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Abstract
Traffic prediction plays a pivotal role in contemporary web tech-
nologies, motivating various intelligent web services such as route
planning and remote traffic management. Many recent proposals
that target deep learning for traffic prediction solely leverage his-
torical traffic observations to predict future ones. However, traffic
prediction is always susceptible to different factors such as road
networks and social events, exhibiting different modalities. Most
existing methods focus on a single modality, failing to capture the
comprehensive traffic patterns among various factors, resulting in
sub-optimal performance. Web-sourced geo-images, e.g., satellite
imagery, encompass comprehensive contextual information and
offer an effective way to represent diverse modalities. To unleash
the power of such geo-images, we propose VisionST, a Vision-
augmented Spatial-Temporal Neural Network, which coordinates
cross-modal traffic prediction with interactive geo-image encoding.
To bolster resilience against highly intricate and overlapping traffic
patterns, VisionST features a visual semantic extraction mechanism
and a pattern-guided aggregation mechanism. The former extracts
node-level visual tokens and node-to-node visual relation patterns
from geo-referenced images. The latter generates relation patterns
that encompass visual, spatial, and temporal aspects, constraining
nodes to interact with these relation patterns for contextual in-
formation interaction. Extensive experiments on real large-scale
datasets offer insight into the effectiveness of the proposed solu-
tions, showing that VisionST consistently outperforms state-of-the-
art baselines.
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1 Introduction
The widespread location-based services and digital transformation
of societal activities significantly increase the availability of geo-
graphically spatiotemporal data [6, 15, 22, 30, 39]. For example, pop-
ulations of in-road sensors provide data that captures traffic flow in
multiple locations across time, while web-sourced satellite imagery
complements these traffic observations by providing visual contexts
such as point of interests (POIs), road layouts, and surrounding
environments [14]. In this study, we focus on a new problem that
unleashes the power of web-sourced visual contexts for effective
cross-modal traffic prediction, enabling decision making across var-
ious web-centric applications, such as web computing [37], urban
planning [41, 49], and geo-social networks [4].

Effectively capturing the complex spatial and temporal correla-
tions is crucial for traffic prediction. However, this task is particu-
larly challenging due to the presence of highly intricate and overlap-
ping traffic patterns, such as network topology, road connectivity,
and periodicity. These complex interactions make traffic prediction
particularly challenging. While many existing studies [5, 32] rely
solely on traffic observations for single-modal modeling of spatial
and temporal dependencies, such approaches are often limited in
scope and fail to capture the comprehensive real-world traffic pat-
terns, particularly structural aspects such as roads. In contrast, the
geographical (geo-) images offer rich visual information including
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road shapes and complex interconnections across locations [13],
which can complement traditional traffic data and enhance the
spatio-temporal feature extraction. Inspired by recent advances in
multi-modal learning [3, 34], incorporating visual modalities, i.e.,
geo-images, is expected to enhance traffic prediction performance.

Numerous studies regarding multi-modal learning have been
investigated in various domains, including image recognition [46],
natural language processing [17], and time series analysis [22, 48].
In image recognition, textual descriptions assist visual models in
identifying specific objects [46]. In natural language processing, the
integration of audio, visual, and textual cues proves advantageous
for sentiment analysis [34]. Additionally, in time series analysis, the
combination of temporal, visual, and textual modalities contributes
to improved prediction outcomes [48]. However, these methods are
not specifically designed for traffic prediction, failing to capture
the complex spatial and temporal correlations, simultaneously.

Geo-images widely exist in real-world applications [13], which
inherently provide rich visual information, such as road widths,
shapes, configurations, and complex interconnections between lo-
cations, which could complement traditional spatiotemporal obser-
vations, providing more contextual information [44, 45]. Thus, in
this study, we focus on coordinating cross-modal traffic prediction
with interactive geo-image encoding. However, it is non-trivial to
develop such a method due to three main challenges.

Challenge I: Extracting Compact Visual Semantics. It is challeng-
ing to extract meaningful and compact visual semantics from geo-
images. On the one hand, existing computer vision studies [31, 46]
primarily focus on generic vision tasks such as image classification
and object detection. However, thesemethods are notwell-suited for
traffic prediction, as they fail to effectively capture traffic-relevant
patterns. On the other hand, a fundamental modality gap exists
between geo-images and traffic observations. Further, geo-images
often contain substantial redundant or irrelevant information [31] ,
which dilutes the extraction of useful cues for modeling dynamic
traffic patterns.

Challenge II: Effective Cross-modal Coordination. It is challenging
to achieve cross-modal traffic prediction with geo-images. Although
recent studies [3, 34, 46] have investigated cross-modal learning
in diverse domains, such as image recognition, these approaches
are not directly applicable to traffic prediction. This is primarily
due to the complex dynamic-static relationship between traffic data
and geo-images, which calls for specialized coordination methods.
Moreover, designing an effective training and inference process
for integrating static image data with dynamic traffic observations
remains challenging. Specifically, traffic data provides information
for different locations at each time step. Appending visual data for
each location at each time step may require processing all location-
associated images through the vision backbone during each training
iteration, which is computationally prohibitive, especially for large-
scale road networks.

Challenge III: Three-fold Cross-modality Alignment. Effectively
aligning three-fold cross-modality features, i.e., static visual fea-
tures, dynamic spatial and temporal features, is challenging due to
the feature divergences between static and dynamic data. Recent
multi-modal learning studies [3, 28, 34] provide means to perform
feature alignment. However, they typically treat all data modali-
ties as either static or dynamic, without addressing both static and

dynamic data. In contrast, traffic prediction requires the fusion of
inherently heterogeneous modalities: static image and dynamic
spatial and temporal features, hindering effective alignment.

