Liu, and K. Zheng, “S2tul: A semi-
supervised framework for trajectory-user linking,” in Proceedings of the
sixteenth ACM international conference on web search and data mining,
2023, pp. 375–383.

[26] L. Chen, Y. Gao, Z. Fang, X. Miao, C. S. Jensen, and C. Guo, “Real-time
distributed co-movement pattern detection on streaming trajectories,”
Proceedings of the VLDB Endowment, vol. 12, no. 10, pp. 1208–1220,
2019.

[27] L. Chen, Y. Gao, X. Li, C. S. Jensen, and G. Chen, “Efficient metric
indexing for similarity search and similarity joins,” IEEE Transactions
on Knowledge and Data Engineering, vol. 29, no. 3, pp. 556–571, 2017.

[28] K. Zheng, Y. Zheng, N. J. Yuan, and S. Shang, “On discovery of
gathering patterns from trajectories,” in 2013 IEEE 29th international
conference on data engineering (ICDE). IEEE, 2013, pp. 242–253.

[29] Y. Zhang, L. Deng, Y. Zhao, J. Chen, J. Xie, and K. Zheng, “Simidtr:
Deep trajectory recovery with enhanced trajectory similarity,” in Inter-
national Conference on Database Systems for Advanced Applications.
Springer, 2023, pp. 431–447.

[30] M. Chen, Y. Zhao, Y. Liu, X. Yu, and K. Zheng, “Modeling spatial
trajectories with attribute representation learning,” TKDE, vol. 34, no. 4,
pp. 1902–1914, 2022.

[31] C. Wang, F. Zhao, H. Luo, Y. Fang, H. Zhang, and H. Xiong, “Towards
effective transportation mode-aware trajectory recovery: Heterogeneity,
personalization and efficiency,” IEEE Transactions on Mobile Comput-
ing, 2024.

[32] Z. Liu, H. Miao, Y. Zhao, C. Liu, K. Zheng, and H. Li, “Lighttr: A
lightweight framework for federated trajectory recovery,” arXiv preprint
arXiv:2405.03409, 2024.

[33] Y. Lun, H. Miao, J. Shen, R. Wang, X. Wang, and S. Wang, “Resisting tul
attack: balancing data privacy and utility on trajectory via collaborative
adversarial learning,” GeoInformatica, vol. 28, no. 3, pp. 381–401, 2024.

[34] D. Hu, L. Chen, H. Fang, Z. Fang, T. Li, and Y. Gao, “Spatio-temporal
trajectory similarity measures: A comprehensive survey and quantitative
study,” TKDE, 2023.

[35] B.-K. Yi, H. V. Jagadish, and C. Faloutsos, “Efficient retrieval of similar
time sequences under time warping,” ICDE, pp. 201–208, 1998.

[36] M. Vlachos, D. Gunopulos, and G. Kollios, “Discovering similar mul-
tidimensional trajectories,” ICDE, pp. 673–684, 2002.

[37] L. Chen, M. T. Özsu, and V. Oria, “Robust and fast similarity search
for moving object trajectories,” in SIGMOD, 2005.

[38] H. Alt and M. Godau, “Computing the fréchet distance between two
polygonal curves,” Int. J. Comput. Geom. Appl., vol. 5, pp. 75–91, 1995.

[39] P. Yang, H. Wang, Y. Zhang, L. Qin, W. Zhang, and X. Lin, “T3s:
Effective representation learning for trajectory similarity computation,”
in ICDE. IEEE, 2021, pp. 2183–2188.

[40] L. Deng, Y. Zhao, J. Chen, S. Liu, Y. Xia, and K. Zheng, “Learning to
hash for trajectory similarity computation and search,” in ICDE. IEEE,
2024, pp. 4491–4503.

[41] L. Deng, Y. Zhao, Z. Fu, H. Sun, S. Liu, and K. Zheng, “Efficient
trajectory similarity computation with contrastive learning,” CIKM,
2022.

[42] Y. Chang, J. Qi, Y. Liang, and E. Tanin, “Contrastive trajectory similarity
learning with dual-feature attention,” in ICDE. IEEE, 2023, pp. 2933–
2945.

[43] P. Yang, H. Wang, D. Lian, Y. Zhang, L. Qin, and W. Zhang, “Tmn:
Trajectory matching networks for predicting similarity,” in ICDE. IEEE,
2022, pp. 1700–1713.

[44] P. Han, J. Wang, D. Yao, S. Shang, and X. Zhang, “A graph-based
approach for trajectory similarity computation in spatial networks,” in
KDD, 2021, pp. 556–564.

[45] H. Zhang, X. Zhang, Q. Jiang, B. Zheng, Z. Sun, W. Sun, and C. Wang,
“Trajectory similarity learning with auxiliary supervision and optimal
matching,” in IJCAI, 2021, pp. 3209–3215.

[46] Z. Wang, C. Long, G. Cong, and C. Ju, “Effective and efficient sports
play retrieval with deep representation learning,” in KDD, 2019, pp.
499–509.

[47] X. Li, K. Zhao, G. Cong, C. S. Jensen, and W. Wei, “Deep representation
learning for trajectory similarity computation,” in 2018 IEEE 34th
international conference on data engineering (ICDE). IEEE, 2018,
pp. 617–628.

