LIRA: A Learning-based Query-aware Partition Framework for
Large-scale ANN Search

Ximu Zeng Liwei Deng Penghao Chen
University of Electronic Science and ~ University of Electronic Science and ~ University of Electronic Science and
Technology of China Technology of China Technology of China

Chengdu, China

ximuzeng@std.uestc.edu.cn

Chengdu, China

deng_liwei@std.uestc.edu.cn

Chengdu, China
penghaochen@std.uestc.edu.cn

Xu Chen Han Su” Kai Zheng'*
University of Electronic Science and Yangtze Delta Region Institute University of Electronic Science and
Technology of China (Quzhou), University of Electronic Technology of China

Chengdu, China

xuchen@std.uestc.edu.cn

Science and Technology of China
Quzhou, China

Chengdu, China

zhengkai@uestc.edu.cn

hansu@uestc.edu.cn

Abstract

Approximate nearest neighbor search is fundamental in informa-
tion retrieval. Previous partition-based methods enhance search
efficiency by probing partial partitions, yet they face two common
issues. In the query phase, a common strategy is to probe partitions
based on the distance ranks of a query to partition centroids, which
inevitably probes irrelevant partitions as it ignores data distribution.
In the partition construction phase, all partition-based methods face
the boundary problem that separates a query’s nearest neighbors
to multiple partitions, resulting in a long-tailed kNN distribution
and degrading the optimal nprobe (i.e., the number of probing par-
titions). To address this gap, we propose LIRA, a LearnIng-based
queRy-aware pArtition framework. Specifically, we propose a prob-
ing model to directly probe the partitions containing the kNN of
a query, which can reduce probing waste and allow for query-
aware probing with nprobe individually. Moreover, we incorporate
the probing model into a learning-based redundancy strategy to
mitigate the adverse impact of the long-tailed kNN distribution
on search efficiency. Extensive experiments on real-world vector
datasets demonstrate the superiority of LIRA in the trade-off among
accuracy, latency, and query fan-out. The codes are available at
https://github.com/SimoneZeng/LIRA- ANN-search.

CCS Concepts

« Information systems — Information retrieval query pro-
cessing; Learning to rank; Top-k retrieval in databases.

*Corresponding authors: Han Su and Kai Zheng.

Kai Zheng is with Yangtze Delta Region Institute (Quzhou), School of Computer
Science and Engineering, UESTC. He is also with Shenzhen Institute for Advanced
Study, UESTC.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW 25, April 28-May 2, 2025, Sydney, NSW, Australia

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1274-6/25/04

https://doi.org/10.1145/3696410.3714633

Keywords

Approximate nearest neighbor search, Learning-to-index

ACM Reference Format:

Ximu Zeng, Liwei Deng, Penghao Chen, Xu Chen, Han Su, and Kai Zheng.
2025. LIRA: A Learning-based Query-aware Partition Framework for Large-
scale ANN Search. In Proceedings of the ACM Web Conference 2025 (WWW
'25), April 28-May 2, 2025, Sydney, NSW, Australia. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3696410.3714633

1 Introduction

The nearest neighbor (NN) search is well studied in the community
of information retrieval [38, 46, 53, 58]. By embedding unstructured
data (e.g., texts and images) into vectors [30, 41], the similarity
of vectors represents semantic similarity [49, 51]. Hence, vector
space search is fundamental for efficiently retrieving large-scale un-
structured data in retrieval-augmented generation [6, 17, 27, 44, 45].
Given a vector dataset O and a query vector g, the goal of k nearest
neighbors (kNN) search is to find the k vectors nearest to q from
the dataset. However, the exact NN search is time-consuming with
the growth of dataset cardinalities and dimensions [2, 25]. Conse-
quently, current works shift focus towards approximate nearest
neighbor (ANN) search [5, 8, 34], which seeks a trade-off between
latency and accuracy by retrieving with indexing techniques.

1.1 Prior Approaches and Limitations

Partition-based methods are the backbone of ANN search [6, 17, 42],
which are suitable for partial data loading [16, 22]. The kNN of a
query g can be separated into several partitions. We denote the
partitions containing the kNN of query g as its kNN partitions,
which means these partitions should be probed to retrieve the
exact top-k nearest neighbors. A lower nprobe (i.e., the number of
probing partitions, also known as the query fan-out) is preferred
for scalability [39, 55]. A naive way to achieve a low nprobe can
be partition pruning, but a trade-off exists between fewer probing
partitions and high recall. If the probing partitions poorly cover
the kNN partitions, the recall of retrieval results drops. If probing
partitions without kNN, search efficiency degenerates. We call this
phenomenon the Curse of Partition Pruning.

https://orcid.org/0000-0002-5871-1871
https://orcid.org/0000-0002-9377-4309
https://orcid.org/0009-0006-1223-7787
https://orcid.org/0009-0004-3909-4021
https://orcid.org/0000-0001-5579-0378
https://orcid.org/0000-0002-0217-3998
https://github.com/SimoneZeng/LIRA-ANN-search
https://doi.org/10.1145/3696410.3714633
https://doi.org/10.1145/3696410.3714633

WWW °25, April 28-May 2, 2025, Sydney, NSW, Australia

Distance Rank
Partition Rank to g
A 1
B 2
C 5
D 3
E 4

Figure 1: Example for probing waste. The blue point is a
query, and the red points are the centroids of partitions.

Here, we go through the limitations of previous studies in parti-

tion pruning. Considering the low accuracy of tree-based [12] and
hash-based [40, 43, 46, 47] methods, clustering methods are promis-
ing in dealing with the dilemma of partition pruning. The inverted
file (IVF) index [25] builds clusters with the K-Means algorithm and
then searches in fixed nprobe nearest partitions according to the
distance rank between a query and the cluster centroids. Fur-
ther, BLISS [18] build partitions with deep learning models but still
set a fixed nprobe for all queries to achieve the trade-off between
search latency and recall. However, since no fixed nprobe can fit
all queries [57], there remain limitations in search performance.
Limit 1. Partition pruning with the distance rank to partition
centroids wastes nprobe. As shown in a toy example in Fig. 1,
suppose the data points of a dataset are divided into partitions.
The top 10 NNs of a query q are distributed in three partitions (i.e.,
partition A, B, and C), where partition C ranked as the fifth nearest
partition of g. To ensure all 10 NNs are included, the minimum
number of probing partitions based on the centroid distance rank
is nprobe = 5. Alternatively, a more cost-effective way is to directly
probe the three kNN partitions, resulting in the optimal nprobe
to 3. Hence, pruning partitions according to the centroid distance
rank still wastes nprobe, and such probing waste is ubiquitous in
high-dimension datasets as illustrated in Section 2.
Limit 2. Hard partitioning cannot inherently achieve low
nprobe due to the long-tailed distribution of kNN. Partitioning
strategies aim to reduce nprobe. However, due to the curse of dimen-
sion and local density variations, the kNN distribution with hard
partitioning methods (i.e., each data point is put in one partition)
often exhibits the notorious long-tailed characteristic. Specifically,
while most kNN may be densely located in a few partitions, the
remaining kNN scatter across many other partitions [21]. As the
example shown in Fig. 1, the top-10 kNN of a query q are distributed
as [5,4, 1,0,0] in five partitions. The scattered one kNN can be re-
garded as a long-tail kNN, resulting in a less efficient search process.
Due to this limitation, BLISS [18] constructs four groups of inde-
pendent partitions and indexes. Hence, the long-tailed distribution
of kNN diminishes the cost-effectiveness of probing partitions and
increases the query fan-out undesirably.

1.2 Our Solution

We find that the essential issue of the limitations mentioned above
stems from the distribution of kNN in partitions. Hence, we improve
the performance of partition-based ANN search from two aspects,
query process and index construction.

Insight 1. A meta index that directly probes the kNN par-
titions is required. To avoid confusion, we define the index for

Zeng et al.

inter-partitions that facilitates partition pruning as the meta index,
and the index for intra-partition (i.e., the index that only organizes
the data points within one partition) as internal index. In this
study, we focus on the optimization of meta index among the two-
level index for partitions, in which the internal index can apply
any existing index structure such as HNSW [35]. As mentioned in
Limit 1, the optimal number of probing partitions for a query g,
denoted as (nprobe?)*, is exactly the number of its kNN partitions.
When the context is clear, we refer to (nprobe?)* as nprobe* in
this paper for brevity. To address the probing waste through an
effective query process, the ideal meta index needs to directly probe
the kNN partitions of a query. Compared to IVF, the meta index
can achieve high recall while reducing the nprobe simultaneously.
Insight 2. Redundant partitioning is required to mitigate
the long-tailed kNN distribution and further reduce nprobe*.
As discussed in Limit 2, the search inefficiency often arises from
the long-tailed kNN distribution. To address this from the aspects
of index construction, a feasible approach is to redundantly put a
query’s long-tail kNN into other densely distributed kNN partitions.
For instance, the initial optimal nprobe of q in Fig. 1 is nprobe* = 3.
By introducing redundancy - duplicating the single kNN in partition
C to another kNN partition (i.e., partition A or B) - the revised
optimal nprobe of q can be further reduced to nprobe* = 2, since
merely probing partitions A and B suffices to cover all the top-10
kNN. However, instead of merely reducing the nprobe, the objective
in partition-based ANN search is striking a better trade-off between
latency and recall. The search latency can potentially increase with
more data replicas. Hence, we need an exquisite redundant partition
method to balance partition pruning and data redundancy.