To address these challenges, we introduce a Vision-augmented
Spatial-Temporal Neural Network (VisionST) to unleash the power
of geo-images for cross-modal traffic prediction. To capture com-
pact visual semantics, we introduce a vision-augmented layer that
generates node (location)-level global visual tokens to enrich the
feature space with local environmental context derived from geo-
images. Moreover, we introduce a visual relation learner to con-
struct node-to-node visual relational patterns by sampling features
from specific image regions, which can capture the local visual
dependencies between nodes. Specifically, we apply a self-attention
mechanism to reduce the number of visual tokens for compact
visual representations (solving Challenge I ). To achieve effective
cross-modal coordination, we propose a pattern interaction layer
that extracts relation patterns from geo-images and traffic observa-
tions. It constrains nodes to interact with these relation patterns,
incorporating pattern-aware features into node representations for
more expressive and relationally grounded learning. In addition,
during training and inference, we introduce a novel cross-modal
sample update strategy that selectively updates visual features at
each iteration. This approach ensures efficient training while en-
abling full cross-modal fusion during inference (solving Challenge
II ). To effectively align visual, spatial, and temporal information,
we propose a hybrid cross-attention mechanism that incorporates
global visual tokens into spatiotemporal embeddings. Additionally,
we introduce a pattern refinement module that fuses visual rela-
tional patterns with common relational representations for more
comprehensive pattern integration (solving Challenge III ).

The main contributions are summarized as follows:
• We propose a new Vision-augmented Spatial-Temporal Neu-
ral Network (VisionST), which aims to coordinate cross-
modal traffic prediction with web-sourced geo-image encod-
ing.
• We design a novel pattern interaction mechanism, which
facilitates extracting and combining visual, spatial, and tem-
poral patterns via an innovative message-passing process.
• We propose a cross-modal sample update strategy to effec-
tively harmonize geo-images and traffic observations during
both training and inference.
• Comprehensive experimental results on large traffic datasets
demonstrate that the VisionST achieves state-of-the-art per-
formance.

2 Related Work
Deep Learning Based Traffic Prediction. Deep learning based
traffic prediction has been a long focus of both research and in-
dustry [2, 11, 12, 15, 16, 19, 21, 29, 35, 39]. Early approaches, such
as GWNET [38], introduced data-driven fixed adjacency matri-
ces within graph neural networks to capture spatial dependencies.
To model dynamic point-to-point spatial correlations, many like
ASTGCN [9], GMAN [47], ST-GRAT [33], and GMSDR [24] apply
attention mechanisms to model dynamic spatial correlations. Al-
though these methods extract spatial and temporal dependencies
from traffic data, they overlook rich visual patterns such as road
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Figure 1: Framework overview
geometry, layout, and connectivity [48], which are difficult to cap-
ture through traditional spatiotemporal inputs alone. Therefore,
we propose VisionST, a cross-modal framework that coordinates
cross-modal traffic prediction with interactive geo-image encoding.
Multi-modal Learning. Recent studies have explored multi-modal
across various domains [18, 20, 23, 25, 27]. In image recognition,
some studies employ multi-modal models that enable end-to-end
learning of visual–language contexts for object localization, identi-
fication, and association [40, 46]. In natural language processing,
multi-modal analysis has been explored by integrating audio, visual,
and textual modalities to capture semantic information [34, 43]. For
meteorological spatiotemporal prediction, [3] introduced the Terra
dataset, which combines spatial imagery, descriptive text, and spa-
tiotemporal observations. However, no specific dataset exists for
cross-modal traffic prediction. To address this, we create a new
multi-modal traffic dataset and a pattern interaction layer to align
the features of spatiotemporal observations and geo-referenced
satellite imagery extracted from the Map.

3 Preliminaries
Definition 3.1 (Traffic Flow). Traffic flow data consists of multiple

correlated time series collected from spatially distributed nodes
where road sensors are deployed. At each time step 𝑡 , the traffic
observation is represented as 𝑋 𝑡 ∈ R𝑁×𝐶 , where 𝑁 is the number
of sensor nodes and 𝐶 denotes the number of features per node
(e.g., traffic flow, speed, temperature, etc.).

Definition 3.2 (Geo-image). To enhance spatial representation,
we incorporate image data derived from digital map tiles. Each
node is associated with a corresponding image that captures the
local environment centered on the node’s geographic coordinates.
Let I ∈ R𝑁×𝐻×𝑊 ×3 denote the set of RGB images for all 𝑁 nodes,
where𝐻 and𝑊 are the height and width of the images, respectively.

Definition 3.3 (Traffic Prediction). Given the past 𝑇 time steps of
traffic node features X = {𝑋 𝑡−𝑇+1, . . . , 𝑋 𝑡 }, the node coordinates
(latitude Lat ∈ R𝑁 and longitude Lng ∈ R𝑁 ), and the node-level

images, we aim to learn a function 𝑓 to estimate the traffic flow
over the next 𝐹 time steps:

Ŷ = 𝑓 (X, Lat, Lng, I), (1)

where Ŷ ∈ R𝐹×𝑁×𝐶 is the prediction and X ∈ R𝑇×𝑁×𝐶 is the
input.

4 Methodology
4.1 Overview
An overview of the proposed Vision-augmented Spatial-Temporal
Neural Network (VisionST) is illustrated in Figure 1. VisionST is
composed of three main components: (1) Multi-modal Embedding,
which consists of spatiotemporal embedding and image embedding,
aims to transform the traffic data into a high-dimensional repre-
sentation, thereby facilitating more effective learning of complex
patterns. (2) Vision-Augmented Layer, which extracts node-level
visual tokens from geo-images and integrates them into spatiotem-
poral representations, enriching the feature space with localized
environmental context. (3) Pattern Interaction Layer, which gener-
ates relation patterns that encompass visual, spatial, and temporal
aspects, constrains nodes to interact with them for contextual in-
formation interaction.

4.2 Multi-modal Embedding
4.2.1 Spatiotemporal Embedding. For ease of processing, we re-
shape the input tensorX ∈ R𝑇×𝑁×𝐶 into a two-dimensional matrix
X̃ ∈ R𝑁×(𝑇 ∗𝐶 ) . Following previous works [5, 38], we adopt a fully-
connected layer to transform the raw numerical values of each input
time series into high-dimensional embeddings. The transformation
process is formulated as:

