Efficient High-Dimensional Time Series Forecasting with
Transformers: A Channel Reordering Perspective

Yuchen Fang” Shiyu Wang " Yuxuan Liang
University of Electronic Science and ByteDance China Hong Kong University of Science and
Technology of China Hangzhou, China Technology (Guangzhou)
Chengdu, China kwuking@gmail.com Guangzhou, China
fangyuchen@std.uestc.edu.cn yuxliang@outlook.com
Zhou Ye Yan Zhao* Kai Zheng*

Yang Xiang Shenzhen Institute for Advanced University of Electronic Science and

ByteDance China Study, University of Electronic Technology of China

Hangzhou, China
{yezhou199032,y.xiang1005}@gmail.com

Science and Technology of China
Shenzhen, China

Chengdu, China
zhengkai@uestc.edu.cn

zhaoyan@uestc.edu.cn

Abstract

Time series forecasting is crucial for the development of sophis-
ticated web technologies, driving smarter, more responsive, and
data-driven web applications. A key to accurate forecasting lies in ef-
fectively capturing the intricate dependencies among different vari-
ables (channels). While existing channel-dependent methods have
shown strong performance by explicitly modeling inter-channel
relationships, they face two critical challenges when applied to
high-dimensional datasets with thousands of channels. First, the
computational complexity of them grows quadratically with the
number of channels, leading to significant scalability issues. Second,
attention weights reveal that inter-channel dependencies exhibit
both local clusters and global structures, yet current methods fail
to disentangle these heterogeneous patterns, resulting in mutual
interference and degraded forecasting accuracy. To address these
challenges, we propose a novel Channel Reordering-Aligned group
Fusion Transformer (CRAFT) for high-dimensional time series fore-
casting. Specifically, we design an energy-based channel reordering
mechanism that reorganizes channels into a minimal-energy state,
preserving inherent local-global structures. Building on reordered
structure, we introduce a group fusion Transformer that explic-
itly separates local and global dependencies, significantly reducing
computational complexity while enhancing representational clar-
ity. Experiments on high-dimensional datasets demonstrate that
CRAFT consistently outperforms baselines, achieving higher fore-
casting accuracy with lower computational overhead.
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1 Introduction

Time series forecasting stands at the core of numerous mission-
critical applications, and its significance is further amplified in
the context of modern web technologies [25]. The World Wide
Web, as a dynamic and ever-evolving ecosystem, generates mas-
sive and complex data streams from diverse sources, such as user
interactions, service logs, and content delivery networks [17, 20].
These data streams typically consist of multiple interdependent vari-
ables, a.k.a channels, whose intricate temporal dynamics and inter-
variable relationships present substantial modeling challenges [45].
Recent advances have shown that explicitly modeling these inter-
channel dependencies (i.e., channel-dependent) is crucial for unlock-
ing the predictive potential of multivariate time series forecasting,
thereby enabling smarter web services and more adaptive user ex-
periences [36]. However, as the number of variables in multivariate
time series continues to grow from hundreds to thousands, the
problem naturally evolves into high-dimensional time series
forecasting [32, 47]. This escalation introduces several fundamen-
tal challenges for existing channel-dependent methods, particularly
in web scenarios where scalability, real-time responsiveness, and
predictive accuracy are paramount for applications.

Challenge I: Scalability Bottleneck of Channel-Dependent
Models. First, whether employing dense attention mechanisms [27],
adaptive graph neural networks [18], or fully-connected MLP-based
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Figure 1: Analysis of the inter-channel attention scores pro-
duced by the iTransformer [27] on the Atec [16] dataset, with
the showcase of the 56-th channel.

channel mixers [8], these methods invariably rely on explicit pair-
wise interactions between channels, causing their computational
complexity to scale quadratically with the number of channels.
This quadratic cost not only imposes severe computational and
memory burdens but also fundamentally limits the scalability of
such models in real-world applications, rendering them ill-suited
for deployment in latency-sensitive high-dimensional time series
forecasting tasks where efficiency is paramount. Although chan-
nel clustering offers a promising avenue for complexity reduction,
hard clustering approaches introduce substantial computational
overhead due to their reliance on complex modules and iterative
procedures [28]. In contrast, neural-based soft clustering, while
computationally efficient, often sacrifices local specificity for global
smoothness, leading to the loss of critical information required for
accurate high-dimensional time series forecasting [7, 15].