Based on the above insights, we propose LIRA, a LearnIng-based
queRy-aware pArtition framework to serve as a meta index across
partitions. In general, LIRA follows the “one size does not fit all”
principle and explores the power of adaption. After building initial
clustered partitions, we utilize a learning model to infer where to
probe for individual queries, which data points need to be dupli-
cated, and where to duplicate these data points across partitions.
Specifically, we first enhance the query process by developing a
probing model to predict query-dependent kNN partitions, thereby
enabling precise partition pruning with less probing waste. The
probing model uses a tunable threshold on its output probabilities,
allowing for more adaptive partition pruning and fine-grained tun-
ing than the nprobe configuration in IVF. Second, we improve the
construction of partitions by efficiently duplicating data points with
the probing model. When building redundant partitions, we nov-
elly transfer the task from an exhaustive search for kNN of all data
points globally to discriminating data points individually. Finally,
in the top-k retrieval phase, LIRA leverages the model’s probing
probabilities to guide searching across partitions and to reduce
query fan-out. In summary, we make the following contributions.

o To save the probing waste in a query-aware way, we propose a
learning-based partition pruning strategy where a probing model
generates the probing probabilities of partitions for each query.

o To mitigate the effect of long-tailed kNN distribution by building
redundant partitions, we novelly transfer the problem of dupli-
cating data points globally to individually and then propose a
learning-based redundancy strategy with the probing model.

LIRA: A Learning-based Query-aware Partition Framework for Large-scale ANN Search

e We conduct extensive experiments on publicly available high-
dimensional vector datasets, demonstrating the superiority of
LIRA in recall, latency, and partition pruning.

2 Preliminaries

2.1 Definitions

Suppose D = {01, 02, .. .,UN} be a dataset of N d-dimension data
points separated in B partitions, and dist(v!,v?) is the function to
calculate the distance between data points ! and v%. We define the
ANN search problem in the partition-based scenario as follows.

DEFINITION 1 (kNN CouNT DISTRIBUTION). Given a query vector
q, let Sgr = {01,0%,.. ., vk} be the ground truth (abbreviated as GT)
set of q’s k nearest neighbors. Let n? be the count of ground truth
kNN of q in the i-th partition, the kNN count distribution of a query

B
q can be defined as nd = [n;I, ng, o n%], where 2;21 n? =k.

DEFINITION 2 (RECALL@K). Recall@k refers to the proportion of
the ground truth top-k nearest neighbors retrieved by an ANN search
method out of all ground truth kNN in the dataset.

ISNSer|
k
where S is the retrieved results. A higher Recall@k value indicates a

greater number of exact top-k nearest neighbors are retrieved.

Recall@k = X 100%. (1)

DEFINITION 3 (LONG-TAIL DATA POINT). Given a kNN count dis-
tribution of a query q, n9 = [n;], ng, e n%], we regard the part of
kNN with n? =1 as the long-tail part in the kNN count distribution.
The specific data point served as the long-tail KNN of q where n? =1

in the long-tail part is termed as a long-tail data point.

For a kNN count distribution n4, we term the partition that
contains the ground truth kNN as a kNN partition. We denote the
kNN partition distribution p? = [p;], pg, e ,%] as a binary mask
over kNN count distribution, where kNN partitions are marked
with 1 while others with 0, and Zﬁz? p? = (nprobe?)*. In addition,
for a long-tailed kNN count distribution n4, we regard partitions
with n? > 1 as the replica partition (e.g., partition A and B in
Fig. 1). According to Insight 2, duplicating a long-tail data point
into its replica partitions can save one probing and reduce nprobe*
further. There may be other replica partitions of a data point, since it
can be in the long-tail part of the kNN distribution of other queries.

DEFINITION 4 (OBJECTIVE). Compared with baseline methods un-
der equivalent Recall@k, our objective is to optimize the partition
pruning and query latency. Our approach involves the refinement of
partition by integrating a learning-based redundancy strategy and
query-aware retrieval process with a learned probing model.

2.2 Motivation

We provide motivations through conducting preliminary studies on
the SIFT [2] 1M dataset with 10K queries. We illustrate the waste of
probing caused by partition pruning with centroids distance ranks,
and common long-tail kNN in kNN count distributions.

Probing Waste with Distance Ranking. In IVF, the probing car-

dinality nprobe infers probing the nearest nprobe partitions. Ideally,
the optimal number of probing partitions, nprobe*, should be no
larger than k for Recall@k. We define nprobezl.s , as the maximum

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Extra nprobe with
SIFT1IM, k = 10 and 100, B = 64

Long-tail Phenomenon with
SIFTIM, k =100

- k-0 I mm B-o4
% 5000 mEE k=100 | 3 5000 o B=32
5 5 t S B-16
2 =3 o B=3
<2500 =4 5
=] =}
1+ T+

00 123456789 L R T SR T

of Extra nprobe

min(ng) except zeroes

Figure 2: Extra probing with distance ranking (LEFT) and
common phenomenon of long-tail k\NN (RIGHT).

distance rank among the kNN partitions, which implies the nearest
nprobe:;.l.s , partitions need to be probed to cover all kNN. However,
we find that probing according to nprobez,is ; Wastes probing car-
dinality. For example, the nprobe; exceeds 20 for some queries
when retrieving top-10 kNN and the waste of probing is even worse
with k = 100 (See details in Appendix A.2). In addition, we show
the extra nprobe for each query when probing partitions accord-
ing to the distance rank in Fig. 2 (LEFT). The extra nprobe is the
difference between the optimal (nprobe?)* and the (nprobeq):;.ist.
Hence, these observations suggest an opportunity to reduce the
probing waste by refining the probing strategy in the query phase.
Common Long-tail kNN. To discover the ubiquity of long-tailed

kNN count distribution, we analyze the long-tail phenomenon by
calculating the minimum n? in a query ¢’s kNN count distribution
expect zeros. Considering the kNN of a query can be more con-
gested with larger partition sizes, we set the number of partitions
B € {64, 32, 16, 8}, respectively. As depicted in Fig. 2 (RIGHT), the
long-tail phenomenon exists regardless of the number of partitions.
In detail, as we can see in the horizontal axis with a value of 1, thou-
sands of queries have long-tailed kNN count distribution among a
total 10k queries. Hence, if valuable knowledge can be extracted
from the kNN count distributions, there are two opportunities to
improve the ANN search by incorporating redundancy in partition
building. First, we can infer the latent long-tail data points in the
dataset. Second, we can predict the replica partitions for long-tail
data points. In Section. 3.3, we present the time complexity of build-
ing redundant partitions with global kNN count distributions of all
data, and introduce an efficient learning-based redundancy strategy.

3 Method

In this section, we first present an overview of LIRA. We then
introduce the partition pruning strategy with a learned probing
model. We illustrate the learning-based redundancy strategy by
identifying long-tail data points and duplicating them to replica
partitions with the probing model. Finally, we present kNN retrieval
across partitions by using the probing model as the meta index.

3.1 Framework Overview

The workflow of LIRA can be divided into two distinct processes:
the construction of redundant partitions and the top-k retrieval for
queries, which we illustrate through a toy example with 5 partitions
in Fig. 3 and 6, respectively. (1) Probing model training. After
initializing the B partitions with the vanilla K-Means algorithm,

WWW °25, April 28-May 2, 2025, Sydney, NSW, Australia

Initialization

° 5|, Probing .

® o050 |b=1 @ Probability | Pi
o .

O ath-| ® T [
5 ° c o q
@, \ees8]b=3 |, D—||SE|
5 209 |b=14 : = Pl
D ooo Dsup -
@ o°30|b=5 @ Model Training | ps

Zeng et al.

Model Training and Learning-based Redundancy

[<5]
IS d o) ® o
®© g [of] [e%3] [s%2
> o)
©, . (% ps 908% g993
£3|0. °
o @)— SB[| | eess o) §953
o a L2)
8 o da o o
Dpick © pa 0% ° @
@ Redundancy | p¢ 3°o°% @
0]

Figure 3: Partition initialization (LEFT), the probing model training (MIDDLE) and learning-based redundancy strategy (RIGHT).

LIRA targets training a probing model to serve as the meta index
and to engage in building redundant partitions. Specifically, the
probing model is applied threefold in LIRA: learning the mapping
function f(-) of data points to kNN partitions in training, providing
potential long-tail data points and replica partitions in learning-
based redundancy, and guiding the partition probing during the
query-aware retrieval process. (2) Learning-based redundancy.
During the redundancy phase, we aim to duplicate the potential
long-tailed data points to the replica partitions by using the probing
model. Finding the deep correlation between the kNN partitions and
the replica partitions, we novelly transform the problem of picking
and duplicating long-tailed data points from globally to individually.
First, we pick the data points with more predicted nprobe as the
potential long-tail data points. Second, we choose the partition with
a high predicted possibility in 1;“ to put the replica of data point v.
We construct the internal indexes for each partition individually
after the redundant partitions are built (See detailed algorithm of
the two-level index in Appendix A.3). (3) Query-aware retrieval
process. Since the probing model can map a data point in the
vector space to its kNN partitions, we can use it to guide the top-k
retrieval across partitions. The predicted probabilities are utilized
along with a probability threshold in the inter-partition pruning,
and the internal indexes are used for inner-partition searching.