H = X̃𝑊1 + 𝑏1, (2)

where𝑊1 ∈ R(𝑇 ∗𝐶 )×𝑑ℎ and 𝑏1 ∈ R𝑑ℎ are learnable parameters of
the linear projection layer, and H ∈ R𝑁×𝑑ℎ denotes the resulting
high-dimensional embedding.
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Moreover, we incorporate temporal periodic patterns and spa-
tial uniqueness to improve the discriminability of different nodes.
For the temporal periodic patterns, we consider weekly and daily
periodicities. Specifically, we define two embedding lookup ta-
bles: W ∈ R𝑇𝑤×𝑑𝑤 for the day-of-week and U ∈ R𝑇𝑑×𝑑𝑑 for the
time-of-day, where 𝑇𝑤 and 𝑇𝑑 denote the number of unique week-
days and time slices per day, respectively. Given the last observed
timestamp for each node, we retrieve its temporal embeddings
T(𝑤 ) ∈ R𝑁×𝑑𝑤 and T(𝑑 ) ∈ R𝑁×𝑑𝑑 . To account for spatial het-
erogeneity, we assign each node a learnable spatial embedding
T(𝑠 ) ∈ R𝑁×𝑑𝑠 , which serves as a node identifier in the latent space.
Finally, we concatenate the above features with the encoded tem-
poral input H ∈ R𝑁×𝑑ℎ to form the overall spatiotemporal repre-
sentation:

Z = H ∥ T(𝑤 ) ∥ T(𝑑 ) ∥ T(𝑠 ) , (3)

where Z ∈ R𝑁×𝑑 , 𝑑 = 𝑑ℎ + 𝑑𝑤 + 𝑑𝑑 + 𝑑𝑠 , and ∥ represent the
concatenation operation.

4.2.2 Image Embedding. To extract visual semantics, we adapt an
image embedding module based on a vision backbone (i.e., ResNet),
to obtain node-level visual representations from geo-images. We
formulate this as follows:

𝐼𝑖 = ImgEmbedding(𝐼𝑖 ), (4)

where 𝐼𝑖 ∈ R𝐻×𝑊 ×3 denotes the RGB image of node 𝑖 , and 𝐼𝑖 ∈
R𝐻̂×𝑊̂ ×𝑑𝑝 represents the encoded visual feature map. 𝐻̂ and 𝑊̂ are
the height and width of the encoded feature map, respectively. 𝑑𝑝
is the feature dimension.

4.3 Vision-Augmented Layer
For each node, the visual content provides rich contextual cues
which are essential for capturing common latent patterns. How-
ever, due to the heterogeneous nature of visual and spatiotemporal
features, directly integrating them remains a non-trivial challenge.
To address this, we propose a vision-augmented layer, which ef-
fectively fuses node-level visual features into the spatiotemporal
representations. For each node, we extract a compact node-level
visual token 𝐼̃𝑖 ∈ R𝑑𝑝 from the visual feature map, computed as
follows:

𝐼̃𝑖 = AvgPool
(
Conv(𝐼𝑖 )

)
, (5)

where Conv(·) denotes a convolution operation used to project the
visual feature map to a lower-dimensional space, and AvgPool(·)
denotes a global average pooling operation that aggregates spatial
information.

4.3.1 Hybrid Cross Attention. Given that geographically proximate
nodes often exhibit similar visual characteristics, we adopt a hybrid
cross attention mechanism to reduce redundancy in the visual
tokens. To achieve a compact representation, we introduce a set of
learnable global visual tokens 𝐼̃𝑔 ∈ R𝑠×𝑑𝑝 , which serve as global
abstract proxies for visual semantics. The fusion of learnable global
visual tokens and node-level visual tokens is G = 𝐼̃𝑔 ∥𝑊 𝐼̃ ∈ R2𝑠×𝑑𝑝 ,
where𝑊 ∈ R𝑠×𝑁 reduces the dimension of node-level visual tokens.
This is then processed through a self-attention mechanism, defined
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as:

G̃ = Softmax

(
(G𝑊𝑄1 ) (G𝑊𝐾1 )⊤√︁

𝑑𝑝

)
(G𝑊𝑉1 ), (6)

where 𝑠 ≪ 𝑁 , and the first 𝑠 outputs G̃[:𝑠 ] ∈ R𝑠×𝑑𝑝 represent the
compact global visual tokens after information aggregation. Addi-
tionally,𝑊𝑄1 ,𝑊𝐾1 , and𝑊𝑉1 ∈ R𝑑𝑝×𝑑𝑝 are learnable parameters.

Then, we employ a cross-attention mechanism to align the two
modalities (i.e., visual and spatiotemporal features). The operation
is formulated as follows:

Z̃ = Softmax

(
(Z𝑊𝑄2 ) (G̃[:𝑠 ]𝑊𝐾2 )⊤√

𝑑

)
(G̃[:𝑠 ]𝑊𝑉2 ), (7)

where𝑊𝑄2 ∈ R𝑑×𝑑 , and𝑊𝐾2 ,𝑊𝑉2 ∈ R𝑑𝑝×𝑑 are learnable parame-
ters.

4.4 Pattern Interaction Layer
Traditional GNN-based models typically utilize a global node-to-
node message passing strategy with graph structures to capture
spatiotemporal feature interactions. However, this approach is often
insufficient for fully representing the intricate patterns or relation-
ships between nodes. To mitigate these limitations, we propose a
pattern interaction layer that aggregates information across nodes
based on learned common relation patterns. Specifically, we first
extract node-to-node visual relation patterns by sampling features
from specific regions of the visual feature maps. These patterns up-
date the relation patterns, enabling each node to interact exclusively
with these updated patterns to gather contextual features.

4.4.1 Visual Relation Learner. For visual relation patterns, nodes
often exhibit meaningful visual relations, such as shared road struc-
tures or mutual connections, which are not explicitly encoded in
conventional graph structures. However, extracting these relations
directly from image content is non-trivial. To this end, we design a
visual relation learner that identifies visual relation patterns from
the visual feature maps 𝐼 , as shown in Figure 2. For the 𝑖-th node,
we denote its visually related neighbors, i.e., nodes that are within
its image region, by the set N𝑖 = {N𝑖1 ,N

𝑖
2 , . . . ,N

𝑖
𝑚𝑖 }, where 𝑚𝑖

represents the total number of neighbors of the 𝑖-th node. The
visual embedding at the center location of node 𝑖 is denoted by
I𝑖 = 𝐼𝑖 [Lat𝑖 , Lng𝑖 ], while the visual feature of the 𝑗-th neighboring
node N𝑖

𝑗
is represented by IN𝑖

𝑗
= 𝐼𝑖 [LatN𝑖

𝑗
, LngN𝑖

𝑗
], as captured

within the feature map of node 𝑖 . Here, Lat𝑖 and Lng𝑖 denote the co-
ordinates of the center of node 𝑖 within its feature map, while LatN𝑖

𝑗
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and LngN𝑖
𝑗
correspond to the coordinates of the 𝑗-th neighboring

node N𝑖
𝑗
.