Challenge II: Undifferentiated Modeling of Heterogeneous
Dependencies. Second, existing methods suffer from a critical mod-
eling limitation: they fail to recognize the heterogeneous nature
of channel dependencies. As illustrated in Figure 1, analysis of the
attention weights uncovers a heterogeneous landscape of channel
dependencies. Some channels form tightly coupled local groups,
exhibiting strong mutual influence, that is, channels with similar
temporal evolution and value magnitude tend to receive higher
attention scores. Conversely, few channels demonstrate more dis-
tributed and global dependencies, reflected by relatively uniform
attention weights, i.e., they share more commonalities in both shape
and value. Current approaches typically homogenize these hetero-
geneous channel interactions, failing to explicitly disentangle these
local-global patterns. Such an entanglement between fundamen-
tally different dependency types leads to mutual interference during
model learning, undermining the capacity to capture either struc-
ture effectively and degrading forecasting accuracy.

To address these challenges from an efficient and undistorted
manner, we draw inspiration from physical sciences, where en-
tities in a system such as crystalline solids, protein folding, and
even large-scale cosmic structures often evolve towards minimal-
energy orders to manifest local cohesion nested within global struc-
tures [34, 35, 38]. Motivated by this observation, we propose a novel
Channel Reordering-Aligned group Fusion Transformer (CRAFT)
for high-dimensional time series forecasting. Specifically, we design

Yuchen Fang et al.

an energy-based channel reordering (CR) mechanism that seeks
to reorganize channels into a low-energy configuration, wherein
the inherent local-global structures are naturally surfaced and pre-
served. The detailed differences between channel reordering, chan-
nel clustering, and conventional channel-dependent paradigms are
provided in Appendix A. This reordering effectively aligns locally
correlated channels into cohesive neighborhoods while positioning
globally interactive channels in structurally meaningful locations.
Building upon this reordered structure, we explicitly separate neigh-
bored channels into the same group and thus preserve the local
cohesion nested in the global structures is disentangled (solving
Challenge II). By designing a group fusion Transformer to re-
strict fine-grained local modeling within groups and employing
coarse-grained global interactions across groups, our method dra-
matically reduces the computational complexity from quadratic
to linear, achieving both scalability and interpretability in high-
dimensional time series forecasting (solving Challenge I). Experi-
mental results on several datasets consistently demonstrate that our
approach outperforms state-of-the-art baselines in forecasting ac-
curacy, while significantly reducing computational complexity and
memory overhead compared with conventional channel-dependent
methods. Furthermore, we provide comprehensive analyses to vali-
date the effectiveness of our energy-based reordering and group
fusion Transformer in preserving and utilizing the intrinsic local-
global dependencies within high-dimensional time series.

In summary, this paper makes the following key contributions:

e We propose a novel Channel Reordering-Aligned group Fusion
Transformer (CRAFT) for high-dimensional time series forecast-
ing, which can explicitly separates local and global dependen-
cies, enabling substantial reductions in computational complexity
while enhancing the model’s interpretability and effectiveness.

e We propose an energy-based channel reordering mechanism for
high-dimensional time series, rooted in physical principles, that
reorganizes channels into a low-energy configuration, thereby
preserving intrinsic hierarchical structures.

e Extensive experiments on 14 high-dimensional datasets (up to
20,000 channels) show that CRAFT achieves the best forecasting
performance in 14/14 (MSE) and 13/14 (MAE) cases. Compared to
iTransformer, our model reduces GPU memory usage by 92% and
training time by 75% on the largest Wiki-20k dataset highlighting
its scalability under extreme dimensionality.