3.2 Probing Model Training

Probing Model. The model has two inputs: (1) the query vector
¢, and (2) the distances between q and partitions centroids I. We
can regard the probing model as a multivariate binary classifier
for whether to probe each partition. The output is the predicted
probability p in the dimension of the number of partitions B. Hence,
the model can be represented as f(q,I) = p. We convert the two
inputs as feature vectors Xq and x; with individual networks, re-
spectively, and then concatenate the two feature vectors to generate
the predicted probing probabilities p as follows.

Xq :¢q(q),xI:¢I(I)’§:¢p(xq ® x1) (2)

where ¢g, ¢1, ¢ are three independent multi-layer models, and the
output of ¢, is the predicted probabilities for probing partition p.

As discussed in Section 2.2, an ideal probing model served as
the meta index should directly probe kNN partitions of a query
regardless of its distance rankings to cluster centers. Hence, the

labels of a g are the same as the kNN partition distribution p9,
where partitions with n? > 0 are regarded as positive and other
partitions with no kNN are labeled as negative. For example, the
labels of a kNN count distribution [5,4,1,0,0] is [1,1, 1,0,0].

Network Training. We sample a subset of data from the whole

dataset D as training data and use the provided queries of a dataset
to evaluate the effectiveness of LIRA (See detailed description on
scalability in Appendix A.3 and A.5). For each training data, we
search the kNN from the training data to get the kNN partition

distribution p9. The output of the probing model pZ in [0, 1] is the
possibility of probing each partition. We take the partition with

pZ > ¢ as a probing partition to support query-aware nprobe. The
o is set as 0.5 in training and is tunable in the query process, which
provides fine-grained tuning in partition pruning than the nprobe
configuration in IVF. Hence, we can solve the multivariate binary
classification problem with the cross-entropy loss:

B

Lp%p7) == Y (pf 1o (pf) + (1= pf) log (1= p)) ()
b=1

where the L(pq,;’ﬁ) is the loss of the probing model on a query gq.

3.3 Learning-based Redundancy

Redundancy is a crucial step in LIRA since it helps refine the initial
hard partitions as redundant partitions. The aim of redundancy
is to reduce the side-effect of long-tailed kNN count distribution
by reasonably duplicating each long-tail data point into one of its
replica partitions. There are two important issues about redundancy.
(1) Under the initial partition, how do we identify data points that
tend to be the long-tail data points in the kNN count distribution of
queries? (2) To duplicate the long-tail data points, which partitions
should we transfer these data points into?

Pick Data Points. A data point v might be a long-tail data point
for any query. To identify whether a data point is long-tail, it is nec-
essary to examine the kNN counts distribution, n9, for all queries.
Since the n9 is unknown when building redundant partitions, we
can only use the kNN count distribution of the data itself, n%, which
involves finding the data points in the long-tail kNN parts of other
data’s kNN count distribution. Duplicating globally means comput-
ing the kNN of all data to identify whether a data point is long-tail.
However, the computation cost of getting kNN of the whole data

LIRA: A Learning-based Query-aware Partition Framework for Large-scale ANN Search

SIFTIM, k =100, B = 64

SIFTIM, k = 100, B = 64

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

SIFTIM, k=100, B = 64

1.0 1.0
£08 » 0.8
= 2
£ k]

G
g 061 Long-tailed :':’E 0.6
a) =
S 0.4 Not Long-tailed ;:)E 04
2 [=5
£ ;
e~ 0.2 02
0.0 0.0
0 5 10 15 20 0 10 20
nprobe”®

30

Top-M Partitions

1.0
g
5g 08
2E
2
=.2
.06
)
Model Output Rank Model Output Rank
Random Rank 04 Centroids Distance Rank
40 50 60 0 2 4 6 8 10 12 14 16 18 20 22

Top-M Partitions

Figure 4: Ratio of long-tailed and not long-tailed data points under certain nprobe* (LEFT). The recall (MIDDLE) and hit rate
(RIGHT) of replica partitions among top-M partitions with model output rank or centroids distance rank.

@ Pick Data @ Duplicate Data
Replicate E Long-tail Centroids Distance Rank
Globally | v! X
others KNN| | v? v
S L r v
Replicate E nprobe*
Individually I 1
-ego kNN | E-_ -17_2 ______ 4
© v 3

] kNN Partitions
[] Partition to Put Replica

] Replica Partitions
B Located Partition

Figure 5: Pick and duplicate potential long-tailed data points
individually with the probing model is more efficient than
using ground truth kNN count distribution globally.

O(N? - d) is unacceptable in large-scale datasets. Consequently,
it is impractical to identify all the long-tail data points globally.
Innovatively, we circumvent this challenge and transfer the issue
of identifying long-tail data points from globally to individually.

Specifically, we observe an interesting phenomenon from em-
pirical analysis: Data points with a larger nprobe® are more
likely to be long-tail data points. In detail, we record the kNN
count distribution and nprobe* of individual data in SIFT and find
the long-tail kNN data points. Varying the specific nprobe*, we
calculate the ratio of data that identified as long-tail data points
versus those are not. As demonstrated in Fig. 4 (LEFT), an increase
in nprobe* correlates with a higher ratio of long-tail data points.
The observation aligns with the spatial partitioning in vector space:
data points with kNN separated across multiple partitions are more
likely located at the boundaries of partitions and thus are more
prone to being long-tail.

In Fig. 5, we illustrate the transformation of picking data points
by using other data’s kNN globally to using ego kNN (i.e., the kNN
of a data point itself) individually. For example, long-tail data points,
02 and v*, exhibit a higher nprobe* compared to the non-long-tail
data point o!. Leveraging the accurate prediction of the probing
model, we can reliably use it to estimate the nprobe* of data points
and pick potential long-tail data points individually. We apply the
model to get the p of all data points, selecting those within the upper

n percentile of predicted nprobe. Hence, utilizing the probing model
obviates the need to find kNN on whole data globally, streamlining
the process of identifying long-tail data points.

Duplicate Data Points. After identifying data points requiring
duplication, the next challenge is selecting appropriate partitions to
put these replicas. Similar to the challenge of high computation cost
in picking data points, the replica partitions of each long-tail data
point are unknown if the global kNN count distribution is inacces-
sible. For all the long-tail data points, we record the kNN partitions
and replica partitions, and we observe an interesting phenomenon:
the replica partitions for duplicating a data point v have a
strong relationship to its kNN partitions. In detail, most of the
replica partitions of v align closely with its kNN partitions. As the
example in duplicating data of Fig. 5, the kNN partition (i.e., the
four partitions depicted in blue) of a long-tail data point, 02, can
cover its replica partitions (i.e., the three partitions shown in yel-
low). o' has no replica partitions since it is not a long-tail data point.
This provides a promising approach to getting replica partitions by
leveraging predicted probing partitions from the model.

Another problem follows this insight: since the model can pro-
duce many probing partitions for a data point v, which one should
be chosen to put the replica of v? Our analysis indicates that the
partition b with higher probing probability p; is more likely
to be a replica partition for v. In detail, we first get the replica par-
titions of all the long-tail data points. Then, we calculate Recallfep,
the recall between replica partitions and the top-M predicted parti-
tions, where M ranges from 1 to B.

v v
|Smodel n S“’P'

Recall?,, = - X 100%. (4)
152, |
where 5? is the set of top-M partitions in the model output
model

of data point v, and S7,;, is v’s set of the replica partitions. For

comparison, we also evaluate a random ranking of partitions rep-
resented by the blue line. (1) As shown in Fig. 4 (MIDDLE), we
can see that the predicted probing partitions can effectively cover
the replica partition, for Recallyep increases to nearly 1 with just
M = 20. (2) In addition, the gradually decreasing slope of the red
line can support that partitions with high output probabilities tend
to be replica partitions. Hence, this insight informs our duplication
strategy, which utilizes output probing probability. As illustrated
in Fig. 5, if a long-tail data point is not in the partition with the
highest output rank, we duplicate it into this partition; otherwise,
we put it into the partition with the second-highest output rank.

WWW °25, April 28-May 2, 2025, Sydney, NSW, Australia

@ py

l

q —
@) [#] [|z
=) =
D25 p5 | {53 | 3
5>
A q
Py @ Inner-
Intra-Partition q Partition
Probing Ps @ Search

Figure 6: Retrieval process across partitions.

Furthermore, compared with duplicating long-tail data points
according to the distance rank of partition centroids, we ob-
serve that using the model output rank is more valid. Typi-
cally, centroid distance ranks are considered when duplicating data
points. For example, a data point can be duplicated up to 8 times in
the closure clustering assignment in SPANN [6]. As we highlight
in Limit 1, using centroid distance ranks often wastes nprobe for
retrieving kNN. This limitation also emerges when choosing parti-
tions to duplicate long-tail data points. For example, the long-tail
data point o3 in Fig. 5 has two replica partitions. The distance rank
of replica partitions for o3 is (2, 3), while the output rank can be (1,
2). We analyze the largest model output rank and centroid distance
rank in replica partitions of each long-tailed data point, respectively.
The hit rate with model output rank on data points v is set to 1
if |S) o1 N Srepl # 0, otherwise it is set to 0. The hit rate with
centroid distance rank is calculated similarly by using 5%, , the
top-M partitions in the centroid distance ranking of v. As shown
in Fig. 4 (RIGHT), the model output rank can better indicate the
replica partitions for achieving a higher hit rate at the same M.