[48] D. Yao, G. Cong, C. Zhang, and J. Bi, “Computing trajectory similarity
in linear time: A generic seed-guided neural metric learning approach,”
ICDE, pp. 1358–1369, 2019.

[49] Z. Fang, Y. Du, X. Zhu, D. Hu, L. Chen, Y. Gao, and C. S. Jensen,
“Spatio-temporal trajectory similarity learning in road networks,” in
Proceedings of the 28th ACM SIGKDD conference on knowledge
discovery and data mining, 2022, pp. 347–356.

[50] S. Koide, C. Xiao, and Y. Ishikawa, “Fast subtrajectory similarity search
in road networks under weighted edit distance constraints,” VLDB,
vol. 13, pp. 2188 – 2201, 2020.

[51] L. Deng, H. Sun, R. Sun, Y. Zhao, and H. Su, “Efficient and effective
similar subtrajectory search: a spatial-aware comprehension approach,”
TIST, vol. 13, no. 3, pp. 1–22, 2022.

[52] Z. Fang, C. He, L. Chen, D. Hu, Q. Sun, L. Li, and Y. Gao, “A
lightweight framework for fast trajectory simplification,” ICDE, pp.
2386–2399, 2023.

[53] M. Potamias, K. Patroumpas, and T. K. Sellis, “Sampling trajectory
streams with spatiotemporal criteria,” SSDBM, pp. 275–284, 2006.

[54] J. Muckell, J.-H. Hwang, V. Patil, C. T. Lawson, F. Ping, and S. S.
Ravi, “Squish: an online approach for gps trajectory compression,” in
International Conference and Exhibition on Computing for Geospatial
Research & Application, 2011.

[55] J. Liu, K. Zhao, P. Sommer, S. Shang, B. Kusy, and R. Jurdak, “Bounded
quadrant system: Error-bounded trajectory compression on the go,” in
2015 IEEE 31st International Conference on Data Engineering. IEEE,
2015, pp. 987–998.

[56] N. Meratnia and R. A. de By, “Spatiotemporal compression techniques
for moving point objects,” in EDBT, 2004.

[57] B. Ke, J. Shao, Y. Zhang, D. Zhang, and Y. Yang, “An online approach
for direction-based trajectory compression with error bound guarantee,”
in APWeb, 2016.

[58] B. Ke, J. Shao, and D. Zhang, “An efficient online approach for
direction-preserving trajectory simplification with interval bounds,”

MDM, pp. 50–55, 2017.
[59] Z. Wang, C. Long, G. Cong, and Q. Zhang, “Error-bounded online

trajectory simplification with multi-agent reinforcement learning,” KDD,
2021.

[60] S. Wang, Z. Bao, J. S. Culpepper, Z. Xie, Q. Liu, and X. Qin, “Torch:
A search engine for trajectory data,” SIGIR, 2018.

[61] B. Zheng, L. Weng, X. Zhao, K. Zeng, X. Zhou, and C. S. Jensen, “Re-
pose: Distributed top-k trajectory similarity search with local reference
point tries,” ICDE, pp. 708–719, 2021.

[62] T. Ichiye and M. Karplus, “Collective motions in proteins: A covariance
analysis of atomic fluctuations in molecular dynamics and normal mode
simulations,” Proteins: Structure, vol. 11, 1991.

[63] J. K. Kearney and S. Hansen, “Stream editing for animation,” 1990.
[64] M. T. Robinson, “The temporal development of collision cascades in

the binary-collision approximation,” Nuclear Instruments and Methods
in Physics Research Section B: Beam Interactions with Materials and
Atoms, vol. 48, no. 1-4, pp. 408–413, 1990.

[65] H. Su, S. Liu, B. Zheng, X. Zhou, and K. Zheng, “A survey of trajectory
distance measures and performance evaluation,” The VLDB Journal,
vol. 29, pp. 3–32, 2020.

[66] Y. Sakurai, C. Faloutsos, and M. Yamamuro, “Stream monitoring under
the time warping distance,” ICDE, pp. 1046–1055, 2007.

[67] J. Gudmundsson, J. Pfeifer, and M. P. Seybold, “On practical nearest
sub-trajectory queries under the fréchet distance,” ACM Transactions on
Spatial Algorithms and Systems, vol. 9, no. 2, pp. 1–24, 2023.

[68] T. Kahveci, A. K. Singh, and A. Gürel, “Similarity searching for
multi-attribute sequences,” Proceedings 14th International Conference
on Scientific and Statistical Database Management, pp. 175–184, 2002.

[69] P. Patel, E. J. Keogh, J. Lin, and S. Lonardi, “Mining motifs in massive
time series databases,” ICDM, pp. 370–377, 2002.

	Introduction
	Related Work
	Preliminaries
	Problem Statement
	Trajectory Similarity Measurement

	Methodology
	An Exact Solution of SimSub
	An Exact Solution to cSimSub
	An Exact Solution of sSimSub
	Time Complexity Analysis

	Experiments
	Experimental Settings
	Experimental Results
	Effect of cSimSub
	Effect of sSimSub

	Conclusion
	Acknowledgement
	References