First, we crop the region in the visual feature map between node
𝑖 and its neighbor N𝑖

𝑗
to generate the visual relation context as

follows:
GN𝑖

𝑗
= 𝐼𝑖 [min(Lat𝑖 , LatN𝑖

𝑗
) − dl : max(Lat𝑖 , LatN𝑖

𝑗
) + dl,

min(Lng𝑖 , LngN𝑖
𝑗
) − dl : max(Lng𝑖 , LngN𝑖

𝑗
) + dl],

(8)

where GN𝑖
𝑗
∈ RH×W×𝑑𝑝 refers to the local visual patch between

node 𝑖 and its neighborN𝑖
𝑗
, capturing their intermediate visual rela-

tion, and dl denotes a fixed scaling hyperparameter. Subsequently,
we apply a convolution operation followed by average pooling to
aggregate visual information to G̃N𝑖

𝑗
∈ R𝑑𝑝 , expressed as:

G̃N𝑖
𝑗
= AvgPool

(
Conv(GN𝑖

𝑗
)
)
. (9)

Next, we concatenate the 𝑖-th node visual feature I𝑖 , its 𝑗-th
neighbor node visual feature IN𝑖

𝑗
, and their local visual patch G̃N𝑖

𝑗
,

then pass them through a multilayer perceptron, denoted asMLP (·),
to generate the output 𝑃N𝑖

𝑗
∈ R3𝑑𝑝 . This output represents the

visual relation pattern between the 𝑖-th node and its 𝑗-th neighbor
N𝑖
𝑗
, as follows:

𝑃N𝑖
𝑗
= MLP (I𝑖 ∥ IN𝑖

𝑗
∥ G̃N𝑖

𝑗
) . (10)

Finally, the complete set of visual relation patterns across all
nodes is aggregated as:

𝑃 = [𝑃N1
1
, . . . , 𝑃N1

𝑚1
, 𝑃N2

1
, . . . , 𝑃N2

𝑚2
, (11)

. . . , 𝑃N𝑁
1
, . . . , 𝑃N𝑁

𝑚𝑁
]𝑊2 + 𝑏2, (12)

where𝑊2 ∈ R(3𝑑𝑝 )×𝑑 and 𝑏2 ∈ R𝑑 are learnable parameters of
the linear projection layer, 𝑃 ∈ R𝑁𝑝×𝑑 is the final visual relation
pattern matrix, and 𝑁𝑝 =

∑𝑁
𝑖=1𝑚

𝑖 denotes the total number of
node-neighbor visual relations.

4.4.2 Pattern Refinement. To capture global relational semantics,
we introduce a learnable common relation pattern matrix D ∈
R𝑘×𝑑 , where 𝑘 ≪ 𝑁 . The visual relation patterns 𝑃 are integrated
into these relation patterns via a cross-attention mechanism, for-
mulated as follows:

D̃ = Softmax

(
(D𝑊𝑄3 ) (𝑃𝑊𝐾3 )⊤√

𝑑

)
(𝑃𝑊𝑉3 ), (13)

where𝑊𝑄3 ,𝑊𝐾3 ,𝑊𝑉3 ∈ R𝑑×𝑑 are learnable parameters.

4.4.3 Pattern Fusion Block. In the pattern fusion block, we intro-
duce a gating mechanism designed for adaptive aggregation of
visual, spatial, and temporal information. Specifically, temporal
dependencies are captured using a multilayer perceptron MLP (·),
and spatial structures and visual relations are encoded via a pattern-
guided aggregation module, denoted as PGA(·). Formally, the 𝑖-th
adaptive gating mechanism is defined as follows:

Z̃𝑖𝑡 = MLP (Z̃), Z̃𝑖𝑠 = PGA(Z̃, D̃), (14)

Z̃𝑖 = 𝛼Z̃𝑖𝑠 + (1 − 𝛼)Z̃
𝑖
𝑡 , (15)

where 𝛼 ∈ [0, 1] is a learnable gating parameter balancing the
vision-spatial and temporal contributions. Finally, the aggregated
representations from 𝑙 layers are concatenated and further refined
using another MLP (·) for future prediction, which is formulated as
follows:

Ŷ = MLP (Z̃1∥Z̃2∥ . . . ∥Z̃𝑙 ) . (16)
Pattern-GuidedAggregation aims to enrich the representation

of each graph node by aggregating contextual information guided
by dynamically updated relation patterns D̃. Given the node feature
matrix Z̃ ∈ R𝑁×𝑑 generated from the vision-augmented layer and
the relation pattern matrix D̃ ∈ R𝑘×𝑑 , we obtain the query, key,
and value matrices via linear projections:

𝑄4 = Z̃𝑊𝑄4 , 𝐾4 = D̃𝑊𝐾4 , 𝑉4 = Z̃𝑊𝑉4 , (17)

where𝑊𝑄4 ,𝑊𝐾4 , and𝑊𝑉4 ∈ R𝑑×𝑑 are learnable projection matri-
ces.

To model both semantic alignment and structural consistency
between nodes and patterns, we compute two attention maps: node-
to-pattern attention 𝐴 and pattern-to-node attention 𝐴T , defined
as follows:

𝐴 = Softmax

(
𝑄4𝐾⊤4√

𝑑

)
Softmax

(
𝐾4𝐾⊤4√
𝑑

)
, (18)

𝐴T = Softmax

(
𝐾4𝑄⊤4√
𝑑

)
, (19)

where𝐴 ∈ R𝑁×𝑘 encodes how strongly each node aligns with each
relation pattern, modulated by inter-pattern coherence captured
by the second softmax term and 𝐴T ∈ R𝑘×𝑁 captures the reverse
interaction, allowing each pattern to selectively focus on relevant
node features.

Finally, the spatially enhanced representation Z̃𝑠 ∈ R𝑁×𝑑 is
computed by a two-step attention aggregation:

Z̃𝑠 = 𝐴
(
𝐴T𝑉4

)
, (20)

where the inner term aggregates node features into pattern-specific
representations, which are then redistributed back to nodes through
the outer attention.