3.4 Query-aware Top-k Retrieval

After model training and learning-based redundancy, we can achieve
retrieval with the meta index alone or with two-level indexes (i.e.,
the internal indexes are required in large-scale datasets) [54]. We
store the probing model and redundant partitions to evaluate the
performance of LIRA as a meta index for partitions. In the following
part of this section, we give a detailed description of top-k retrieval
with a two-level index and regard an exhaustive search in a partition
if using meta index alone. As shown in Fig. 6, the retrieval process
includes two stages. In the first stage, we utilize the probing model
as the meta index to get the probing probabilities as the retrieval
guidance. In the second stage, we execute the searching in each
probing partition with internal indexes.

We illustrate the retrieval process with LIRA as the meta index
and HNSW as the internal index as an example. (1) In the first stage,
we utilize the probing model to obtain retrieval guidance. Similar to
the training process, we apply the trained model to query vectors
and get the probing probabilities i.e., ;‘7 Instead of probing a fixed
number of partitions, LIRA supports adaptive nprobe for each query
with the predicted ZJE, where only those partitions with ZJE >0
(0 = 0.5 for default) are treated as probing partitions. Hence, LIRA
can prune more partitions and save more query fan-out compared

Zeng et al.

with a fixed nprobe. (2) In the second stage, LIRA executes the
retrieval process with the probing partitions predicted in the first
stage. When retrieving k results in a probing partition for query
q, we use the internal indexes without an exhaustive search in the
partition. After completing searches in all probing partitions, we
merge all the retrieved data points as a coarse candidate set. Then,
we rank the coarse candidate set according to the distance to the
query and generate a precise candidate set as the top-k results.

4 Experiment
4.1 Experiment Settings

Datasets. We conduct experiments on 5 high-dimensional ANN
benchmarks (See detailed description in Appendix A.4). Specifi-
cally, we evaluate LIRA on two small-scale datasets, SIFT [2] and
GloVe [37]. We also show the scalability of LIRA on three large-
scale datasets: Deep [4], BIGANN [24], and Yandex TI [50]. For the
constraint in the RAM source, we subsample 50M data points for
each large-scale dataset, following previous studies [18, 29].

Baselines. We evaluate LIRA as the meta index compared with four
baselines, IVF in Faiss [25], IVFPQ [23], IVFFuzzy and BLISS [18](See
detailed description in Appendix A.4). Specifically, we build the
IVFFuzzy index to show the effectiveness of redundancy through
centroid distance rank, where every data point is placed in the two
nearest clusters. BLISS is a learning-to-index method that builds
four groups of partitions, each with an independent model.

To simulate the practical two-level kNN search, we build two-

level indexes, LIRA-HNSW, and evaluate the effectiveness of LIRA
as the meta index among partitions. We build two-level indexes for
baselines similarly. To exclude the effect of the internal indexes,
we first evaluate the effectiveness of LIRA and baselines as the
meta index in small-scale datasets and then use two-level indexes
in large-scale datasets. The detailed experiments of convergence
validation and sensitivity analysis are in Appendix A.5 and A.6.
Settings. In LIRA, the number of partitions B is set as 64 and 1024
for small-scale and large-scale datasets, respectively. The k of kNN
is mainly set as 100 since we focus on addressing probing waste and
long-tailed kNN distribution. In index construction, the redundancy
percentage 7 is set as 3% when using a meta index alone and is set as
100% when using a two-level index (See detailed sensitivity study on
n in Appendix A.6). In query process, we use threshold ¢ to choose
partitions with ﬁ > o as probing partitions and tune ¢ from 0.1
to 1.0 with a step of 0.05. The number of partitions of baselines is
the same as LIRA. For BLISS, we follow the original setting, build
four groups of partitions with four independent models in the index
construction phase, and search for four groups of partitions in the
query phase.
Evaluation Metrics. For the one-level meta index, we evaluate the
performance of LIRA and baselines threefold: accuracy, efficiency,
and query fan-out. (1) We use Recall@k to evaluate the search
accuracy. (2) We use the distance computations cmp (i.e., the total
number of visited data points) in the probing partitions to indicate
the search efficiency. (3) We record the nprobe to reflect the query
fan-out and to reflect the effectiveness of partition pruning. For the
two-level index in large-scale datasets, apart from the Recall@k
and nprobe, we additionally use query per second (QPS) to reflect
the general search efficiency.

LIRA: A Learning-based Query-aware Partition Framework for Large-scale ANN Search

Table 1: Performance at Recall@ k=0.98 with various k.

cmp IVF IVFPQ IVFFuzzy BLISS LIRA
k=10 | 120641 120641 119409 151911 83824
- recall=0.70 (-1.0%) (+25.9%) (-30.5%)
137276 144120 151911 91431
k=50 | 137276
recall=0.74 (+4.9%) (+10.6%) (-33.3%)
137276 144120 168778 96261
k=100 | 137276 recall=0.76 (+4.9%) (+22.9%) (-29.8%)
k=200 | 153931 187410 144120 168778 99279
- recall=0.78 (-6.3%) (+9.6%) (-35.5%)
nprobe | IVF IVFPQ IVFFuzzy BLISS LIRA
7 4 8 4.8138
k=10 7
recall=0.70 (-42.8%) (+14.2%) (-31.2%)
8 5 8 5.2342
k=50 8
recall=0.74 (-37.5%) (0%) (-34.5%)
8 5 9 5.4648
=1
k=100 8 allc076 (37.5%) (+125%) (316%)
& = 200 0 11 5 10 5.6561
- recall=0.78 (-44.4%) (+11.1%) (-37.1%)

4.2 Evaluation on Small Scale Datasets

In this section, we first show the performance of LIRA and baselines
when retrieving different k nearest neighbors and illustrate the
superiority of LIRA with large k settings. Second, we show the
trade-off between recall and distance computations and between
recall and nprobe on two small-scale datasets, SIFT and GloVe. For
a fair comparison, we present the average distance computations
executed by four individual models and partitions in BLISS.

Performance with Various k. To explore the performance on dif-
ferent retrieval requirements, we conduct experiments on SIFT with
various k and calculate the minimum average distance computa-
tions and average nprobe to achieve Recall@k = 0.98. When IVFPQ
can hardly achieve the desired recall, we record the acceptable
distance computations with the corresponding recall value.

Table 1 shows that the cmp increases monotonically with k.
Moreover, as k increases with more serious long-tailed kNN distri-
butions, the advantages of LIRA are gradually highlighted. There are
two reasons behind such an advantage. First, utilizing the strength
of adaptive probing from a query-aware view, LIRA focuses on
eliminating the probing waste by directly probing target kNN par-
titions with the model rather than probing according to distance
ranks to centroids. Second, LIRA reduces the long-tailed kNN dis-
tributions with reasonable replicas. Table 1 also shows the required
nprobe for various k, which gives an apparent advantage of LIRA
in saving query fan-out. When LIRA and other baselines except
IVFFuzzy achieve the same recall, LIRA needs less nprobe. This
result supports that the probing model in LIRA can prune partitions
effectively and accurately. Due to the strong advantage of LIRA in
a large k, we mainly present the results for Recall@100 in the rest
of the experiments for brevity. IVFFuzzy is superior in reducing
nprobe, but it performs comparably to IVF on cmp, for the average
partition size in IVFFuzzy is double than that of other baselines.
For the suboptimal performance of IVFPQ compared with IVF, we
drop it from the remaining experiments.

Trade-off between Recall and both nprobe and cmp. To manip-

ulate the recall with corresponding cmp, we tune the nprobe in IVF,

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

SIFT, k=100, B=64 GloVe, k=100, B=64

1.0 1.0
= <09
20. =
® ®
?3 —— LIRA § 08
20.8 —— BLISS S —— BLISS
~ IVFFuzzy 0.7/ IVFFuzzy
—————— IVF - IVF
0.7 0.6,

60 80 100 120
Dist Computations (K)

50 100 150 200 250 300
Dist Computations (K)

Figure 7: Recall and cmp on small-scale datasets.

GloVe, k=100, B=64

SIFT, k=100, B=64

—_
(=3
(=3
—_
(=3

o
Nel
3
4
Nl

—— LIRA —— LIRA

Recall@100
(=}
o
(=]
Recall@100
[=}
o]

—=— BLISS —— BLISS
0.85 IVFFuzzy 0.7 IVFFuzzy
—————— IVF - IVF
0 ‘802 4 6 8 10 0.6 5 10 15
nprobe nprobe

Figure 8: Recall and nprobe on small-scale datasets.

IVFFuzzy, and BLISS, and o for partition pruning in LIRA. As shown
in Fig 7 and Fig. 8, LIRA surpasses all the baselines in Recall@100.
(1) Compared with other partition-based methods, LIRA outper-
forms for two reasons. First, the well-built redundant partitions
in LIRA can naturally reduce the optimal nprobe* and the probing
quantity for partitions with long-tail kNN. (2) Second, the probing
model can better adaptively narrow down the area of the probing
partition with the well-learned mapping from a data point in the
vector space to the kNN partitions. (3) Moreover, the gap between
LIRA and the baselines expands as the recall increases on GloVe.
This is because the baselines struggle to tackle the phenomenon
of the long-tailed kNN distribution, and the long-tail data points
mainly impact the trade-off between recall and search cost at a high
recall value. Hence, the advantage of LIRA is more outstanding
with a high recall requirement through an effective query-aware
partitioning pruning strategy. (4) As for performance on SIFT, when
recall is higher than 0.98, the gap between LIRA and the baselines
slightly shrinks. This is because LIRA does not fully address the
long-tailed kNN distribution for considering efficiency, resulting in
some long-tail data points without duplication.

