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Abstract
Approximate nearest neighbor search is fundamental in informa-

tion retrieval. Previous partition-based methods enhance search

efficiency by probing partial partitions, yet they face two common

issues. In the query phase, a common strategy is to probe partitions

based on the distance ranks of a query to partition centroids, which

inevitably probes irrelevant partitions as it ignores data distribution.

In the partition construction phase, all partition-based methods face

the boundary problem that separates a query’s nearest neighbors

to multiple partitions, resulting in a long-tailed 𝑘NN distribution

and degrading the optimal 𝑛𝑝𝑟𝑜𝑏𝑒 (i.e., the number of probing par-

titions). To address this gap, we propose LIRA, a LearnIng-based
queRy-aware pArtition framework. Specifically, we propose a prob-

ing model to directly probe the partitions containing the 𝑘NN of

a query, which can reduce probing waste and allow for query-

aware probing with 𝑛𝑝𝑟𝑜𝑏𝑒 individually. Moreover, we incorporate

the probing model into a learning-based redundancy strategy to

mitigate the adverse impact of the long-tailed 𝑘NN distribution

on search efficiency. Extensive experiments on real-world vector

datasets demonstrate the superiority of LIRA in the trade-off among

accuracy, latency, and query fan-out. The codes are available at

https://github.com/SimoneZeng/LIRA-ANN-search.

CCS Concepts
• Information systems → Information retrieval query pro-
cessing; Learning to rank; Top-k retrieval in databases.
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1 Introduction
The nearest neighbor (NN) search is well studied in the community

of information retrieval [38, 46, 53, 58]. By embedding unstructured

data (e.g., texts and images) into vectors [30, 41], the similarity

of vectors represents semantic similarity [49, 51]. Hence, vector

space search is fundamental for efficiently retrieving large-scale un-

structured data in retrieval-augmented generation [6, 17, 27, 44, 45].

Given a vector datasetD and a query vector q, the goal of 𝑘 nearest

neighbors (𝑘NN) search is to find the 𝑘 vectors nearest to q from

the dataset. However, the exact NN search is time-consuming with

the growth of dataset cardinalities and dimensions [2, 25]. Conse-

quently, current works shift focus towards approximate nearest

neighbor (ANN) search [5, 8, 34], which seeks a trade-off between

latency and accuracy by retrieving with indexing techniques.

1.1 Prior Approaches and Limitations
Partition-based methods are the backbone of ANN search [6, 17, 42],

which are suitable for partial data loading [16, 22]. The 𝑘NN of a

query 𝑞 can be separated into several partitions. We denote the

partitions containing the 𝑘NN of query 𝑞 as its 𝑘NN partitions,
which means these partitions should be probed to retrieve the

exact top-k nearest neighbors. A lower nprobe (i.e., the number of

probing partitions, also known as the query fan-out) is preferred

for scalability [39, 55]. A naive way to achieve a low 𝑛𝑝𝑟𝑜𝑏𝑒 can

be partition pruning, but a trade-off exists between fewer probing

partitions and high recall. If the probing partitions poorly cover

the 𝑘NN partitions, the recall of retrieval results drops. If probing

partitions without 𝑘NN, search efficiency degenerates. We call this

phenomenon the Curse of Partition Pruning.
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Figure 1: Example for probing waste. The blue point is a
query, and the red points are the centroids of partitions.

Here, we go through the limitations of previous studies in parti-

tion pruning. Considering the low accuracy of tree-based [12] and

hash-based [40, 43, 46, 47] methods, clustering methods are promis-

ing in dealing with the dilemma of partition pruning. The inverted

file (IVF) index [25] builds clusters with the K-Means algorithm and

then searches in fixed 𝑛𝑝𝑟𝑜𝑏𝑒 nearest partitions according to the
distance rank between a query and the cluster centroids. Fur-
ther, BLISS [18] build partitions with deep learning models but still

set a fixed 𝑛𝑝𝑟𝑜𝑏𝑒 for all queries to achieve the trade-off between

search latency and recall. However, since no fixed 𝑛𝑝𝑟𝑜𝑏𝑒 can fit

all queries [57], there remain limitations in search performance.

Limit 1. Partition pruning with the distance rank to partition
centroids wastes 𝑛𝑝𝑟𝑜𝑏𝑒 . As shown in a toy example in Fig. 1,

suppose the data points of a dataset are divided into partitions.

The top 10 NNs of a query 𝑞 are distributed in three partitions (i.e.,

partition A, B, and C), where partition C ranked as the fifth nearest

partition of 𝑞. To ensure all 10 NNs are included, the minimum

number of probing partitions based on the centroid distance rank

is 𝑛𝑝𝑟𝑜𝑏𝑒 = 5. Alternatively, a more cost-effective way is to directly

probe the three 𝑘NN partitions, resulting in the optimal 𝑛𝑝𝑟𝑜𝑏𝑒

to 3. Hence, pruning partitions according to the centroid distance

rank still wastes 𝑛𝑝𝑟𝑜𝑏𝑒 , and such probing waste is ubiquitous in

high-dimension datasets as illustrated in Section 2.

Limit 2. Hard partitioning cannot inherently achieve low
𝑛𝑝𝑟𝑜𝑏𝑒 due to the long-tailed distribution of 𝑘NN. Partitioning
strategies aim to reduce𝑛𝑝𝑟𝑜𝑏𝑒 . However, due to the curse of dimen-

sion and local density variations, the 𝑘NN distribution with hard

partitioning methods (i.e., each data point is put in one partition)

often exhibits the notorious long-tailed characteristic. Specifically,

while most 𝑘NN may be densely located in a few partitions, the

remaining 𝑘NN scatter across many other partitions [21]. As the

example shown in Fig. 1, the top-10 𝑘NN of a query 𝑞 are distributed

as [5, 4, 1, 0, 0] in five partitions. The scattered one 𝑘NN can be re-

garded as a long-tail 𝑘NN, resulting in a less efficient search process.

Due to this limitation, BLISS [18] constructs four groups of inde-

pendent partitions and indexes. Hence, the long-tailed distribution

of 𝑘NN diminishes the cost-effectiveness of probing partitions and

increases the query fan-out undesirably.

1.2 Our Solution
We find that the essential issue of the limitations mentioned above

stems from the distribution of𝑘NN in partitions. Hence, we improve

the performance of partition-based ANN search from two aspects,

query process and index construction.

Insight 1. A meta index that directly probes the 𝑘NN par-
titions is required. To avoid confusion, we define the index for

inter-partitions that facilitates partition pruning as themeta index,
and the index for intra-partition (i.e., the index that only organizes

the data points within one partition) as internal index. In this

study, we focus on the optimization of meta index among the two-

level index for partitions, in which the internal index can apply

any existing index structure such as HNSW [35]. As mentioned in

Limit 1, the optimal number of probing partitions for a query 𝑞,

denoted as (𝑛𝑝𝑟𝑜𝑏𝑒𝑞)∗, is exactly the number of its 𝑘NN partitions.

When the context is clear, we refer to (𝑛𝑝𝑟𝑜𝑏𝑒𝑞)∗ as 𝑛𝑝𝑟𝑜𝑏𝑒∗ in

this paper for brevity. To address the probing waste through an

effective query process, the ideal meta index needs to directly probe

the 𝑘NN partitions of a query. Compared to IVF, the meta index

can achieve high recall while reducing the 𝑛𝑝𝑟𝑜𝑏𝑒 simultaneously.

Insight 2. Redundant partitioning is required to mitigate
the long-tailed 𝑘NN distribution and further reduce 𝑛𝑝𝑟𝑜𝑏𝑒∗.
As discussed in Limit 2, the search inefficiency often arises from

the long-tailed 𝑘NN distribution. To address this from the aspects

of index construction, a feasible approach is to redundantly put a

query’s long-tail 𝑘NN into other densely distributed 𝑘NN partitions.