4.5 Model Training and Inference
Aligning static image data with dynamic spatiotemporal features
poses both computational and modeling challenges. In particular,
processing all node-associated images through the vision model
at every training step becomes prohibitively expensive, especially
in large-scale graphs. To address this, we propose a cross-modal
sample update strategy to update only a sampled mini-batch of im-
ages 𝐼batch at each iteration. These are processed through the vision
model, which consists of the image embedding, vision-augmented
layer, and visual relation learner modules, to generate visual tokens
𝐼̃batch and visual relation patterns 𝑃batch, while cached representa-
tions 𝐼̃frozen and 𝑃frozen from previous iterations remain unchanged.
The final representations are then combined as follows:

𝐼̃ = {𝐼̃batch, 𝐼̃frozen}, 𝑃 = {𝑃batch, 𝑃frozen}. (21)

During training, both dynamically updated and frozen visual
representations are utilized alongside the spatiotemporal input to
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Figure 3: The visual tokens data flow in training process.

optimize the forecastingmodel. In particular, the data flow for visual
tokens is illustrated in Figure 3. The data flow for visual relation
patterns is similar to this. Specifically, at each iteration, a selected
subset of image regions 𝐼batch is processed through the vision model
(Vmodel) to yield visual tokens 𝐼̃batch and corresponding visual
relation patterns 𝑃batch. The remaining visual features 𝐼̃frozen and
𝑃frozen are retained from previous iterations without recomputation.
These, together with the corresponding spatiotemporal features
𝑋batch, are then fed into the spatiotemporal model (STmodel) for
prediction and gradient-based optimization. The overall process
can be formally described as:

{𝐼batch}
Vmodel−−−−−−→ {𝐼̃batch, 𝑃batch}, (22)

{𝑋batch, 𝐼̃ , 𝑃}
STmodel−−−−−−−→ 𝑌batch . (23)

During inference, the vision model processes all available im-
age data once to compute the full set of visual tokens and relation
patterns. These fixed visual features are then paired with the spa-
tiotemporal data to make predictions. The inference pipeline is
illustrated as:

{𝐼 } Vmodel−−−−−−→ {𝐼̃ , 𝑃}, {𝑋, 𝐼̃ , 𝑃} STmodel−−−−−−−→ 𝑌 . (24)

This design ensures efficient training and full cross-modal fusion
at inference, enabling high-performance prediction with reduced
computational overhead.

5 Experiments
This section first presents the experimental setup and benchmarks
the proposed VisionST model against state-of-the-art methods for
traffic flow prediction. Additionally, we conduct comprehensive
analyses, including ablation studies, the effect of global visual to-
kens, the effect of relation patterns, and hyper-parametric studies.

5.1 Experimental Setup
5.1.1 Datasets. We conduct experiments on four large datasets,
SD, GBA, GLA, and CA, as introduced in LargeST [26]. For im-
age datasets, we utilize web-sourced geographic data from Open-
StreetMap [10] and generate corresponding geo-image tiles cen-
tered around sensor nodes using the Contextily toolkit [1]. Detailed
descriptions of this generation are provided in Appendix B.3. Ta-
ble 1 provides detailed statistics of spatiotemporal and geo-image
datasets. Each geo-image represents the local environment centered
on a node’s geographic coordinates.

Table 1: Dataset statistics.

Datasets Points Images Samples TimeSlices Timespan

SD 716 716 25 M 35040 01/01/19-12/31/19
GBA 2352 2352 82 M 35040 01/01/19-12/31/19
GLA 3834 3834 134 M 35040 01/01/19-12/31/19
CA 8600 8600 301 M 35040 01/01/19-12/31/19

5.1.2 Baselines. We compare VisionST with nine baselines with
MLP-based, GCN-based, and Transformer-basedmethods. TheMLP-
based methods include STID [35] and BigST [11]. The GCN-based
methods includeGWNET [38], STGODE [8], RPMixer [42], DGCRN [19],
and STWave [7]. Transformer-basedmethods includeD2STGNN [36]
and PatchSTG [5]. Detailed descriptions of these models are pro-
vided in Appendix B.4.

5.1.3 Evaluation Metrics. We adopt three widely used numerical
metrics to assess the quality of predicted traffic time series: Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean
Absolute Percentage Error (MAPE). The corresponding formulas
are provided in Appendix B.1.

5.1.4 Implementation Details. Our experiments are conducted on
a server equipped with NVIDIA RTX 4090 GPUs, running CUDA
version 12.2. All models are implemented using PyTorch. Following
baselines, each dataset is chronologically split into training, vali-
dation, and test sets with a ratio of 6:2:2. For geo-image datasets,
each covers an area of 0.05 degrees in both longitude and latitude.
To maintain consistency, all images are resized to 224×224 pixels.
During training, VisionST is optimized using the AdamW optimizer
with a learning rate of 0.002 and a weight decay of 0.0001. The learn-
ing rate is reduced by half every 15 epochs. More implementation
details are provided in Appendix B.2.

5.2 Experimental Results
5.2.1 Performance Comparisons. Table 2 reports the MAE, RMSE,
and MAPE for traffic prediction across all methods on four large-
scale datasets. The performance is evaluated at horizons 3, 6, and 12,
as well as the average across all 12 horizons. VisionST consistently
achieves state-of-the-art performance across all evaluated datasets,
demonstrating average improvements of 3.95%, 3.12%, and 11.85%
in MAE, RMSE, and MAPE, respectively, compared to the second-
best results. Transformer-based models, such as D2STGNN and
PatchSTG, demonstrate improved predictive accuracy by leverag-
ing self-attention mechanisms to aggregate global node features. In
contrast, MLP-based models, such as STID and BigST, which treat
nodes as independent channels, experience reduced performance
due to the lack of spatial interaction information. This limitation
stems from their inability to model the intricate spatial interactions
between nodes. GCN-based models, like GWNET and STGODE,
underperform due to their reliance on the global message-passing
mechanism inherent in GCNs. While GCNs are capable of learn-
ing spatial dependencies, their fixed neighborhood aggregation
approach is less flexible in capturing dynamic traffic patterns and
local variations in traffic flow. Compared to GWNET, VisionST
shows an average improvement of about 20.03%, 13.01%, and 28.16%
in MAE, RMSE, and MAPE, respectively. This superior performance
of VisionST can be attributed to its ability to jointly model visual,
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Table 2: Large-scale traffic prediction performance comparison of our VisionST and baselines. The second-best performance
method is underlined, and the overall best performance is marked in bold.