It is also worth noting that the learning-based method, BLISS,
performs much worse than other methods on SIFT. There are two
main reasons for the inefficiency of BLISS. (1) BLISS builds partitions
with models from scratch instead of refining partitions based on
other clustering methods, e.g., the K-Means clustering algorithm.
The partitions built in BLISS tend to be unbalanced without fine-
tuned training, resulting in some partitions with a large number of
data points while some other partitions have no data points. These
unbalanced partitions may lead to suboptimal partition probing and
cause more distance computations, cmp. (2) BLISS requires 4 groups
of partition-based indexes. The nprobe of BLISS is presented as the
fixed nprobe in one group of indexes, and the cmp of BLISS denotes
the total number of candidates from four groups of partitions after
deduplication. This also causes a waste of cmyp since the four indexes
built by independent models differ.

WWW °25, April 28-May 2, 2025, Sydney, NSW, Australia

Zeng et al.

Table 2: Performance of QPS, Recall@100, partition pruning rate and overall latency on large-scale datasets.

Metrics Query Per Second Recall@100 nprobe
Dataset IVF IVFFuzzy LIRA IVF IVFFuzzy LIRA IVF IVFFuzzy LIRA
Dee 126 93 117 0.8996 0.9604 0.9655 9 11 9.2586
P 227 338 354 0.8265 0.8354 0.8441 5 3 2.9567
62 104 118 0.9464 0.9607 0.9639 19 11 10.1043
BIGANN 173 230 257 0.8496 0.8860 0.8952 7 5 4.6465
141 160 174 0.7673 0.8316 0.8386 9 8 7.7058
Yandex TI
258 324 346 0.6847 0.7524 0.7732 5 3.8171

SIFT, k=100, B=64 SIFT, k=100, B=64

2.0 . LRA o207 « LIRA

g . IVFFuzzy @ . IVFFuzzy
§ 15 g L5 .

= 1o 210 -

305
“ 0.57+ . Z
100 200 5 10 15
Dist Computations of IVF (K) nprobe of IVF

Figure 9: Per query performance.

Search Performance per Query. Fig. 9 presents the normalized

distance computations cmp and nprobe of IVFFuzzy and LIRA over
IVF on a per-query basis, respectively. Take the figure on the left of
Fig. 9 as an example for a detailed explanation. The x-axis denotes
the minimum cmp when IVF achieves the Recall@k = 0.98 for every
query. The y-axis presents the ratio between the cmp of another
method to achieve a recall of 0.98 and the cmp of IVF. A red point
below the normalized value of 1.0 infers that the query process of
this query with LIRA takes less retrieval cost than IVF, and a brown
plus sign infers the normalized cost of IVFFuzzy. We remove the
baseline BLISS from this experiment because it struggles to achieve
the target recall efficiently. This figure provides the performance
of individual queries, where we sample 100 queries from all the
queries of the dataset for display.

Overall, IVFFuzzy and LIRA reduce the cmp compared with IVF
at the same recall. For IVF, there are easy queries and hard queries,
where hard queries require more probing partitions and distance
computation to achieve the target recall. (1) It is worth mentioning
in Fig. 9, LIRA optimizes most of the queries that need nprobe > 10
with IVF. This means that LIRA exhibits a significant reduction,
especially on hard queries. This is because there are more long-
tailed kNN distributions for hard queries, which results in more
probing waste. (2) For the IVFFuzzy, it is desired to achieve half of
IVF’s nprobe to achieve a comparable search efficiency in the one-
level meta index, because the number of data points in IVFFuzzy
is doubled. However, the general normalized nprobe of IVFFuzzy
is more than 0.5. This illustrates that the redundancy strategy in
IVFFuzzy is unable to achieve comparable search efficiency when
IVFFuzzy is used as a meta index alone.

4.3 Evaluation on Large Scale Datasets

This section presents the performance of LIRA and other baselines
on three large-scale datasets. We build two-level indexes with IVF,

IVFFuzzy and LIRA as the meta index, respectively. The HNSW in-
dex is used as the internal index for a fast inner-partition searching
process. We drop BLISS from evaluation on large-scale datasets for
out-of-memory with 4 groups of two-level indexes. Following pre-
vious study [18], Table 2 shows the performance in two scenarios
that demand high efficiency or high recall, respectively. Based on
the experiment results, we can make the following observations.

e Compared with non-learning methods, LIRA outperforms IVF
and IVFFuzzy in most cases, especially with high recall.

e Compared to the performance of a one-level index, the IVFFuzzy
becomes more efficient among the two-level indexes. With HNSW
as the internal index, search efficiency is enhanced largely by
avoiding exhaustive searches within a partition, and the large
number of redundant data points has less impact on efficiency.

o Due to the learning-based redundancy and the query-aware adap-
tive nprobe generated by the effective probing model, LIRA can
achieve better partition pruning than the IVF and IVFFuzzy.

e The improvement of LIRA compared to IVFFuzzy varies among
different datasets, which may demonstrate that different 5 is
required for different datasets. Hence, an opportunity exists for
LIRA to achieve a better redundancy with an adaptive number of
redundant data points on different datasets.

5 Conclusion

State-of-the-art partition-based ANN methods typically divide the
dataset into partitions and use query-to-centroid distance rankings
for search. However, they have limitations in probing waste and
long-tailed kNN distribution across partitions, which adversely af-
fects search accuracy and efficiency. To overcome these issues, we
propose LIRA, a LearnIng-based queRy-aware pArtition framework.
Specifically, we propose a probing model to achieve outstanding
partition pruning by reducing probing waste and providing query-
dependent nprobe. Moreover, we introduce a learning-based redun-
dancy strategy that utilizes the probing model to efficiently build
redundant partitions, thereby mitigating the effects of long-tailed
kNN distribution. Our proposed method exhibits superior perfor-
mance compared with existing partition-based approaches in the
accuracy, latency, and query fan-out trade-offs.

Acknowledgments

This work is partially supported by NSFC (No. 62472068, 62272086),
Shenzhen Municipal Science and Technology R&D Funding Ba-
sic Research Program (JCYJ20210324133607021), and Municipal
Government of Quzhou under Grant (No. 2023D044, 2023D004,
20237003, 2023D043, 2022D037, 2022D039, 2022D020).

LIRA: A Learning-based Query-aware Partition Framework for Large-scale ANN Search

References

(1]

[2

[

=
22

[10

[11

[12

[13

[14]

(15

[16

[17

(18]

[19]

[20]

[21

[22]

[23]

Cecilia Aguerrebere, Ishwar Singh Bhati, Mark Hildebrand, Mariano Tepper, and
Theodore Willke. 2023. Similarity Search in the Blink of an Eye with Compressed
Indices. Proceedings of the VLDB Endowment 16, 11 (2023), 3433-3446.

Martin Aumiiller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN-
Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.
Information Systems 87 (2020), 101374.

Ilias Azizi, Karima Echihabi, and Themis Palpanas. 2023. Elpis: Graph-based
similarity search for scalable data science. Proceedings of the VLDB Endowment
16, 6 (2023), 1548-1559.

Artem Babenko and Victor Lempitsky. 2016. Efficient indexing of billion-scale
datasets of deep descriptors. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2055-2063.

Patrick Chen, Wei-Cheng Chang, Jyun-Yu Jiang, Hsiang-Fu Yu, Inderjit Dhillon,
and Cho-Jui Hsieh. 2023. Finger: Fast inference for graph-based approximate
nearest neighbor search. In Proceedings of the ACM Web Conference 2023. 3225—
3235.

Qi Chen, Bing Zhao, Haidong Wang, Minggin Li, Chuanjie Liu, Zengzhong
Li, Mao Yang, and Jingdong Wang. 2021. Spann: Highly-efficient billion-scale
approximate nearest neighbor search. arXiv preprint arXiv:2111.08566 (2021).
Xu Chen, Haitian Chen, Zibo Liang, Shuncheng Liu, Jinghong Wang, Kai Zeng,
Han Su, and Kai Zheng. 2023. Leon: A new framework for ml-aided query
optimization. Proceedings of the VLDB Endowment 16, 9 (2023), 2261-2273.
Liwei Deng, Penghao Chen, Ximu Zeng, Tianfu Wang, Yan Zhao, and Kai
Zheng. 2024. Efficient Data-aware Distance Comparison Operations for
High-Dimensional Approximate Nearest Neighbor Search. arXiv preprint
arXiv:2411.17229 (2024).

Liwei Deng, Yan Zhao, Jin Chen, Shuncheng Liu, Yuyang Xia, and Kai Zheng.
2024. Learning to hash for trajectory similarity computation and search. In 2024
IEEE 40th International Conference on Data Engineering (ICDE). IEEE, 4491-4503.
Liwei Deng, Yan Zhao, Zidan Fu, Hao Sun, Shuncheng Liu, and Kai Zheng.
2022. Efficient trajectory similarity computation with contrastive learning. In
Proceedings of the 31st ACM International Conference on Information & Knowledge
Management. 365-374.

Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. 2019. Learning space
partitions for nearest neighbor search. arXiv preprint arXiv:1901.08544 (2019).
Karima Echihabi, Panagiota Fatourou, Kostas Zoumpatianos, Themis Palpanas,
and Houda Benbrahim. 2022. Hercules Against Data Series Similarity Search.
Proceedings of the VLDB Endowment (2022), 2005-2018.