For instance, the initial optimal 𝑛𝑝𝑟𝑜𝑏𝑒 of 𝑞 in Fig. 1 is 𝑛𝑝𝑟𝑜𝑏𝑒∗ = 3.

By introducing redundancy - duplicating the single𝑘NN in partition

C to another 𝑘NN partition (i.e., partition A or B) - the revised

optimal 𝑛𝑝𝑟𝑜𝑏𝑒 of 𝑞 can be further reduced to 𝑛𝑝𝑟𝑜𝑏𝑒∗ = 2, since

merely probing partitions A and B suffices to cover all the top-10

𝑘NN. However, instead of merely reducing the𝑛𝑝𝑟𝑜𝑏𝑒 , the objective

in partition-based ANN search is striking a better trade-off between

latency and recall. The search latency can potentially increase with

more data replicas. Hence, we need an exquisite redundant partition

method to balance partition pruning and data redundancy.

Based on the above insights, we propose LIRA, a LearnIng-based
queRy-aware pArtition framework to serve as a meta index across

partitions. In general, LIRA follows the “one size does not fit all”

principle and explores the power of adaption. After building initial

clustered partitions, we utilize a learning model to infer where to

probe for individual queries, which data points need to be dupli-

cated, and where to duplicate these data points across partitions.

Specifically, we first enhance the query process by developing a

probing model to predict query-dependent 𝑘NN partitions, thereby

enabling precise partition pruning with less probing waste. The

probing model uses a tunable threshold on its output probabilities,

allowing for more adaptive partition pruning and fine-grained tun-

ing than the 𝑛𝑝𝑟𝑜𝑏𝑒 configuration in IVF. Second, we improve the

construction of partitions by efficiently duplicating data points with

the probing model. When building redundant partitions, we nov-

elly transfer the task from an exhaustive search for 𝑘NN of all data

points globally to discriminating data points individually. Finally,

in the top-k retrieval phase, LIRA leverages the model’s probing

probabilities to guide searching across partitions and to reduce

query fan-out. In summary, we make the following contributions.

• To save the probing waste in a query-aware way, we propose a

learning-based partition pruning strategy where a probing model

generates the probing probabilities of partitions for each query.

• To mitigate the effect of long-tailed 𝑘NN distribution by building

redundant partitions, we novelly transfer the problem of dupli-

cating data points globally to individually and then propose a

learning-based redundancy strategy with the probing model.
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• We conduct extensive experiments on publicly available high-

dimensional vector datasets, demonstrating the superiority of

LIRA in recall, latency, and partition pruning.

2 Preliminaries
2.1 Definitions
Suppose D = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } be a dataset of 𝑁 𝑑-dimension data

points separated in 𝐵 partitions, and 𝑑𝑖𝑠𝑡 (𝑣1, 𝑣2) is the function to

calculate the distance between data points 𝑣1 and 𝑣2. We define the

ANN search problem in the partition-based scenario as follows.

Definition 1 (𝑘NNCount Distribution). Given a query vector
𝑞, let 𝑆𝐺𝑇 = {𝑣1, 𝑣2, . . . , 𝑣𝑘 } be the ground truth (abbreviated as GT)
set of 𝑞’s 𝑘 nearest neighbors. Let 𝑛𝑞

𝑖
be the count of ground truth

𝑘NN of 𝑞 in the 𝑖-th partition, the 𝑘NN count distribution of a query
𝑞 can be defined as 𝑛𝑞 = [𝑛𝑞

1
, 𝑛

𝑞

2
, . . . , 𝑛

𝑞

𝐵
], where ∑𝑖=𝐵

𝑖=1 𝑛
𝑞

𝑖
= 𝑘 .

Definition 2 (Recall@k). Recall@𝑘 refers to the proportion of
the ground truth top-k nearest neighbors retrieved by an ANN search
method out of all ground truth 𝑘NN in the dataset.

Recall@𝑘 =
|𝑆 ∩ 𝑆𝐺𝑇 |

𝑘
× 100%. (1)

where 𝑆 is the retrieved results. A higher Recall@𝑘 value indicates a
greater number of exact top-k nearest neighbors are retrieved.

Definition 3 (Long-tail Data Point). Given a 𝑘NN count dis-
tribution of a query 𝑞, 𝑛𝑞 = [𝑛𝑞

1
, 𝑛

𝑞

2
, . . . , 𝑛

𝑞

𝐵
], we regard the part of

𝑘NN with 𝑛𝑞
𝑖
= 1 as the long-tail part in the 𝑘NN count distribution.

The specific data point served as the long-tail 𝑘NN of 𝑞 where 𝑛𝑞
𝑖
= 1

in the long-tail part is termed as a long-tail data point.

For a 𝑘NN count distribution 𝑛𝑞 , we term the partition that

contains the ground truth 𝑘NN as a 𝑘NN partition. We denote the

𝑘NN partition distribution 𝑝𝑞 = [𝑝𝑞
1
, 𝑝

𝑞

2
, . . . ,

𝑞

𝐵
] as a binary mask

over 𝑘NN count distribution, where 𝑘NN partitions are marked

with 1 while others with 0, and

∑𝑖=𝐵
𝑖=1 𝑝

𝑞

𝑖
= (𝑛𝑝𝑟𝑜𝑏𝑒𝑞)∗. In addition,

for a long-tailed 𝑘NN count distribution 𝑛𝑞 , we regard partitions

with 𝑛
𝑞

𝑖
> 1 as the replica partition (e.g., partition A and B in

Fig. 1). According to Insight 2, duplicating a long-tail data point

into its replica partitions can save one probing and reduce 𝑛𝑝𝑟𝑜𝑏𝑒∗

further. There may be other replica partitions of a data point, since it

can be in the long-tail part of the 𝑘NN distribution of other queries.

Definition 4 (Objective). Compared with baseline methods un-
der equivalent Recall@𝑘 , our objective is to optimize the partition
pruning and query latency. Our approach involves the refinement of
partition by integrating a learning-based redundancy strategy and
query-aware retrieval process with a learned probing model.

2.2 Motivation
We provide motivations through conducting preliminary studies on

the SIFT [2] 1M dataset with 10K queries. We illustrate the waste of

probing caused by partition pruning with centroids distance ranks,

and common long-tail 𝑘NN in 𝑘NN count distributions.

Probing Waste with Distance Ranking. In IVF, the probing car-

dinality𝑛𝑝𝑟𝑜𝑏𝑒 infers probing the nearest𝑛𝑝𝑟𝑜𝑏𝑒 partitions. Ideally,

the optimal number of probing partitions, 𝑛𝑝𝑟𝑜𝑏𝑒∗, should be no

larger than 𝑘 for Recall@k. We define 𝑛𝑝𝑟𝑜𝑏𝑒∗
𝑑𝑖𝑠𝑡

as the maximum
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Figure 2: Extra probing with distance ranking (LEFT) and
common phenomenon of long-tail 𝑘NN (RIGHT).

distance rank among the 𝑘NN partitions, which implies the nearest

𝑛𝑝𝑟𝑜𝑏𝑒∗
𝑑𝑖𝑠𝑡

partitions need to be probed to cover all 𝑘NN. However,

we find that probing according to 𝑛𝑝𝑟𝑜𝑏𝑒∗
𝑑𝑖𝑠𝑡

wastes probing car-

dinality. For example, the 𝑛𝑝𝑟𝑜𝑏𝑒∗
𝑑𝑖𝑠𝑡

exceeds 20 for some queries

when retrieving top-10 𝑘NN and the waste of probing is even worse

with 𝑘 = 100 (See details in Appendix A.2). In addition, we show

the extra 𝑛𝑝𝑟𝑜𝑏𝑒 for each query when probing partitions accord-

ing to the distance rank in Fig. 2 (LEFT). The extra 𝑛𝑝𝑟𝑜𝑏𝑒 is the

difference between the optimal (𝑛𝑝𝑟𝑜𝑏𝑒𝑞)∗ and the (𝑛𝑝𝑟𝑜𝑏𝑒𝑞)∗
𝑑𝑖𝑠𝑡

.