Datasets Methods Horizon 3 Horizon 6 Horizon 12 Average
MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

SD

STID 15.15 25.29 9.82 17.95 30.39 11.93 21.82 38.63 15.09 17.86 31.00 11.94
GWNET 15.24 25.13 9.86 17.74 29.51 11.70 21.56 36.82 15.13 17.74 29.62 11.88
STGODE 16.75 28.04 11.00 19.71 33.56 13.16 23.67 42.12 16.58 19.55 33.57 13.22
RPMixer 18.54 30.33 11.81 24.55 40.04 16.51 35.90 58.31 27.67 25.25 42.56 17.64
D2STGNN 14.92 24.95 9.56 17.52 29.24 11.36 22.62 37.14 14.86 17.85 29.51 11.54
DGCRN 15.34 25.35 10.01 18.05 30.06 11.90 22.06 37.51 15.27 18.02 30.09 12.07
STWave 15.80 25.89 10.34 18.18 30.03 11.96 21.98 36.99 15.30 18.22 30.12 12.20
BigST 16.42 26.99 10.86 18.88 31.60 13.24 23.00 38.59 15.92 18.80 31.73 12.91
PatchSTG 14.61 24.26 9.25 17.26 28.69 11.98 21.16 36.01 16.49 17.24 29.18 12.24
VisionST 14.26 23.95 9.01 16.55 27.90 10.66 20.13 34.61 13.70 16.57 28.30 10.79

GBA

STID 17.36 29.39 13.28 20.45 34.51 16.03 24.38 41.33 19.90 20.22 34.61 15.91
GWNET 17.85 29.12 13.92 21.11 33.69 17.79 25.58 40.19 23.48 20.91 33.41 17.66
STGODE 18.84 30.51 15.43 22.04 35.61 18.42 26.22 42.90 22.83 21.79 35.37 18.26
RPMixer 20.31 33.34 15.64 26.95 44.02 22.75 39.66 66.44 37.35 27.77 47.72 23.87
D2STGNN 17.54 28.94 12.12 20.92 33.92 14.89 25.48 40.99 19.83 20.71 33.65 15.04
DGCRN 18.02 29.49 14.13 21.08 34.03 16.94 25.25 40.63 21.15 20.91 33.83 16.88
STWave 17.95 29.42 13.01 20.99 34.01 15.62 24.96 40.31 20.08 20.81 33.77 15.76
BigST 18.70 30.27 15.55 22.21 35.33 18.54 26.98 42.73 23.68 21.95 35.54 18.50
PatchSTG 17.48 29.27 13.20 20.27 33.43 15.95 23.67 39.14 19.89 20.02 33.42 16.12
VisionST 16.61 28.24 11.94 19.45 32.52 14.51 23.27 38.63 18.47 19.31 32.64 14.56

GLA

STID 16.54 27.73 10.00 19.98 34.23 12.38 24.29 42.50 16.02 19.76 34.56 12.41
GWNET 17.28 27.68 10.18 21.31 33.70 13.02 26.99 42.51 17.64 21.20 33.58 13.18
STGODE 18.10 30.02 11.18 21.71 36.46 13.64 26.45 45.09 17.60 21.49 36.14 13.72
RPMixer 19.94 32.54 11.53 27.10 44.87 16.58 40.13 69.11 27.93 27.87 48.96 17.66
STWave 17.48 28.05 10.06 21.08 33.58 12.56 25.82 41.28 16.51 20.96 33.48 12.70
BigST 18.38 29.40 11.68 22.22 35.53 14.48 27.98 44.74 19.65 22.08 36.00 14.57
PatchSTG 15.84 26.34 9.27 19.06 31.85 11.30 23.32 39.64 14.60 18.96 32.33 11.44
VisionST 15.66 25.93 8.92 18.68 30.88 11.07 22.85 38.32 14.24 18.58 31.32 11.08

CA

STID 15.51 26.23 11.26 18.53 31.56 13.82 22.63 39.37 17.59 18.41 32.00 13.82
GWNET 17.14 27.81 12.62 21.68 34.16 17.14 28.58 44.13 24.24 21.72 34.20 17.40
STGODE 17.57 29.91 13.91 20.98 36.62 16.88 25.46 45.99 21.00 20.77 36.60 16.80
RPMixer 18.18 30.49 12.86 24.33 41.38 18.34 35.74 62.12 30.38 25.07 44.75 19.47
STWave 16.77 26.98 12.20 18.97 30.69 14.40 25.36 38.77 19.01 19.69 31.58 14.58
BigST 17.15 27.92 13.03 20.44 33.16 15.87 25.49 41.09 20.97 20.32 33.45 15.91
PatchSTG 15.06 25.18 11.30 17.92 29.89 13.62 21.63 36.51 16.72 17.77 30.14 13.65
VisionST 14.84 25.09 10.47 17.49 29.53 12.46 21.06 35.79 15.62 17.37 29.75 12.50

Table 3: Ablation study of VisionST on average results of
large-scale traffic datasets. Bold: best performance.

Dataset SD GBA GLA
Metric MAE RMSE MAPE (%) MAE RMSE MAPE (%) MAE RMSE MAPE (%)
w/o VA 16.74 28.46 10.82 20.06 33.63 15.39 18.86 31.80 11.37
w/o VP 17.26 29.17 11.02 20.23 33.53 16.06 19.17 32.14 11.72
w/o RP 16.66 28.48 10.84 19.74 33.14 15.31 18.77 31.68 11.09
w/o I 17.12 28.89 11.56 20.06 33.56 15.72 19.02 31.85 11.24
w/o PB 17.53 30.53 11.54 19.79 34.09 15.23 19.51 33.34 11.89
VisionST 16.57 28.30 10.79 19.31 32.64 14.56 18.58 31.32 11.08

spatial, and temporal patterns in a cross-modal framework. By cap-
turing complex and heterogeneous traffic patterns through cross-
modal integration, VisionST significantly enhances prediction and
generalization capability.