Yuchen Fang, Yuxuan Liang, Bo Hui, Zezhi Shao, Liwei Deng, Xu Liu, Xinke Jiang,
and Kai Zheng. 2024. Efficient Large-Scale Traffic Forecasting with Transformers:
A Spatial Data Management Perspective. arXiv preprint arXiv:2412.09972 (2024).
Cong Fu, Changxu Wang, and Deng Cai. 2021. High dimensional similarity
search with satellite system graph: Efficiency, scalability, and unindexed query
compatibility. IEEE Transactions on Pattern Analysis and Machine Intelligence 44,
8 (2021), 4139-4150.

Jianyang Gao and Cheng Long. 2024. RaBitQ: Quantizing High-Dimensional
Vectors with a Theoretical Error Bound for Approximate Nearest Neighbor Search.
Proceedings of the ACM on Management of Data 2, 3 (2024), 1-27.

Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krishnaswamy,
Nikit Begwani, Swapnil Raz, Yiyong Lin, Yin Zhang, Neelam Mahapatro, Premku-
mar Srinivasan, et al. 2023. Filtered-diskann: Graph algorithms for approximate
nearest neighbor search with filters. In Proceedings of the ACM Web Conference
2023. 3406-3416.

Rentong Guo, Xiaofan Luan, Long Xiang, Xiao Yan, Xiaomeng Yi, Jigao Luo,
Qianya Cheng, Weizhi Xu, Jiarui Luo, Frank Liu, et al. 2022. Manu: a cloud native
vector database management system. arXiv preprint arXiv:2206.13843 (2022).
Gaurav Gupta, Tharun Medini, Anshumali Shrivastava, and Alexander J Smola.
2022. Bliss: A billion scale index using iterative re-partitioning. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
486-495.

Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching.
In Proceedings of the 1984 ACM SIGMOD international conference on Management
of data. 47-57.

Rui Hu, Yuze Wang, Ximu Zeng, Shuncheng Liu, Quanlin Yu, Peicong Wu,
Zhengzhuo Zhang, Han Su, and Kai Zheng. 2024. Imitation learning decision
with driving style tuning for personalized autonomous driving. In International
Conference on Database Systems for Advanced Applications. Springer, 220-231.
Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.
Query-aware locality-sensitive hashing for approximate nearest neighbor search.
Proceedings of the VLDB Endowment 9, 1 (2015), 1-12.

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar
Krishnawamy, and Rohan Kadekodi. 2019. Diskann: Fast accurate billion-point
nearest neighbor search on a single node. Advances in Neural Information Pro-
cessing Systems 32 (2019).

Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization

for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33,1 (2010), 117-128.

[24

[25]

[26

&
=

[28

[29

[30

w
—

[32

[33

[34

(35]

@
2

[37

[38

[39

[40

[41

[42

[43]

[44

[45

[46

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. 2011.
Searching in one billion vectors: re-rank with source coding. In 2011 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
861-864.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535-547.
Conglong Li, Minjia Zhang, David G Andersen, and Yuxiong He. 2020. Improving
approximate nearest neighbor search through learned adaptive early termination.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 2539-2554.

Guoliang Li, Xuanhe Zhou, and Lei Cao. 2021. Al meets database: AI4DB and
DBA4AL In Proceedings of the 2021 International Conference on Management of
Data. 2859-2866.

Mingjie Li, Yuan-Gen Wang, Peng Zhang, Hanpin Wang, Lisheng Fan, Enxia
Li, and Wei Wang. 2022. Deep learning for approximate nearest neighbour
search: A survey and future directions. IEEE Transactions on Knowledge and Data
Engineering 35, 9 (2022), 8997-9018.

Wauchao Li, Chao Feng, Defu Lian, Yuxin Xie, Haifeng Liu, Yong Ge, and Enhong
Chen. 2023. Learning balanced tree indexes for large-scale vector retrieval. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 1353-1362.

Defu Lian, Yongji Wu, Yong Ge, Xing Xie, and Enhong Chen. 2020. Geography-
aware sequential location recommendation. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery & data mining. 2009
2019.

Zibo Liang, Xu Chen, Yuyang Xia, Runfan Ye, Haitian Chen, Jiandong Xie, and
Kai Zheng. 2024. DACE: A Database-Agnostic Cost Estimator. In 2024 IEEE 40th
International Conference on Data Engineering (ICDE). IEEE, 4925-4937.

Kejing Lu, Mineichi Kudo, Chuan Xiao, and Yoshiharu Ishikawa. 2021. HVS:
hierarchical graph structure based on voronoi diagrams for solving approximate
nearest neighbor search. Proceedings of the VLDB Endowment 15, 2 (2021), 246~
258.

Zepu Lu, Jin Chen, Defu Lian, Zaixi Zhang, Yong Ge, and Enhong Chen. 2024.
Knowledge distillation for high dimensional search index. Advances in Neural
Information Processing Systems 36 (2024).

Zepu Lu, Defu Lian, Jin Zhang, Zaixi Zhang, Chao Feng, Hao Wang, and Enhong
Chen. 2023. Differentiable Optimized Product Quantization and Beyond. In
Proceedings of the ACM Web Conference 2023. 3353-3363.

Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824-836.
Marius Muja and David G Lowe. 2014. Scalable nearest neighbor algorithms
for high dimensional data. IEEE transactions on pattern analysis and machine
intelligence 36, 11 (2014), 2227-2240.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532-1543.

Lu Qin, Jeffrey Xu Yu, and Lijun Chang. 2012. Diversifying Top-K Results.
Proceedings of the VLDB Endowment 5, 11 (2012).

Yongye Su, Yinqi Sun, Minjia Zhang, and Jianguo Wang. 2024. Vexless: A Server-
less Vector Data Management System Using Cloud Functions. Proceedings of the
ACM on Management of Data 2, 3 (2024), 1-26.

Yao Tian, Xi Zhao, and Xiaofang Zhou. 2023. DB-LSH 2.0: Locality-Sensitive
Hashing With Query-Based Dynamic Bucketing. IEEE Transactions on Knowledge
and Data Engineering (2023).

Hao Wang, Tong Xu, Qi Liu, Defu Lian, Enhong Chen, Dongfang Du, Han Wu,
and Wen Su. 2019. MCNE: An end-to-end framework for learning multiple
conditional network representations of social network. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
1064-1072.

Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. 2021. Milvus:
A purpose-built vector data management system. In Proceedings of the 2021
International Conference on Management of Data. 2614-2627.

Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. 2017. A survey on
learning to hash. IEEE transactions on pattern analysis and machine intelligence
40, 4 (2017), 769-790.

Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A Com-
prehensive Survey and Experimental Comparison of Graph-Based Approximate
Nearest Neighbor Search. Proceedings of the VLDB Endowment 14, 11 (2021),
1964-1978.

Ruijie Wang, Zheng Li, Danging Zhang, Qingyu Yin, Tong Zhao, Bing Yin, and
Tarek Abdelzaher. 2022. RETE: retrieval-enhanced temporal event forecasting
on unified query product evolutionary graph. In Proceedings of the ACM Web
Conference 2022. 462—472.

Xunguang Wang, Yiqun Lin, and Xiaomeng Li. 2023. Cgat: Center-guided adver-
sarial training for deep hashing-based retrieval. In Proceedings of the ACM web
conference 2023. 3268-3277.

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

[47] Jiugi Wei, Botao Peng, Xiaodong Lee, and Themis Palpanas. 2024. DET-LSH: A
Locality-Sensitive Hashing Scheme with Dynamic Encoding Tree for Approxi-
mate Nearest Neighbor Search. arXiv preprint arXiv:2406.10938 (2024).

[48] Yuyang Xia, Shuncheng Liu, Quanlin Yu, Liwei Deng, You Zhang, Han Su, and Kai
Zheng. 2024. Parameterized Decision-Making with Multi-Modality Perception
for Autonomous Driving. In 2024 IEEE 40th International Conference on Data
Engineering (ICDE). IEEE, 4463-4476.

[49] Shitao Xiao, Zheng Liu, Weihao Han, Jianjin Zhang, Yingxia Shao, Defu Lian,
Chaozhuo Li, Hao Sun, Denvy Deng, Liangjie Zhang, et al. 2022. Progressively
optimized bi-granular document representation for scalable embedding based
retrieval. In Proceedings of the ACM Web Conference 2022. 286—296.

[50] Yandex. 2021. Text-to-Image-1B Dataset. https://research.yandex.com/blog/

benchmarks-for-billion- scale- similarity- search.

Renchi Yang. 2022. Efficient and effective similarity search over bipartite graphs.

In Proceedings of the ACM Web Conference 2022. 308-318.

[52] Ximu Zeng, Quanlin Yu, Shuncheng Liu, Yuyang Xia, Han Su, and Kai Zheng.

2023. Target-Oriented Maneuver Decision for Autonomous Vehicle: A Rule-Aided

Reinforcement Learning Framework. In Proceedings of the 32nd ACM International

Conference on Information and Knowledge Management. 3124-3133.

Kai Zhang, Chongyang Tao, Tao Shen, Can Xu, Xiubo Geng, Binxing Jiao, and

Daxin Jiang. 2023. Led: Lexicon-enlightened dense retriever for large-scale

(51

[53

[54

[55

[57

[58

Zeng et al.

retrieval. In Proceedings of the ACM Web Conference 2023. 3203-3213.
Pengcheng Zhang, Bin Yao, Chao Gao, Bin Wu, Xiao He, Feifei Li, Yuanfei Lu,
Chaoqun Zhan, and Feilong Tang. 2023. Learning-based query optimization for
multi-probe approximate nearest neighbor search. The VLDB Journal 32, 3 (2023),
623-645.