Hence, these observations suggest an opportunity to reduce the

probing waste by refining the probing strategy in the query phase.

Common Long-tail 𝑘NN. To discover the ubiquity of long-tailed

𝑘NN count distribution, we analyze the long-tail phenomenon by

calculating the minimum 𝑛
𝑞

𝑖
in a query 𝑞’s 𝑘NN count distribution

expect zeros. Considering the 𝑘NN of a query can be more con-

gested with larger partition sizes, we set the number of partitions

𝐵 ∈ {64, 32, 16, 8}, respectively. As depicted in Fig. 2 (RIGHT), the

long-tail phenomenon exists regardless of the number of partitions.

In detail, as we can see in the horizontal axis with a value of 1, thou-

sands of queries have long-tailed 𝑘NN count distribution among a

total 10k queries. Hence, if valuable knowledge can be extracted

from the 𝑘NN count distributions, there are two opportunities to

improve the ANN search by incorporating redundancy in partition

building. First, we can infer the latent long-tail data points in the

dataset. Second, we can predict the replica partitions for long-tail

data points. In Section. 3.3, we present the time complexity of build-

ing redundant partitions with global 𝑘NN count distributions of all

data, and introduce an efficient learning-based redundancy strategy.

3 Method
In this section, we first present an overview of LIRA. We then

introduce the partition pruning strategy with a learned probing

model. We illustrate the learning-based redundancy strategy by

identifying long-tail data points and duplicating them to replica

partitions with the probing model. Finally, we present 𝑘NN retrieval

across partitions by using the probing model as the meta index.

3.1 Framework Overview
The workflow of LIRA can be divided into two distinct processes:

the construction of redundant partitions and the top-k retrieval for

queries, which we illustrate through a toy example with 5 partitions

in Fig. 3 and 6, respectively. (1) Probing model training. After
initializing the 𝐵 partitions with the vanilla K-Means algorithm,
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Figure 3: Partition initialization (LEFT), the probingmodel training (MIDDLE) and learning-based redundancy strategy (RIGHT).

LIRA targets training a probing model to serve as the meta index

and to engage in building redundant partitions. Specifically, the

probing model is applied threefold in LIRA: learning the mapping

function 𝑓 (·) of data points to 𝑘NN partitions in training, providing

potential long-tail data points and replica partitions in learning-

based redundancy, and guiding the partition probing during the

query-aware retrieval process. (2) Learning-based redundancy.
During the redundancy phase, we aim to duplicate the potential

long-tailed data points to the replica partitions by using the probing

model. Finding the deep correlation between the𝑘NN partitions and

the replica partitions, we novelly transform the problem of picking

and duplicating long-tailed data points from globally to individually.

First, we pick the data points with more predicted 𝑛𝑝𝑟𝑜𝑏𝑒 as the

potential long-tail data points. Second, we choose the partition with

a high predicted possibility in 𝑝𝑣 to put the replica of data point 𝑣 .

We construct the internal indexes for each partition individually

after the redundant partitions are built (See detailed algorithm of

the two-level index in Appendix A.3). (3) Query-aware retrieval
process. Since the probing model can map a data point in the

vector space to its 𝑘NN partitions, we can use it to guide the top-k

retrieval across partitions. The predicted probabilities are utilized

along with a probability threshold in the inter-partition pruning,

and the internal indexes are used for inner-partition searching.

3.2 Probing Model Training
Probing Model. The model has two inputs: (1) the query vector

𝑞, and (2) the distances between 𝑞 and partitions centroids 𝐼 . We

can regard the probing model as a multivariate binary classifier

for whether to probe each partition. The output is the predicted

probability 𝑝 in the dimension of the number of partitions 𝐵. Hence,

the model can be represented as 𝑓 (𝑞, 𝐼 ) = 𝑝 . We convert the two

inputs as feature vectors 𝑥𝑞 and 𝑥𝐼 with individual networks, re-

spectively, and then concatenate the two feature vectors to generate

the predicted probing probabilities 𝑝 as follows.

𝑥𝑞 = 𝜙𝑞 (𝑞), 𝑥𝐼 = 𝜙𝐼 (𝐼 ), 𝑝 = 𝜙𝑝 (𝑥𝑞 ⊕ 𝑥𝐼 ) (2)

where 𝜙𝑞 , 𝜙𝐼 , 𝜙𝑝 are three independent multi-layer models, and the

output of 𝜙𝑝 is the predicted probabilities for probing partition 𝑝 .

As discussed in Section 2.2, an ideal probing model served as

the meta index should directly probe 𝑘NN partitions of a query

regardless of its distance rankings to cluster centers. Hence, the

labels of a 𝑞 are the same as the 𝑘NN partition distribution 𝑝𝑞 ,

where partitions with 𝑛
𝑞

𝑖
> 0 are regarded as positive and other

partitions with no 𝑘NN are labeled as negative. For example, the

labels of a 𝑘NN count distribution [5, 4, 1, 0, 0] is [1, 1, 1, 0, 0].
Network Training. We sample a subset of data from the whole

dataset 𝐷 as training data and use the provided queries of a dataset

to evaluate the effectiveness of LIRA (See detailed description on

scalability in Appendix A.3 and A.5). For each training data, we

search the 𝑘NN from the training data to get the 𝑘NN partition

distribution 𝑝𝑞 . The output of the probing model 𝑝
𝑞

𝑏
in [0, 1] is the

possibility of probing each partition. We take the partition with

𝑝
𝑞

𝑏
≥ 𝜎 as a probing partition to support query-aware 𝑛𝑝𝑟𝑜𝑏𝑒 . The

𝜎 is set as 0.5 in training and is tunable in the query process, which

provides fine-grained tuning in partition pruning than the 𝑛𝑝𝑟𝑜𝑏𝑒

configuration in IVF. Hence, we can solve the multivariate binary

classification problem with the cross-entropy loss:

L(𝑝𝑞, 𝑝𝑞 ) = −
𝐵∑︁

𝑏=1

(
𝑝
𝑞

𝑏
· log (𝑝𝑞

𝑏
) + (1 − 𝑝

𝑞

𝑏
) · log (1 − 𝑝

𝑞

𝑏
)
)

(3)

where the L(𝑝𝑞, 𝑝𝑞) is the loss of the probing model on a query 𝑞.

3.3 Learning-based Redundancy
Redundancy is a crucial step in LIRA since it helps refine the initial

hard partitions as redundant partitions. The aim of redundancy

is to reduce the side-effect of long-tailed 𝑘NN count distribution

by reasonably duplicating each long-tail data point into one of its

replica partitions. There are two important issues about redundancy.

(1) Under the initial partition, how do we identify data points that

tend to be the long-tail data points in the 𝑘NN count distribution of

queries? (2) To duplicate the long-tail data points, which partitions

should we transfer these data points into?

Pick Data Points. A data point 𝑣 might be a long-tail data point

for any query. To identify whether a data point is long-tail, it is nec-

essary to examine the 𝑘NN counts distribution, 𝑛𝑞 , for all queries.

Since the 𝑛𝑞 is unknown when building redundant partitions, we

can only use the 𝑘NN count distribution of the data itself, 𝑛𝑣 , which

involves finding the data points in the long-tail 𝑘NN parts of other

data’s 𝑘NN count distribution. Duplicating globally means comput-

ing the 𝑘NN of all data to identify whether a data point is long-tail.

However, the computation cost of getting 𝑘NN of the whole data
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Figure 4: Ratio of long-tailed and not long-tailed data points under certain 𝑛𝑝𝑟𝑜𝑏𝑒∗ (LEFT). The recall (MIDDLE) and hit rate
(RIGHT) of replica partitions among top-M partitions with model output rank or centroids distance rank.
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Figure 5: Pick and duplicate potential long-tailed data points
individually with the probing model is more efficient than
using ground truth 𝑘NN count distribution globally.