5.2.2 Ablation Study. To evaluate the effectiveness of different
components in VisionST, we conducted the ablation study with
several variants of VisionST on the SD, GBA, and GLA datasets.
The model structure and its description for the ablation studies
are detailed in Appendix C.1. As shown in table 3, VisionST con-
sistently outperforms its variants, highlighting the efficacy of its

complete configuration. Among the variants, removing the pattern
fusion block (w/o PB) leads to the most significant performance
degradation, with average increases of 5.79%, 7.88%, and 6.95% in
MAE, RMSE, and MAPE, respectively, compared to VisionST. Ex-
cluding the input geo-image data (w/o I ) emphasizes the crucial
role of geo-image data, as it provides valuable visual context for en-
hanced prediction. Without the relation pattern (w/o VP) or global
visual token (w/o VA) suggests that relying solely on spatial and
temporal patterns is inadequate. Visual semantics offer complemen-
tary semantic context that enhances spatial-temporal reasoning,
especially in complex traffic scenes. Additionally, the absence of
the pattern-aware messaging mechanism (w/o RP) underscores its
crucial role in processing node relations.

5.2.3 Effect of Global Visual Tokens. Figure 4 shows the results of
analyzing the number of global visual tokens 𝑠 in VisionST on the
SD and GBA datasets. Specifically, we evaluate 𝑠 within the range
{0.005𝑁, 0.01𝑁, 0.015𝑁, 0.02𝑁 }, where 𝑁 denotes the total number
of nodes in the dataset. VisionST achieves optimal performance
on both datasets when the number of global visual tokens is set
to 0.01𝑁 , suggesting that the ideal number of global visual tokens
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Figure 4: Global visual tokens 𝑠.
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Figure 5: Relation patterns 𝑘 .

scales positively with the dataset size and node count. This finding
is consistent with the notion that larger datasets with more nodes
require a greater number of visual tokens to adequately capture the
spatial and contextual information embedded in the data. Further-
more, increasing 𝑠 beyond 0.01𝑁 results in a notable performance
decline. Specifically, larger values of 𝑠 contribute to overfitting, as
the model becomes overly focused on fine-grained visual details
that are less relevant for the task at hand.

5.2.4 Effect of Relation Patterns. We analyze the number of rela-
tional patterns𝑘 in VisionST on the SD andGBA datasets in Figure 5.
Specifically, we evaluate𝑘 within the range {0.005𝑁, 0.01𝑁, 0.015𝑁,
0.02𝑁 }, where 𝑁 denotes the total number of nodes in the dataset.
The best results occur at 𝑘 = 0.015𝑁 for the SD dataset and 𝑘 =

0.01𝑁 for the GBA dataset, suggesting that the GBA dataset is char-
acterized by more compact relational patterns compared to the SD
dataset. These findings suggest that VisionST can adapt to different
dataset characteristics, with smaller values of 𝑘 being more suitable
for datasets with tightly clustered relational structures, like GBA,
and larger values of 𝑘 better capturing the more dispersed patterns
in the SD dataset.

5.2.5 Hyper-parameter Study. The results of the hyper-parameter
sensitivity analysis for VisionST on the SD and GBA datasets are
presented in Figure 6. The analysis examines the effects of vary-
ing the number of pattern fusion blocks 𝑙 . Specifically, VisionST
achieves peak performance with 3 layers on the SD dataset and 5
layers on the GBA dataset. These findings suggest that the optimal
number of pattern fusion blocks depends on the complexity and
size of the dataset. For the SD dataset, a shallower architecture
with 3 layers appears sufficient to capture the traffic patterns. In
contrast, the GBA dataset, being larger and more complex, benefits
from a deeper architecture, with 5 layers enabling the model to
better capture the intricate traffic dynamics characteristic .

5.2.6 Visualization. We visualize the geo-image, global visual to-
ken, relation pattern, and prediction embeddings in Figure 7. Fig-
ure 7a demonstrates that the geo-image embeddings form well-
separated clusters corresponding to each dataset. Figure 7b tightly
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Figure 6: Hyper-parameter study.
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Figure 7: Embedding visualization on four datasets.

shows that global visual token embeddings have more cohesive-
ness. In Figure 7c, relation pattern embeddings have more complex
inter-relations, indicating that each dataset has different patterns.
Figure 7d illustrates that traffic prediction also forms well-separated
clusters for each dataset. This suggests that the projection utilizes
the geo-image embeddings to generate accurate forecasts. Overall,
the step-by-step refinement shows how the VisionST improves data
representations.

6 Conclusion
In this study, we introduce VisionST, which coordinates cross-modal
traffic prediction with interactive geo-image encoding. VisionST
is a pioneering approach to modeling traffic patterns from visual,
spatial, and temporal perspectives. This framework integrates web-
sourced geo-image data with traffic spatiotemporal data to capture
complex cross-modal latent patterns. Meanwhile, it adopts a cross-
modal sample update strategy that ensures efficient training while
allowing full cross-modal fusion during inference. Extensive experi-
ments conducted on four real-world, large datasets demonstrate the
superior performance of VisionST. In future research, an interesting
research direction is to study whether VisionST can be applied to
other spatio-temporal tasks, e.g., meteorological prediction.
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A Details of Training
During training, VisionST jointly leverages both dynamically up-
dated and frozen visual representations together with the spatiotem-
poral inputs to optimize the forecasting model. The data flow of
visual tokens is illustrated in Figure 3, while that of visual rela-
tion patterns follows a similar process. In addition, Algorithm 1
outlines the overall training process of VisionST. The algorithm
takes as input the node-level traffic features X, corresponding geo-
images I, and geographic coordinates (latitude and longitude). In
each training epoch, VisionST first encodes all geo-images through
an image embedding module to obtain compact visual tokens 𝐼̃ and
visual relation patterns 𝑃 . Then, for each mini-batch of traffic data,
the model samples a subset of geo-images and encodes them to
obtain 𝐼̃batch and 𝑃batch, from which frozen visual representations
𝐼̃frozen and 𝑃frozen are derived to preserve contextual consistency.
The spatial temporal embedding Z is then enhanced via a hybrid
cross attention mechanism. A common relation pattern matrix D
captures inter-node dependencies, while subsequent MLP and PGA
layers iteratively refine representations. The concatenated outputs
are finally fed into an MLP to produce the predicted traffic flow Ŷ.