Qianxi Zhang, Shuotao Xu, Qi Chen, Guoxin Sui, Jiadong Xie, Zhizhen Cai, Yaoqi
Chen, Yinxuan He, Yuqing Yang, Fan Yang, et al. 2023. {VBASE}: Unifying
Online Vector Similarity Search and Relational Queries via Relaxed Monotonicity.
In 17th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 23). 377-395.

Xi Zhao, Yao Tian, Kai Huang, Bolong Zheng, and Xiaofang Zhou. 2023. Towards
efficient index construction and approximate nearest neighbor search in high-
dimensional spaces. Proceedings of the VLDB Endowment 16, 8 (2023), 1979-1991.
Bolong Zheng, Ziyang Yue, Qi Hu, Xiaomeng Yi, Xiaofan Luan, Charles Xie, Xiao-
fang Zhou, and Christian S Jensen. 2023. Learned probing cardinality estimation
for high-dimensional approximate NN search. In 2023 IEEE 39th International
Conference on Data Engineering (ICDE). IEEE, 3209-3221.

Kai Zheng, Pui Cheong Fung, and Xiaofang Zhou. 2010. K-nearest neighbor
search for fuzzy objects. In Proceedings of the 2010 ACM SIGMOD international
conference on Management of data. 699-710.

https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search
https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search

LIRA: A Learning-based Query-aware Partition Framework for Large-scale ANN Search

A Appendix

In this section, we provide related work in Appendix A.1, motivation
details in Appendix A.2, scalability analysis of LIRA in Appendix A.3,
implementation details of experiments in Appendix A.4, conver-
gence validation of the probing model training in Appendix A.5,
and sensitivity analysis in Appendix A.6.

A.1 Related Work

Existing studies for ANN search can be roughly divided into four
groups, including (1) hash-based [9, 21, 40], (2) tree-based [3, 12, 19,
36], (3) quantization-based [1, 15, 33], and (4) graph-based [14, 32,
35, 44]. Typically, the computational cost of retrieval k approximate
nearest neighbors, O(nd), incurs from the number of visited vectors
denoted as n and the dimension of vectors represented as d. The
existing ANN search methods leverage high-dimensional indexes
to reduce latency from these two aspects.

Partition-based ANN Methods. The tree-based indexes [12] par-
tition the vector space into nested nodes and then narrow down the
search area with hierarchical tree-based indexes during the search
phase. DB-LSH et al. [40] efficiently generate candidates by dy-
namically constructing query-based search areas. IVF (inverted file)
index [25] first clusters the vectors into partitions and then narrows
down the search area with the nearest partitions. Chen et al. [6]
uses a clustering algorithm and the inverted index to build balanced
posting lists, and probes the clusters within a certain distance from
the query vector. Zhang et al. [54] focuses on multi-probe ANN
search and formalizing the query-independent optimization as a
knapsack problem. Neural LSH [11] generates partitions by bal-
anced graph partitioning. Zhao et al. [56] combine the strength of
LSH-based and graph-based methods and utilize LSH to provide a
high-quality entry point for searching in graphs.
Learning-based ANN Methods. Artificial Intelligence(AI) has been
widely applied to databases [7, 27, 31, 43], information retrieval
systems [28] and decision-making scenarios [10, 13, 20, 48, 52]. We
provide some learning-based ANN on top of partitions and graphs.
For partition-based methods, BLISS [18] and Li et al. [29] com-
bine the partition step and the learning step with learning-to-index
methodology, and then search with a fixed nprobe. Zheng et al. [57]
builds hierarchical balanced clusters and further leverages neural
networks to generate adaptive nprobe for each query. For graph-
based methods, the graph-based indexes [35, 44] first connect the
similar vectors with basic proximity graphs in the construction
phase and then route in the graph through the most similar neigh-
bors with the greedy search strategy. Based on the graph-based
HNSW, Li et al. [26] demonstrate that easy queries often need less
search depth than hard ones. Li et al. [26] introduces an early ter-
mination strategy and uses models to predict the minimum number
of visited vectors required for retrieving the ground truth kNN
for a given query, which can halt the search before meeting the
traditional termination condition in the graph.

A.2 Motivation Details
We find that probing according to nprobe

.
dist
nality, with empirical study presented in Fig. 10 (LEFT). The blue

dashed line shows the percentage of queries with nprobe* no more

than a specified nprobe. The red dashed line reflects the percentage

of queries with nprobezist no more than a given nprobe. In other

wastes probing cardi-

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

words, those queries achieving Recall@10 = 1 satisfy the accuracy
requirement. (1) As we can see, the nprobe’;, . exceeds 20 for some
queries when retrieving top-10 kNN, which introduces significant
probing wastes. (2) Moreover, the waste of probing is even worse
with a larger value of k. As shown in Fig. 10 (RIGHT) for k = 100,
the nprobe® of all queries are no more than 22; while nprobe’;.
escalates to 40 for some queries.

SIFTIM, k=10,B =64 SIFTIM, k=100, B = 64

1=
S
=]

—1
" 9.0 . =220
gl [
2o 2
85075 52
39 5®
55 5505
22050 28
é g Max Distance Rank é’ = Max Distance Rank
20.25 Optimal nprobe =z Optimal nprobe
0 10 20 0 20 40
nprobe nprobe

Figure 10: Probing Waste with Distance Ranking and Com-
mon Long-tail Phenomenon.

Algorithm 1 One-level and Two-level Index Building

: Input: data points D, training queries Q

: Output: indexes of D in B partitions for top-k retrieval

: (1) For one-level meta index

: Sample a subset of data Dy, for training > Scalability

: Build B partitions for Dy,,;, and get partition centroids and
distance to centroids I

: Get kNN partition distributions p of Dy,,;, as labels

: Learn p1, f(q,1) = p4 > Model Training

: Put all D in the nearest partitions

: Get the predicted probability p of D with f(-)

10: Pick 1% of data points as Dp;cx with p

11: for all data point v in D;cx do

1S N O

> Redundancy

12: Choose a target replica partition with p
13: Duplicate the data of v
14: end for

15: (2) For two-level index
16: Build internal indexes for each partition

A.3 Scalability Analysis

Since the subset of data is used in training, we give a detailed
explanation of the scalability of LIRA. In general, LIRA only requires
the ground truth kNN and kNN count distribution of a subset of
data. The two phases of probing model training and learning-based
redundancy are both scalable to large-scale datasets, even if the
model is trained on a subset. The algorithm of index building with
the probing model is illustrated in Algorithm 1.

First, for model training, the true label of kNN partition distribu-
tion is more sparse if we scale the number of data with the same
total number of partitions B. This is because a partition contains
more data points with a large-scale dataset under the same B, and
the kNN of a query are more likely to be separated in fewer par-
titions. However, the true label of kNN partition distribution p

WWW °25, April 28-May 2, 2025, Sydney, NSW, Australia

Table 3: Datasets

Dataset # of Dimension # of Data # of Query
SIFT 128 1M 10K
GloVe 96 1M 1K
Deep 96 50M 10K
BIGANN 128 50M 10K
Yandex TI 200 50M 10K

does not affect the model training, since the probing partitions are
selected by the threshold o of the predicted possibilities.

Second, for learning-based redundancy, the picking and duplicat-
ing steps are all based on the relative results. We pick a data point v
with a relatively high quantity of predicted probing partitions and
then duplicate it to a partition with relatively high probing possi-
bility in p?. Hence, the workflow of LIRA is scalable to large-scale
datasets.

A.4 Implementation Details

Datasets. We conduct experiments on 5 high-dimensional ANN
benchmarks with different data sizes and distributions. The details
of the datasets are shown in Table 3.

Baselines. The detailed information on baselines is as follows.

e IVF. IVFFlat in Faiss [25] (abbreviated as IVF) is a widely used
ANN method that utilizes inverted indexes.

o IVFPQ.IVFPQ [23] is a widely adopted solution that combines the
advantages of product quantization and the inverted file index.

o IVFFuzzy. Fuzzy clustering is a method where each data point can
be put in more than one cluster. We build the IVFFuzzy index to
show the effectiveness of redundancy through centroid distance
rank, where every data point is placed in the two nearest clusters.

e BLISS [18]. BLISS is a learning-to-index method that builds groups
of partitions, each with an independent model. The variant of
BLISS [29] is omitted from experiments, as well as Neural LSH [11]
that is inferior to BLISS.

For two-level indexes, the parameter of HNSW in graph building

for limiting the edge of a data point is set as 32, and the search
parameter of HNSW for limiting the length of the candidates set is
set as 128.
Evaluation Platform. We implement our methods and baselines
in Python 3.7. All the experiments are conducted on Intel(R) Xeon(R)
Silver 4214 CPU @ 2.20GHz, 256GB memory, and 4 NVIDIA GeForce
RTX 3080.

A.5 Convergence Validation

This section is not intended to compare LIRA against other baselines
but rather to verify the convergence of LIRA. We illustrate that
during the process of model training and re-partition, the probing
model can achieve convergence while the recall and probing fan-
out can also be improved simultaneously. All the experiments on
convergence validation are conducted on SIFT with 10K queries in
the setting of k = 100 and B = 64. The batch size for model training
is set as 512. To evaluate whether the predicted partitions are the

knn partitions, we also calculate the hit rate of knn partitions.
Loss and Recall. As shown in Fig. 11(LEFT), we record the loss

and the recall of the testing queries during the training process. A

Zeng et al.

step in the x-axis means every 10 batches of training data. We can
observe that the loss in the blue line dramatically decreases and
can finally achieve convergence. In addition, the recall in the red
line decreases and then increases. This is because the positive label
of target kNN partitions is sparse, and the probing model tends to
predict few probing partitions at the beginning of training. With
the probing model learning the mapping of data points to the target
kNN partitions, the recall can approach nearly 1.0 at the end of the
training.