𝑂 (𝑁 2 · 𝑑) is unacceptable in large-scale datasets. Consequently,

it is impractical to identify all the long-tail data points globally.

Innovatively, we circumvent this challenge and transfer the issue

of identifying long-tail data points from globally to individually.

Specifically, we observe an interesting phenomenon from em-

pirical analysis: Data points with a larger 𝑛𝑝𝑟𝑜𝑏𝑒∗ are more
likely to be long-tail data points. In detail, we record the 𝑘NN

count distribution and 𝑛𝑝𝑟𝑜𝑏𝑒∗ of individual data in SIFT and find

the long-tail 𝑘NN data points. Varying the specific 𝑛𝑝𝑟𝑜𝑏𝑒∗, we
calculate the ratio of data that identified as long-tail data points

versus those are not. As demonstrated in Fig. 4 (LEFT), an increase

in 𝑛𝑝𝑟𝑜𝑏𝑒∗ correlates with a higher ratio of long-tail data points.

The observation aligns with the spatial partitioning in vector space:

data points with 𝑘NN separated across multiple partitions are more

likely located at the boundaries of partitions and thus are more

prone to being long-tail.

In Fig. 5, we illustrate the transformation of picking data points

by using other data’s 𝑘NN globally to using ego 𝑘NN (i.e., the 𝑘NN

of a data point itself) individually. For example, long-tail data points,

𝑣2 and 𝑣3, exhibit a higher 𝑛𝑝𝑟𝑜𝑏𝑒∗ compared to the non-long-tail

data point 𝑣1. Leveraging the accurate prediction of the probing

model, we can reliably use it to estimate the 𝑛𝑝𝑟𝑜𝑏𝑒∗ of data points
and pick potential long-tail data points individually. We apply the

model to get the 𝑝 of all data points, selecting those within the upper

𝜂 percentile of predicted𝑛𝑝𝑟𝑜𝑏𝑒 . Hence, utilizing the probing model

obviates the need to find 𝑘NN on whole data globally, streamlining

the process of identifying long-tail data points.

Duplicate Data Points. After identifying data points requiring

duplication, the next challenge is selecting appropriate partitions to

put these replicas. Similar to the challenge of high computation cost

in picking data points, the replica partitions of each long-tail data

point are unknown if the global 𝑘NN count distribution is inacces-

sible. For all the long-tail data points, we record the 𝑘NN partitions

and replica partitions, and we observe an interesting phenomenon:

the replica partitions for duplicating a data point 𝑣 have a
strong relationship to its 𝑘NN partitions. In detail, most of the

replica partitions of 𝑣 align closely with its 𝑘NN partitions. As the

example in duplicating data of Fig. 5, the 𝑘NN partition (i.e., the

four partitions depicted in blue) of a long-tail data point, 𝑣2, can

cover its replica partitions (i.e., the three partitions shown in yel-

low). 𝑣1 has no replica partitions since it is not a long-tail data point.

This provides a promising approach to getting replica partitions by

leveraging predicted probing partitions from the model.

Another problem follows this insight: since the model can pro-

duce many probing partitions for a data point 𝑣 , which one should

be chosen to put the replica of 𝑣? Our analysis indicates that the
partition 𝑏 with higher probing probability 𝑝𝑣

𝑏
is more likely

to be a replica partition for 𝑣 . In detail, we first get the replica par-
titions of all the long-tail data points. Then, we calculate 𝑅𝑒𝑐𝑎𝑙𝑙𝑣𝑟𝑒𝑝 ,

the recall between replica partitions and the top-𝑀 predicted parti-

tions, where𝑀 ranges from 1 to 𝐵.

Recall
𝑣
𝑟𝑒𝑝 =

|𝑆𝑣
𝑚𝑜𝑑𝑒𝑙

∩ 𝑆𝑣𝑟𝑒𝑝 |
|𝑆𝑣𝑟𝑒𝑝 |

× 100%. (4)

where 𝑆𝑣
𝑚𝑜𝑑𝑒𝑙

is the set of top-M partitions in the model output

of data point 𝑣 , and 𝑆𝑣𝑟𝑒𝑝 is 𝑣 ’s set of the replica partitions. For

comparison, we also evaluate a random ranking of partitions rep-

resented by the blue line. (1) As shown in Fig. 4 (MIDDLE), we

can see that the predicted probing partitions can effectively cover

the replica partition, for 𝑅𝑒𝑐𝑎𝑙𝑙𝑟𝑒𝑝 increases to nearly 1 with just

𝑀 = 20. (2) In addition, the gradually decreasing slope of the red

line can support that partitions with high output probabilities tend

to be replica partitions. Hence, this insight informs our duplication

strategy, which utilizes output probing probability. As illustrated

in Fig. 5, if a long-tail data point is not in the partition with the

highest output rank, we duplicate it into this partition; otherwise,

we put it into the partition with the second-highest output rank.
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Figure 6: Retrieval process across partitions.

Furthermore, comparedwith duplicating long-tail data points
according to the distance rank of partition centroids, we ob-
serve that using the model output rank is more valid. Typi-
cally, centroid distance ranks are considered when duplicating data

points. For example, a data point can be duplicated up to 8 times in

the closure clustering assignment in SPANN [6]. As we highlight

in Limit 1, using centroid distance ranks often wastes 𝑛𝑝𝑟𝑜𝑏𝑒 for

retrieving 𝑘NN. This limitation also emerges when choosing parti-

tions to duplicate long-tail data points. For example, the long-tail

data point 𝑣3 in Fig. 5 has two replica partitions. The distance rank

of replica partitions for 𝑣3 is (2, 3), while the output rank can be (1,

2). We analyze the largest model output rank and centroid distance

rank in replica partitions of each long-tailed data point, respectively.

The hit rate with model output rank on data points 𝑣 is set to 1

if |𝑆𝑣
𝑚𝑜𝑑𝑒𝑙

∩ 𝑆𝑣𝑟𝑒𝑝 | ≠ ∅, otherwise it is set to 0. The hit rate with

centroid distance rank is calculated similarly by using 𝑆𝑣
𝑑𝑖𝑠𝑡

, the

top-M partitions in the centroid distance ranking of 𝑣 . As shown

in Fig. 4 (RIGHT), the model output rank can better indicate the

replica partitions for achieving a higher hit rate at the same𝑀 .

3.4 Query-aware Top-k Retrieval
Aftermodel training and learning-based redundancy, we can achieve

retrieval with the meta index alone or with two-level indexes (i.e.,

the internal indexes are required in large-scale datasets) [54]. We

store the probing model and redundant partitions to evaluate the

performance of LIRA as a meta index for partitions. In the following

part of this section, we give a detailed description of top-k retrieval

with a two-level index and regard an exhaustive search in a partition

if using meta index alone. As shown in Fig. 6, the retrieval process

includes two stages. In the first stage, we utilize the probing model

as the meta index to get the probing probabilities as the retrieval

guidance. In the second stage, we execute the searching in each

probing partition with internal indexes.

We illustrate the retrieval process with LIRA as the meta index

and HNSW as the internal index as an example. (1) In the first stage,

we utilize the probing model to obtain retrieval guidance. Similar to

the training process, we apply the trained model to query vectors

and get the probing probabilities 𝑖 .𝑒 ., 𝑝𝑞 . Instead of probing a fixed

number of partitions, LIRA supports adaptive𝑛𝑝𝑟𝑜𝑏𝑒 for each query

with the predicted 𝑝𝑞 , where only those partitions with 𝑝𝑞 > 𝜎

(𝜎 = 0.5 for default) are treated as probing partitions. Hence, LIRA
can prune more partitions and save more query fan-out compared

with a fixed 𝑛𝑝𝑟𝑜𝑏𝑒 . (2) In the second stage, LIRA executes the

retrieval process with the probing partitions predicted in the first

stage. When retrieving 𝑘 results in a probing partition for query

𝑞, we use the internal indexes without an exhaustive search in the

partition. After completing searches in all probing partitions, we

merge all the retrieved data points as a coarse candidate set. Then,

we rank the coarse candidate set according to the distance to the

query and generate a precise candidate set as the top-k results.