Algorithm 1: VisionST Training
Input :Traffic node features X, node-level images I,

latitude Lat, longitude Lng
Output :Trained VisionST model parameters

1 for 𝑒𝑝𝑜𝑐ℎ = 1 to epoch number do
2 𝐼 ← ImgEmbedding(I);
3 Extract compact visual tokens 𝐼̃ and visual relation

patterns 𝑃 for each geo-image;
4 foreach 𝑋batch ⊆ X do
5 Sample geo-images 𝐼batch from I;
6 Extract batched tokens 𝐼̃batch and patterns 𝑃batch;
7 Obtain frozen visual representations 𝐼̃frozen and

𝑃frozen (i.e., excluding current batch) from 𝐼̃batch
and 𝑃batch, respectively;

8 Merge visual features: 𝐼̃ ← {𝐼̃batch, 𝐼̃frozen},
𝑃 ← {𝑃batch, 𝑃frozen};

9 Z← SpatioTemporalEmbedding(𝑋batch);
10 Z̃← HybridCrossAttention(Z, 𝐼̃ );
11 Compute relation matrix D according to Eq. 13;
12 for 𝑖 = 1 to 𝑙 do
13 Z̃(𝑖 )𝑡 ← MLP (Z̃);
14 Z̃(𝑖 )𝑠 ← PGA(Z̃,D);
15 Z̃(𝑖 ) ← 𝛼Z̃(𝑖 )𝑠 + (1 − 𝛼)Z̃

(𝑖 )
𝑡 ;

16 end
17 Ŷ← MLP (Z̃(1) ∥Z̃(2) ∥ . . . ∥Z̃(𝑙 ) );
18 Update model parameters by minimizing loss

between Ŷ and ground truth Y;
19 end
20 end

B Details of the Experiment Setup
B.1 Evaluation metrics
We use three widely adopted numerical metrics to assess the quality
of predicted traffic time series: Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Mean Absolute Percentage Error
(MAPE). The formulas for these metrics are:

MAE =
1
𝑇𝑁

𝑇∑︁
𝑗=1

𝑁∑︁
𝑖=1

���𝑦 𝑗𝑖 − 𝑦 𝑗𝑖 ��� , (25)
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MAPE =
1
𝑇𝑁

𝑇∑︁
𝑗=1

𝑁∑︁
𝑖=1

�����𝑦 𝑗𝑖 − 𝑦 𝑗𝑖𝑦
𝑗
𝑖

����� × 100%, (27)

where 𝑦 𝑗
𝑖
denotes the predicted value for the 𝑖-th node at the 𝑗-th

time step, and 𝑦 𝑗
𝑖
represents the actual value of the 𝑖-th node at the

𝑗-th time step. Here, 𝑇 refers to the total number of time steps, and
𝑁 represents the total number of nodes.

B.2 Implementation Details
To facilitate reproducibility, we summarize the default hyperparam-
eters below. The input projection dimension across all datasets is
set to 64. The dimensions for day-of-week embedding, time-slice-
of-day embedding, spatial embedding, and image embedding are
each set to 32. For traffic prediction, we adopt a sliding window
approach, where each sample consists of 24 continuous time slices,
using the first 12 as historical input and the remaining 12 as future
predictions.

B.3 Geo-image Generation Algorithm
The algorithm generates geo-images by creating maps centered
around sensor nodes in the traffic dataset, following these steps:

(1) Iterates over each sensor node in the dataframe to extract
the geographical coordinates (Lat, Lng).

(2) Defines a bounding box for each node, with a 0.05-degree
width and height centered around the geographical point.

(3) Fetches a base map from OpenStreetMap for each sensor
node, based on its location within the defined bounding box.

This generation ensures seamless incorporation of up-to-date geo-
graphical data, allowing real-time synchronization with the traffic
dataset.

B.4 Details of Baselines
• STID [35] efficiently leverages simple Multi-Layer Percep-
trons for enhanced performance.
• GWNET [38] combines dilated convolution with diffusion
graph convolution and introduces a self-adaptive adjacency
matrix.
• STGODE [8] employs ordinary differential equations to fore-
cast traffic flow.
• RPMixer [42] treats each individual block within the net-
work as a base learner in an ensemble model.
• D2STGNN [36] models traffic flow by separating it into
diffusion and inherent components.
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Figure 8: Variants of VisionST.
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Figure 10: Hyper-parameter study.

• DGCRN [19] integrates a dynamic graph with a predefined
static graph for prediction.
• STWave [7] employs wavelets to disentangle the traffic time
series into trends and events
• BigST [11] efficiently exploit long-range spatio-temporal
dependencies for large-scale traffic forecasting.
• PatchSTG [5] models spatial dependencies for large-scale
traffic prediction.

C Additional Experiments
C.1 Ablation Study
We add the model structure and its description for model design
ablation studies, as shown in Figure 8. The five variants are listed
below:
• “w/o VA": This variant removes the vision-augmented layer.
• “w/o VP": This variant removes the visual relationships learner
and pattern refinement, meaning that no vision relational
patterns are integrated.
• “w/o I": This variant removes geo-image data, meaning that
only traffic spatiotemporal data is used as input.
• “w/o PB": This variant removes the pattern fusion block.
• “w/o RP": This variant removes the relation patterns.

C.2 Case Study
Comparative visualizations in Figure 9 illustrate the effectiveness
of VisionST by comparing its predicted traffic flow against the
ground truth of node 0 on the SD dataset. The close alignment
between the predicted curves and the ground truth curves indicates
that VisionST achieves high predictive accuracy. This alignment
underscores the model’s capability to capture temporal dynamics
in traffic patterns and account for fluctuations and trends that are
typical in real-world transportation systems.

C.3 Hyper-parameter Study
The results of the hyperparameter sensitivity analysis for VisionST
on the SD and GBA datasets are presented in Figure 10. The analysis
examines the effects of varying the number of input fully-connected
dimensions 𝑑ℎ . Specifically, when the number of input dimensions
is 64 for both SD and GBA datasets, VisionST achieves the best
performance. This suggests that 64 dimensions strike a balance by
capturing essential features while preventing overfitting.
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