Convergence in Loss and Recall
SIFT, k=100, B=64

Convergence in nprobe and Hit Rate
SIFT, k=100, B=64

0.8 1.0
30 0.75
0.6
Loss 0 20 nprobe 1(0.50
0.4 Recal [0 Hit Rate
10 0.25
0.2
0.0 0 0.00
40 80 120 160 200 40 80 120 160 200
Step Step

Figure 11: Model convergence validation with SIFT128, 1M.

nprobe and Hit Rate. With the threshold of model outputs set as
default o = 0.5, we record the average nprobe of queries to repre-
sent the query fan-out and the hit rate of target probing partitions
during the training process. As we can see in Fig. 11(RIGHT), the
number of predicted nprobe in the blue line converges in stable and
approximates the nprobex, and the hit rate in the red line can reach
a high level. Hence, the result supports that the probing model can
predict the target kNN partitions well. Even if the hit rate is about
0.8 after training, we can tune the threshold o in the query process.
In detail, a less o results in more probing partitions and a larger
nprobe, while a higher o works in the opposite.

Scalability. We evaluate the scalability of LIRA by training on the

subset of data and on the whole data, respectively. Specifically, for
training on a subset, we sample Dg,,;,, 100K data from the 1M data
in SIFT as the training data and building partitions on Dg,,;,. For
v € Dgyp, we get the kNN count distribution, n°, and then get the
kNN partition distribution p® in Dg,,;, as training label. After model
training, the learning-based redundancy is used on the whole data
D. Keeping the partitions centroids unchanged, we put the whole
data D in partitions and then use the probing model to achieve
redundancy. For comparison, we also train a model with all the 1M
data as training data.

Tuning nprobe
SIFTIM, k=100, B = 64

Tuning threshold o
SIFTIM, k=100, B = 64

1.00

(=3 (=3

S S

0% Do0.95

= =

3 3

4 0.90 Train with 1M Data -4 Train with IM Data

Train with 100K Data 0.90 Train with 100K Data
50000 100000 150000 200000 50000 100000 150000

Dist Computations Dist Computations

Figure 12: Scalability of model training.

LIRA: A Learning-based Query-aware Partition Framework for Large-scale ANN Search

SIFT, k=100, B=1024 SIFT, k=100, B=256

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

SIFT, k=100, B=64

SIFT, k=100, B=32
1.00 1.00 1.00
o 0.95 (=3 < 0.95 < 0.95
S S 0.9 S S
= 0.90 = — =
® S S .,
® g oo S0~ —— Lira
gossi 27 LIRA-fix nprobe g 08 LIRA-fix nprobe g LIRA-fix nprobe g LIRA-fix nprobe
.81) P
& 0.80 7 IVFFuzzy ~ /’ IVFFuzzy & 0.8517 IVFFuzzy 0851 IVFFuzzy
T e IVF - v | e 107 IVF
0.75 0.7 0.80 0.80
10 20 30 40 20 40 60 80 50 100 150 100 125 150 175 200
Dist Computations (K) Dist Computations (K) Dist Computations (K) Dist Computations (K)
Figure 13: Sensitivity of the number of partitions B in SIFT.
GloVe, k=100, B=1024 10 GloVe, k=100, B=256 GloVe, k=100, B=64 GloVe, k=100, B=32
g 1.0 1.0
e T T S == I P - ==
s g o8 Eos S8
g LIRA-fix nprobe g 06 LIRA-fix nprobe S) LIRA-fix nprobe g) LIRA-fix nprobe
g —+— BLISS g™ —+— BLISS g o6 —— BLISS S o6l —+— BLISS
~ IVFFuzzy & IVFFuzzy & IVFFuzzy & IVFFuzzy
0.4
----- IVF ---=- IVF - ---- IVF
T 1 F T T T T 1 04 F T T T T 04 F T T T
20 30 0 20 40 60 80 100 0 100 200 300 400 0 200 400 600

Dist Computations (K) Dist Computations (K)

Dist Computations (K) Dist Computations (K)

Figure 14: Sensitivity of the number of partitions B in GloVe.

We get the trade-off between the recall and distance computa-

tions by tuning the nprobe (i.e., probing partitions in the top nprobe
output rank) and by tuning the threshold o (i.e., probing partitions
with 1’)5 > o). As shown in Fig. 12, the model trained on a sub-
set performs similarly to the model trained on the whole dataset
whether probing with nprobe or threshold. The result supports that
LIRA can be trained on a subset but can still achieve good partition
redundancy and partition pruning on a whole dataset.
Time Cost Analysis. The time for partition construction in LIRA
mainly comes from three aspects, training data collection, probing
model training, and the internal index building. Following the ex-
periment setting in this section, we first build the initial partition
with K-Means and collect the kNN distributions of data, which takes
115 seconds. Second, we train the probing model and refine the
partitions, which merely takes 108 seconds with the concise prob-
ing network. For small-scale datasets, training with six iterations
can already achieve a good probing performance, although training
iteration is set as ten as default. Third, we also build the internal
index (i.e., HNSW) in each partition, which takes 12 seconds.

For the top-k retrieval process, we record the model inference
time (i.e., to decide which partitions to search for a given query)
and the total search time for all queries. We find that the model
inference time only occupies less than 1% of the total search time,
which shows the efficiency of predicting probing partitions. In
detail, on SIFT with 10k queries, the time for getting the input
(i.e., the distance calculation for queries to the centroids) is 0.2
second, the time for model inference merely takes 0.1 second, and
the searching takes 238 seconds for the queries.

A.6 Sensitivity Analysis

Effect of B. The hyper-parameter B in LIRA is used as the total
number of partitions. We conduct sensitivity analysis of the par-
tition number B on SIFT and GloVe, which is presented in Fig. 13

and Fig. 14, respectively. To reflect the general trade-off between
efficiency and accuracy, we plot these two figures with the average
distance computations versus recall, comparing LIRA-fix nprobe,
BLISS, IVFFuzzy, and IVF. The LIRA-fix nprobe is a variant of LIRA
with different partition pruning, which utilizes a nprobe configura-
tion instead of adaptive nprobe controlled by the threshold o of the
model output. We set the partition number as B € {1024, 256, 64, 32}.
Due to the inefficiency of BLISS on SIFT in Fig. 7 and Fig. 8, we
exclude the plotting of this group of settings for the result unable
to fit in the graph.

In all settings considered, LIRA outperformed other methods. (1)
For a small value of B, LIRA can reduce distance computations since
one partition contains more data points, and reducing one partition
probing can save many data points from searching. (2) For a large
value of B, LIRA can also decrease distance computations because
the probing waste of baselines is more severe across a large number
of partitions. (3) For LIRA-fix nprobe, even if this variant method
searches with nprobe configuration similar to the search process of
IVE, it outperforms IVF consistently. This result supports that the
probing model in LIRA can better directly probe the kNN partitions
with model output rank than probe along with the centroid distance
rank in IVF.

Effect of 1. The hyper-parameter 5 in LIRA is used as the redun-
dancy ratio, picking the data points with the highest predicted
nprobe for redundancy. Considering the internal index can re-
duce the adverse impact of redundancy of both LIRA-HNSW and
IVFFuzzy-HNSW, we conduct sensitivity analysis of the redun-
dancy ratio n on SIFT, which is presented in Fig. 15. We tune the 5
to duplicate different ratios of data points in LIRA-HNSW, while the
IVFFuzzy-HNSW duplicates all data points. As we can see, merely
duplicating 40% of data points in LIRA-HNSW can achieve compara-
ble performance to IVFFuzzy-HNSW on the trade-off between recall
and both distance computations and nprobe. For fair redundancy,

WWW °25, April 28-May 2, 2025, Sydney, NSW, Australia

Zeng et al.

—e— 100%redundancy ~ —— 60% redundancy ~ —— 20%redundancy —&- IVFFuzzy
—— 80% redundancy —— 40% redund ~-H-- 0% redund

we set the 1 as 100% in LIRA-HNSW as the same redundancy in
. 1,00 IVFFuzzy-HNSW. When testing meta index alone without internal

indexes, we set low redundancy n = 3% in LIRA to keep the high
efficiency.

Recall@100
g
3
Recall@100
54
O
=)

o

o

=
o
o
=

100 125 150 175 200
Dist Computations (K)

nprobe

Figure 15: Sensitivity of the redundancy ratio 7 in SIFT.

	Abstract
	1 Introduction
	1.1 Prior Approaches and Limitations
	1.2 Our Solution

	2 Preliminaries
	2.1 Definitions
	2.2 Motivation

	3 Method
	3.1 Framework Overview
	3.2 Probing Model Training
	3.3 Learning-based Redundancy
	3.4 Query-aware Top-k Retrieval

	4 Experiment
	4.1 Experiment Settings
	4.2 Evaluation on Small Scale Datasets
	4.3 Evaluation on Large Scale Datasets

	5 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Related Work
	A.2 Motivation Details
	A.3 Scalability Analysis
	A.4 Implementation Details
	A.5 Convergence Validation
	A.6 Sensitivity Analysis