4 Experiment
4.1 Experiment Settings
Datasets. We conduct experiments on 5 high-dimensional ANN

benchmarks (See detailed description in Appendix A.4). Specifi-

cally, we evaluate LIRA on two small-scale datasets, SIFT [2] and

GloVe [37]. We also show the scalability of LIRA on three large-

scale datasets: Deep [4], BIGANN [24], and Yandex TI [50]. For the

constraint in the RAM source, we subsample 50M data points for

each large-scale dataset, following previous studies [18, 29].

Baselines.We evaluate LIRA as the meta index compared with four

baselines, IVF in Faiss [25], IVFPQ [23], IVFFuzzy and BLISS [18](See

detailed description in Appendix A.4). Specifically, we build the

IVFFuzzy index to show the effectiveness of redundancy through

centroid distance rank, where every data point is placed in the two

nearest clusters. BLISS is a learning-to-index method that builds

four groups of partitions, each with an independent model.

To simulate the practical two-level 𝑘NN search, we build two-

level indexes, LIRA-HNSW, and evaluate the effectiveness of LIRA
as the meta index among partitions. We build two-level indexes for

baselines similarly. To exclude the effect of the internal indexes,

we first evaluate the effectiveness of LIRA and baselines as the

meta index in small-scale datasets and then use two-level indexes

in large-scale datasets. The detailed experiments of convergence

validation and sensitivity analysis are in Appendix A.5 and A.6.

Settings. In LIRA, the number of partitions 𝐵 is set as 64 and 1024

for small-scale and large-scale datasets, respectively. The 𝑘 of 𝑘NN

is mainly set as 100 since we focus on addressing probing waste and

long-tailed 𝑘NN distribution. In index construction, the redundancy

percentage 𝜂 is set as 3% when using a meta index alone and is set as

100%when using a two-level index (See detailed sensitivity study on

𝜂 in Appendix A.6). In query process, we use threshold 𝜎 to choose

partitions with 𝑝𝑞 > 𝜎 as probing partitions and tune 𝜎 from 0.1

to 1.0 with a step of 0.05. The number of partitions of baselines is

the same as LIRA. For BLISS, we follow the original setting, build

four groups of partitions with four independent models in the index

construction phase, and search for four groups of partitions in the

query phase.

Evaluation Metrics. For the one-level meta index, we evaluate the

performance of LIRA and baselines threefold: accuracy, efficiency,

and query fan-out. (1) We use Recall@𝑘 to evaluate the search

accuracy. (2) We use the distance computations 𝑐𝑚𝑝 (i.e., the total

number of visited data points) in the probing partitions to indicate

the search efficiency. (3) We record the 𝑛𝑝𝑟𝑜𝑏𝑒 to reflect the query

fan-out and to reflect the effectiveness of partition pruning. For the

two-level index in large-scale datasets, apart from the Recall@𝑘

and 𝑛𝑝𝑟𝑜𝑏𝑒 , we additionally use query per second (QPS) to reflect

the general search efficiency.
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Table 1: Performance at Recall@k=0.98 with various k.

cmp IVF IVFPQ IVFFuzzy BLISS LIRA

𝑘 = 10 120641

120641

recall=0.70

119409

(-1.0%)

151911

(+25.9%)

83824
(-30.5%)

𝑘 = 50 137276

137276

recall=0.74

144120

(+4.9%)

151911

(+10.6%)

91431
(-33.3%)

𝑘 = 100 137276

137276

recall=0.76

144120

(+4.9%)

168778

(+22.9%)

96261
(-29.8%)

𝑘 = 200 153931

187410

recall=0.78

144120

(-6.3%)

168778

(+9.6%)

99279
(-35.5%)

nprobe IVF IVFPQ IVFFuzzy BLISS LIRA

𝑘 = 10 7

7

recall=0.70

4
(-42.8%)

8

(+14.2%)

4.8138

(-31.2%)

𝑘 = 50 8

8

recall=0.74

5
(-37.5%)

8

(0%)

5.2342

(-34.5%)

𝑘 = 100 8

8

recall=0.76

5
(-37.5%)

9

(+12.5%)

5.4648

(-31.6%)

𝑘 = 200 9

11

recall=0.78

5
(-44.4%)

10

(+11.1%)

5.6561

(-37.1%)

4.2 Evaluation on Small Scale Datasets
In this section, we first show the performance of LIRA and baselines

when retrieving different 𝑘 nearest neighbors and illustrate the

superiority of LIRA with large 𝑘 settings. Second, we show the

trade-off between recall and distance computations and between

recall and 𝑛𝑝𝑟𝑜𝑏𝑒 on two small-scale datasets, SIFT and GloVe. For

a fair comparison, we present the average distance computations

executed by four individual models and partitions in BLISS.

Performance with Various 𝑘 . To explore the performance on dif-

ferent retrieval requirements, we conduct experiments on SIFT with

various 𝑘 and calculate the minimum average distance computa-

tions and average 𝑛𝑝𝑟𝑜𝑏𝑒 to achieve Recall@𝑘 = 0.98. When IVFPQ

can hardly achieve the desired recall, we record the acceptable

distance computations with the corresponding recall value.

Table 1 shows that the 𝑐𝑚𝑝 increases monotonically with 𝑘 .

Moreover, as 𝑘 increases with more serious long-tailed 𝑘NN distri-

butions, the advantages of LIRA are gradually highlighted. There are

two reasons behind such an advantage. First, utilizing the strength

of adaptive probing from a query-aware view, LIRA focuses on

eliminating the probing waste by directly probing target 𝑘NN par-

titions with the model rather than probing according to distance

ranks to centroids. Second, LIRA reduces the long-tailed 𝑘NN dis-

tributions with reasonable replicas. Table 1 also shows the required

𝑛𝑝𝑟𝑜𝑏𝑒 for various 𝑘 , which gives an apparent advantage of LIRA
in saving query fan-out. When LIRA and other baselines except

IVFFuzzy achieve the same recall, LIRA needs less 𝑛𝑝𝑟𝑜𝑏𝑒 . This

result supports that the probing model in LIRA can prune partitions

effectively and accurately. Due to the strong advantage of LIRA in

a large 𝑘 , we mainly present the results for 𝑅𝑒𝑐𝑎𝑙𝑙@100 in the rest

of the experiments for brevity. IVFFuzzy is superior in reducing

𝑛𝑝𝑟𝑜𝑏𝑒 , but it performs comparably to IVF on 𝑐𝑚𝑝 , for the average

partition size in IVFFuzzy is double than that of other baselines.

For the suboptimal performance of IVFPQ compared with IVF, we

drop it from the remaining experiments.

Trade-off between Recall and both 𝑛𝑝𝑟𝑜𝑏𝑒 and 𝑐𝑚𝑝.Tomanip-

ulate the recall with corresponding 𝑐𝑚𝑝 , we tune the 𝑛𝑝𝑟𝑜𝑏𝑒 in IVF,
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Figure 7: Recall and 𝑐𝑚𝑝 on small-scale datasets.
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Figure 8: Recall and 𝑛𝑝𝑟𝑜𝑏𝑒 on small-scale datasets.

IVFFuzzy, and BLISS, and 𝜎 for partition pruning in LIRA. As shown
in Fig 7 and Fig. 8, LIRA surpasses all the baselines in 𝑅𝑒𝑐𝑎𝑙𝑙@100.

(1) Compared with other partition-based methods, LIRA outper-

forms for two reasons. First, the well-built redundant partitions

in LIRA can naturally reduce the optimal 𝑛𝑝𝑟𝑜𝑏𝑒∗ and the probing

quantity for partitions with long-tail 𝑘NN. (2) Second, the probing

model can better adaptively narrow down the area of the probing

partition with the well-learned mapping from a data point in the

vector space to the 𝑘NN partitions. (3) Moreover, the gap between

LIRA and the baselines expands as the recall increases on GloVe.

This is because the baselines struggle to tackle the phenomenon

of the long-tailed 𝑘NN distribution, and the long-tail data points

mainly impact the trade-off between recall and search cost at a high

recall value. Hence, the advantage of LIRA is more outstanding

with a high recall requirement through an effective query-aware

partitioning pruning strategy. (4) As for performance on SIFT, when

recall is higher than 0.98, the gap between LIRA and the baselines

slightly shrinks. This is because LIRA does not fully address the

long-tailed 𝑘NN distribution for considering efficiency, resulting in

some long-tail data points without duplication.

It is also worth noting that the learning-based method, BLISS,

performs much worse than other methods on SIFT. There are two

main reasons for the inefficiency of BLISS. (1) BLISS builds partitions

with models from scratch instead of refining partitions based on

other clustering methods, e.g., the K-Means clustering algorithm.

The partitions built in BLISS tend to be unbalanced without fine-

tuned training, resulting in some partitions with a large number of

data points while some other partitions have no data points. These

unbalanced partitions may lead to suboptimal partition probing and

cause more distance computations, 𝑐𝑚𝑝 . (2) BLISS requires 4 groups

of partition-based indexes. The 𝑛𝑝𝑟𝑜𝑏𝑒 of BLISS is presented as the

fixed 𝑛𝑝𝑟𝑜𝑏𝑒 in one group of indexes, and the 𝑐𝑚𝑝 of BLISS denotes

the total number of candidates from four groups of partitions after

deduplication. This also causes awaste of 𝑐𝑚𝑝 since the four indexes

built by independent models differ.
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Table 2: Performance of QPS, Recall@100, partition pruning rate and overall latency on large-scale datasets.

Metrics Query Per Second Recall@100 nprobe
Dataset IVF IVFFuzzy LIRA IVF IVFFuzzy LIRA IVF IVFFuzzy LIRA

Deep

126 93 117 0.8996 0.9604 0.9655 9 11 9.2586

227 338 354 0.8265 0.8354 0.8441 5 3 2.9567

BIGANN

62 104 118 0.9464 0.9607 0.9639 19 11 10.1043
173 230 257 0.8496 0.8860 0.8952 7 5 4.6465

Yandex TI

141 160 174 0.7673 0.8316 0.8386 9 8 7.7058
258 324 346 0.6847 0.7524 0.7732 5 4 3.8171
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Figure 9: Per query performance.

Search Performance per Query. Fig. 9 presents the normalized

distance computations 𝑐𝑚𝑝 and 𝑛𝑝𝑟𝑜𝑏𝑒 of IVFFuzzy and LIRA over

IVF on a per-query basis, respectively. Take the figure on the left of

Fig. 9 as an example for a detailed explanation. The x-axis denotes

theminimum 𝑐𝑚𝑝 when IVF achieves the𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 = 0.98 for every

query. The y-axis presents the ratio between the 𝑐𝑚𝑝 of another

method to achieve a recall of 0.98 and the 𝑐𝑚𝑝 of IVF. A red point

below the normalized value of 1.0 infers that the query process of

this query with LIRA takes less retrieval cost than IVF, and a brown

plus sign infers the normalized cost of IVFFuzzy. We remove the

baseline BLISS from this experiment because it struggles to achieve

the target recall efficiently. This figure provides the performance

of individual queries, where we sample 100 queries from all the

queries of the dataset for display.

Overall, IVFFuzzy and LIRA reduce the 𝑐𝑚𝑝 compared with IVF

at the same recall. For IVF, there are easy queries and hard queries,

where hard queries require more probing partitions and distance

computation to achieve the target recall. (1) It is worth mentioning

in Fig. 9, LIRA optimizes most of the queries that need 𝑛𝑝𝑟𝑜𝑏𝑒 ⩾ 10

with IVF. This means that LIRA exhibits a significant reduction,

especially on hard queries. This is because there are more long-

tailed 𝑘NN distributions for hard queries, which results in more

probing waste. (2) For the IVFFuzzy, it is desired to achieve half of

IVF’s 𝑛𝑝𝑟𝑜𝑏𝑒 to achieve a comparable search efficiency in the one-

level meta index, because the number of data points in IVFFuzzy

is doubled. However, the general normalized 𝑛𝑝𝑟𝑜𝑏𝑒 of IVFFuzzy

is more than 0.5. This illustrates that the redundancy strategy in

IVFFuzzy is unable to achieve comparable search efficiency when

IVFFuzzy is used as a meta index alone.

4.3 Evaluation on Large Scale Datasets
This section presents the performance of LIRA and other baselines

on three large-scale datasets. We build two-level indexes with IVF,

IVFFuzzy and LIRA as the meta index, respectively. The HNSW in-

dex is used as the internal index for a fast inner-partition searching

process. We drop BLISS from evaluation on large-scale datasets for

out-of-memory with 4 groups of two-level indexes. Following pre-

vious study [18], Table 2 shows the performance in two scenarios

that demand high efficiency or high recall, respectively. Based on

the experiment results, we can make the following observations.

• Compared with non-learning methods, LIRA outperforms IVF

and IVFFuzzy in most cases, especially with high recall.

• Compared to the performance of a one-level index, the IVFFuzzy

becomesmore efficient among the two-level indexes.WithHNSW

as the internal index, search efficiency is enhanced largely by

avoiding exhaustive searches within a partition, and the large

number of redundant data points has less impact on efficiency.

• Due to the learning-based redundancy and the query-aware adap-

tive 𝑛𝑝𝑟𝑜𝑏𝑒 generated by the effective probing model, LIRA can

achieve better partition pruning than the IVF and IVFFuzzy.

• The improvement of LIRA compared to IVFFuzzy varies among

different datasets, which may demonstrate that different 𝜂 is

required for different datasets. Hence, an opportunity exists for

LIRA to achieve a better redundancy with an adaptive number of

redundant data points on different datasets.

5 Conclusion
State-of-the-art partition-based ANN methods typically divide the

dataset into partitions and use query-to-centroid distance rankings

for search. However, they have limitations in probing waste and

long-tailed 𝑘NN distribution across partitions, which adversely af-

fects search accuracy and efficiency. To overcome these issues, we

propose LIRA, a LearnIng-based queRy-aware pArtition framework.

Specifically, we propose a probing model to achieve outstanding

partition pruning by reducing probing waste and providing query-

dependent 𝑛𝑝𝑟𝑜𝑏𝑒 . Moreover, we introduce a learning-based redun-

dancy strategy that utilizes the probing model to efficiently build

redundant partitions, thereby mitigating the effects of long-tailed

𝑘NN distribution. Our proposed method exhibits superior perfor-

mance compared with existing partition-based approaches in the

accuracy, latency, and query fan-out trade-offs.
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A Appendix
In this section, we provide relatedwork in Appendix A.1, motivation

details in Appendix A.2, scalability analysis of LIRA in Appendix A.3,

implementation details of experiments in Appendix A.4, conver-

gence validation of the probing model training in Appendix A.5,

and sensitivity analysis in Appendix A.6.

A.1 Related Work
Existing studies for ANN search can be roughly divided into four

groups, including (1) hash-based [9, 21, 40], (2) tree-based [3, 12, 19,

36], (3) quantization-based [1, 15, 33], and (4) graph-based [14, 32,

35, 44]. Typically, the computational cost of retrieval 𝑘 approximate

nearest neighbors,𝑂 (𝑛𝑑), incurs from the number of visited vectors

denoted as 𝑛 and the dimension of vectors represented as 𝑑 . The

existing ANN search methods leverage high-dimensional indexes

to reduce latency from these two aspects.

Partition-based ANN Methods. The tree-based indexes [12] par-
tition the vector space into nested nodes and then narrow down the

search area with hierarchical tree-based indexes during the search

phase. DB-LSH et al. [40] efficiently generate candidates by dy-

namically constructing query-based search areas. IVF (inverted file)

index [25] first clusters the vectors into partitions and then narrows

down the search area with the nearest partitions. Chen et al. [6]

uses a clustering algorithm and the inverted index to build balanced

posting lists, and probes the clusters within a certain distance from

the query vector. Zhang et al. [54] focuses on multi-probe ANN

search and formalizing the query-independent optimization as a

knapsack problem. Neural LSH [11] generates partitions by bal-

anced graph partitioning. Zhao et al. [56] combine the strength of

LSH-based and graph-based methods and utilize LSH to provide a

high-quality entry point for searching in graphs.

Learning-based ANN Methods.Artificial Intelligence(AI) has been
widely applied to databases [7, 27, 31, 43], information retrieval

systems [28] and decision-making scenarios [10, 13, 20, 48, 52]. We

provide some learning-based ANN on top of partitions and graphs.

For partition-based methods, BLISS [18] and Li et al. [29] com-

bine the partition step and the learning step with learning-to-index

methodology, and then search with a fixed 𝑛𝑝𝑟𝑜𝑏𝑒 . Zheng et al. [57]

builds hierarchical balanced clusters and further leverages neural

networks to generate adaptive 𝑛𝑝𝑟𝑜𝑏𝑒 for each query. For graph-

based methods, the graph-based indexes [35, 44] first connect the

similar vectors with basic proximity graphs in the construction

phase and then route in the graph through the most similar neigh-

bors with the greedy search strategy. Based on the graph-based

HNSW, Li et al. [26] demonstrate that easy queries often need less

search depth than hard ones. Li et al. [26] introduces an early ter-

mination strategy and uses models to predict the minimum number

of visited vectors required for retrieving the ground truth 𝑘NN

for a given query, which can halt the search before meeting the

traditional termination condition in the graph.

A.2 Motivation Details
We find that probing according to 𝑛𝑝𝑟𝑜𝑏𝑒∗

𝑑𝑖𝑠𝑡
wastes probing cardi-

nality, with empirical study presented in Fig. 10 (LEFT). The blue

dashed line shows the percentage of queries with 𝑛𝑝𝑟𝑜𝑏𝑒∗ no more

than a specified 𝑛𝑝𝑟𝑜𝑏𝑒 . The red dashed line reflects the percentage
of queries with 𝑛𝑝𝑟𝑜𝑏𝑒∗

𝑑𝑖𝑠𝑡
no more than a given 𝑛𝑝𝑟𝑜𝑏𝑒 . In other

words, those queries achieving 𝑅𝑒𝑐𝑎𝑙𝑙@10 = 1 satisfy the accuracy

requirement. (1) As we can see, the 𝑛𝑝𝑟𝑜𝑏𝑒∗
𝑑𝑖𝑠𝑡

exceeds 20 for some

queries when retrieving top-10 𝑘NN, which introduces significant

probing wastes. (2) Moreover, the waste of probing is even worse

with a larger value of 𝑘 . As shown in Fig. 10 (RIGHT) for 𝑘 = 100,

the 𝑛𝑝𝑟𝑜𝑏𝑒∗ of all queries are no more than 22; while 𝑛𝑝𝑟𝑜𝑏𝑒∗
𝑑𝑖𝑠𝑡

escalates to 40 for some queries.
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Figure 10: Probing Waste with Distance Ranking and Com-
mon Long-tail Phenomenon.

Algorithm 1 One-level and Two-level Index Building

1: Input: data points D, training queries 𝑄

2: Output: indexes of D in 𝐵 partitions for top-𝑘 retrieval

3: (1) For one-level meta index
4: Sample a subset of data D𝑠𝑢𝑏 for training ⊲ Scalability

5: Build 𝐵 partitions for D𝑠𝑢𝑏 and get partition centroids and

distance to centroids 𝐼

6: Get 𝑘NN partition distributions 𝑝 of D𝑠𝑢𝑏 as labels

7: Learn 𝑝𝑞 , 𝑓 (𝑞, 𝐼 ) = 𝑝𝑞 ⊲ Model Training

8: Put all D in the nearest partitions

9: Get the predicted probability 𝑝 of D with 𝑓 (·)
10: Pick 𝜂% of data points as D𝑝𝑖𝑐𝑘 with 𝑝 ⊲ Redundancy

11: for all data point 𝑣 in D𝑝𝑖𝑐𝑘 do
12: Choose a target replica partition with 𝑝

13: Duplicate the data of 𝑣

14: end for
15: (2) For two-level index
16: Build internal indexes for each partition

A.3 Scalability Analysis
Since the subset of data is used in training, we give a detailed

explanation of the scalability of LIRA. In general, LIRA only requires

the ground truth 𝑘NN and 𝑘NN count distribution of a subset of

data. The two phases of probing model training and learning-based

redundancy are both scalable to large-scale datasets, even if the

model is trained on a subset. The algorithm of index building with

the probing model is illustrated in Algorithm 1.

First, for model training, the true label of 𝑘NN partition distribu-

tion is more sparse if we scale the number of data with the same

total number of partitions 𝐵. This is because a partition contains

more data points with a large-scale dataset under the same 𝐵, and

the 𝑘NN of a query are more likely to be separated in fewer par-

titions. However, the true label of 𝑘NN partition distribution 𝑝
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Table 3: Datasets

Dataset # of Dimension # of Data # of Query

SIFT 128 1M 10K

GloVe 96 1M 1K

Deep 96 50M 10K

BIGANN 128 50M 10K

Yandex TI 200 50M 10K

does not affect the model training, since the probing partitions are

selected by the threshold 𝜎 of the predicted possibilities.

Second, for learning-based redundancy, the picking and duplicat-

ing steps are all based on the relative results. We pick a data point 𝑣

with a relatively high quantity of predicted probing partitions and

then duplicate it to a partition with relatively high probing possi-

bility in 𝑝𝑣 . Hence, the workflow of LIRA is scalable to large-scale

datasets.

A.4 Implementation Details
Datasets. We conduct experiments on 5 high-dimensional ANN

benchmarks with different data sizes and distributions. The details

of the datasets are shown in Table 3.

Baselines. The detailed information on baselines is as follows.

• IVF. IVFFlat in Faiss [25] (abbreviated as IVF) is a widely used

ANN method that utilizes inverted indexes.

• IVFPQ. IVFPQ [23] is a widely adopted solution that combines the

advantages of product quantization and the inverted file index.

• IVFFuzzy. Fuzzy clustering is a method where each data point can

be put in more than one cluster. We build the IVFFuzzy index to

show the effectiveness of redundancy through centroid distance

rank, where every data point is placed in the two nearest clusters.

• BLISS [18]. BLISS is a learning-to-indexmethod that builds groups

of partitions, each with an independent model. The variant of

BLISS [29] is omitted from experiments, as well as Neural LSH [11]

that is inferior to BLISS.

For two-level indexes, the parameter of HNSW in graph building

for limiting the edge of a data point is set as 32, and the search

parameter of HNSW for limiting the length of the candidates set is

set as 128.

Evaluation Platform. We implement our methods and baselines

in Python 3.7. All the experiments are conducted on Intel(R) Xeon(R)

Silver 4214 CPU@2.20GHz, 256GBmemory, and 4NVIDIAGeForce

RTX 3080.

A.5 Convergence Validation
This section is not intended to compare LIRA against other baselines

but rather to verify the convergence of LIRA. We illustrate that

during the process of model training and re-partition, the probing

model can achieve convergence while the recall and probing fan-

out can also be improved simultaneously. All the experiments on

convergence validation are conducted on SIFT with 10K queries in

the setting of 𝑘 = 100 and 𝐵 = 64. The batch size for model training

is set as 512. To evaluate whether the predicted partitions are the

𝑘nn partitions, we also calculate the hit rate of 𝑘nn partitions.

Loss and Recall. As shown in Fig. 11(LEFT), we record the loss

and the recall of the testing queries during the training process. A

step in the x-axis means every 10 batches of training data. We can

observe that the loss in the blue line dramatically decreases and

can finally achieve convergence. In addition, the recall in the red

line decreases and then increases. This is because the positive label

of target 𝑘NN partitions is sparse, and the probing model tends to

predict few probing partitions at the beginning of training. With

the probing model learning the mapping of data points to the target

𝑘NN partitions, the recall can approach nearly 1.0 at the end of the

training.
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Figure 11: Model convergence validation with SIFT128, 1M.

nprobe and Hit Rate. With the threshold of model outputs set as

default 𝜎 = 0.5, we record the average 𝑛𝑝𝑟𝑜𝑏𝑒 of queries to repre-

sent the query fan-out and the hit rate of target probing partitions

during the training process. As we can see in Fig. 11(RIGHT), the

number of predicted 𝑛𝑝𝑟𝑜𝑏𝑒 in the blue line converges in stable and

approximates the 𝑛𝑝𝑟𝑜𝑏𝑒∗, and the hit rate in the red line can reach

a high level. Hence, the result supports that the probing model can

predict the target 𝑘NN partitions well. Even if the hit rate is about

0.8 after training, we can tune the threshold 𝜎 in the query process.

In detail, a less 𝜎 results in more probing partitions and a larger

𝑛𝑝𝑟𝑜𝑏𝑒 , while a higher 𝜎 works in the opposite.

Scalability. We evaluate the scalability of LIRA by training on the

subset of data and on the whole data, respectively. Specifically, for

training on a subset, we sample 𝐷𝑆𝑢𝑏 , 100K data from the 1M data

in SIFT as the training data and building partitions on 𝐷𝑆𝑢𝑏 . For

𝑣 ∈ 𝐷𝑆𝑢𝑏 , we get the 𝑘NN count distribution, 𝑛𝑣 , and then get the

𝑘NN partition distribution 𝑝𝑣 in 𝐷𝑆𝑢𝑏 as training label. After model

training, the learning-based redundancy is used on the whole data

𝐷 . Keeping the partitions centroids unchanged, we put the whole

data 𝐷 in partitions and then use the probing model to achieve

redundancy. For comparison, we also train a model with all the 1M

data as training data.
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Figure 12: Scalability of model training.
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Figure 13: Sensitivity of the number of partitions 𝐵 in SIFT.
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Figure 14: Sensitivity of the number of partitions 𝐵 in GloVe.

We get the trade-off between the recall and distance computa-

tions by tuning the𝑛𝑝𝑟𝑜𝑏𝑒 (i.e., probing partitions in the top𝑛𝑝𝑟𝑜𝑏𝑒

output rank) and by tuning the threshold 𝜎 (i.e., probing partitions

with 𝑝𝑞 > 𝜎). As shown in Fig. 12, the model trained on a sub-

set performs similarly to the model trained on the whole dataset

whether probing with 𝑛𝑝𝑟𝑜𝑏𝑒 or threshold. The result supports that

LIRA can be trained on a subset but can still achieve good partition

redundancy and partition pruning on a whole dataset.

Time Cost Analysis. The time for partition construction in LIRA

mainly comes from three aspects, training data collection, probing

model training, and the internal index building. Following the ex-

periment setting in this section, we first build the initial partition

with K-Means and collect the𝑘NN distributions of data, which takes

115 seconds. Second, we train the probing model and refine the

partitions, which merely takes 108 seconds with the concise prob-

ing network. For small-scale datasets, training with six iterations

can already achieve a good probing performance, although training

iteration is set as ten as default. Third, we also build the internal

index (i.e., HNSW) in each partition, which takes 12 seconds.

For the top-k retrieval process, we record the model inference

time (i.e., to decide which partitions to search for a given query)

and the total search time for all queries. We find that the model

inference time only occupies less than 1% of the total search time,

which shows the efficiency of predicting probing partitions. In

detail, on SIFT with 10k queries, the time for getting the input

(i.e., the distance calculation for queries to the centroids) is 0.2

second, the time for model inference merely takes 0.1 second, and

the searching takes 238 seconds for the queries.

A.6 Sensitivity Analysis
Effect of 𝐵. The hyper-parameter 𝐵 in LIRA is used as the total

number of partitions. We conduct sensitivity analysis of the par-

tition number 𝐵 on SIFT and GloVe, which is presented in Fig. 13

and Fig. 14, respectively. To reflect the general trade-off between

efficiency and accuracy, we plot these two figures with the average

distance computations versus recall, comparing LIRA-fix 𝑛𝑝𝑟𝑜𝑏𝑒 ,
BLISS, IVFFuzzy, and IVF. The LIRA-fix 𝑛𝑝𝑟𝑜𝑏𝑒 is a variant of LIRA
with different partition pruning, which utilizes a 𝑛𝑝𝑟𝑜𝑏𝑒 configura-

tion instead of adaptive 𝑛𝑝𝑟𝑜𝑏𝑒 controlled by the threshold 𝜎 of the

model output.We set the partition number as 𝐵 ∈ {1024, 256, 64, 32}.
Due to the inefficiency of BLISS on SIFT in Fig. 7 and Fig. 8, we

exclude the plotting of this group of settings for the result unable

to fit in the graph.

In all settings considered, LIRA outperformed other methods. (1)

For a small value of 𝐵, LIRA can reduce distance computations since

one partition contains more data points, and reducing one partition

probing can save many data points from searching. (2) For a large

value of 𝐵, LIRA can also decrease distance computations because

the probing waste of baselines is more severe across a large number

of partitions. (3) For LIRA-fix 𝑛𝑝𝑟𝑜𝑏𝑒 , even if this variant method

searches with 𝑛𝑝𝑟𝑜𝑏𝑒 configuration similar to the search process of

IVF, it outperforms IVF consistently. This result supports that the

probing model in LIRA can better directly probe the 𝑘NN partitions

with model output rank than probe along with the centroid distance

rank in IVF.

Effect of 𝜂. The hyper-parameter 𝜂 in LIRA is used as the redun-

dancy ratio, picking the data points with the highest predicted

𝑛𝑝𝑟𝑜𝑏𝑒 for redundancy. Considering the internal index can re-

duce the adverse impact of redundancy of both LIRA-HNSW and

IVFFuzzy-HNSW, we conduct sensitivity analysis of the redun-

dancy ratio 𝜂 on SIFT, which is presented in Fig. 15. We tune the 𝜂

to duplicate different ratios of data points in LIRA-HNSW, while the

IVFFuzzy-HNSW duplicates all data points. As we can see, merely

duplicating 40% of data points in LIRA-HNSW can achieve compara-

ble performance to IVFFuzzy-HNSW on the trade-off between recall

and both distance computations and 𝑛𝑝𝑟𝑜𝑏𝑒 . For fair redundancy,



WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Zeng et al.

10.0 12.5 15.0 17.5 20.0
Dist Computations (K)

0.96

0.98

1.00

R
ec

al
l@

10
0

4 6 8
nprobe

0.96

0.98

1.00

R
ec

al
l@

10
0

100% redundancy
80% redundancy

60% redundancy
40% redundancy

20% redundancy
0% redundancy

IVFFuzzy

Figure 15: Sensitivity of the redundancy ratio 𝜂 in SIFT.

we set the 𝜂 as 100% in LIRA-HNSW as the same redundancy in

IVFFuzzy-HNSW. When testing meta index alone without internal

indexes, we set low redundancy 𝜂 = 3% in LIRA to keep the high

efficiency.
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