2 Preliminaries

2.1 High-Dimensional Time Series Forecasting
High-dimensional time series (HDTS) consists of thousands of ob-
servation sequences collected over discrete time intervals from
variables (also referred to as channels), far exceeding ordinary mul-
tivariate time series. Formally, HDTS is represented as:

X = [x1,%xp,...,x7] € RO, 1)

where x; = [xt(l), xt(z) , xt(c)]T € R€ denotes the observations

from all C channels at time . Given an observed X, the objective
of high-dimensional time series forecasting (HDTSF) is to predict

e

future values over a horizon of T time steps by a learned mapping
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Figure 2: Overall architecture of CRAFT. (a) Channel Reordering Module. (b) Group Fusion Transformer Module: Intra-Group
Attention. (c) Group Fusion Transformer Module: Inter-Group Attention. (d) Triple-Loss Optimization Module.

function f(-) based on historical data:

Y = f(X) = [yre1. yraa. - .- @

where Y denotes the predicted values, and each y;,; € RC repre-
sents the predicted values at future time T + £.

)yT+T] € RCXT’

2.2 Energy Minimizing of HDTS

To formalize the notion of energy in the context of HDTS, we adopt
a commonly used form of energy function from graph theory and
manifold learning, which aims to minimize the differences between
adjacent elements after reordering [3, 13]. Such formulations en-
courage channels with strong dependencies to be positioned closely
together, leading to natural clusters of local correlations. Specif-
ically, given a channel similarity matrix A € R, where A; ;
measures the dependency between channels i and j, a classic form
of the energy function is defined as follows:

c-1
(i) (i+1)
E(m) = - ) A, 3)
i=1
Here, 7 = [z, 7@, ..., 7(9)] denotes a permutation of channel

indices, representing the reordered channel sequence. It is worth
noting that such an energy minimization problem is closely related
to spectral ordering techniques, where the Fiedler vector corre-
sponding to the second smallest eigenvalue of the Laplacian is
widely used to derive such low-energy reorderings, as it captures
the global structure while preserving local connectivity [2].

3 Methodology

The overall framework of our proposed method is presented in Fig-
ure 2. First, we utilize a channel reordering module to not only
reorganize channels into a low-energy configuration based on the
energy-aligned trend and seasonal scores but also partition neigh-
bored channels into groups. Second, a group fusion Transformer

module is used on the grouped data, i.e., intra-group attention
captures fine-grained local dependencies within a group, while
inter-group attention models global relationships across groups.
Finally, in the triple-loss optimization module, we introduce
an energy-based reordering loss, along with a position regular-
ization term, encourage the learned permutations to approximate
low-energy, structured configurations. Moreover, standard MSE
loss supervises forecasting accuracy. We offer a detailed description
of each module in the following.

3.1 Channel Reordering Module

Motivation. In physical sciences, it is well-established that com-
plex systems tend to evolve toward configurations that minimize
energy [38]. Such energy-minimized states naturally reflect the
system’s underlying structure, revealing both local interactions
(e.g., molecular bonds) and global organization (e.g., crystal lattices).
These principles inspire our perspective on HDTSF. Many HDTS
data, particularly in climate science and hydrology, inherently stem
from physical systems where channels are interconnected through
physical laws. For example, in the Meter dataset [32], downstream
energy measurements are influenced by upstream conditions via
physical transfer mechanisms. From this view, we posit that chan-
nels in HDTS also admit an optimal ordering that minimizes the
energy function, which encodes the cost or disorder of interactions
among channels.

3.1.1 Channel Reordering. A straightforward solution for minimiz-
ing energy is to precompute a static channel correlation matrix (e.g.,
Pearson matrix) and obtain a fixed spectral ordering via the Fiedler
vector. However, as shown in Figure 1, predefined correlation mea-
sures cannot capture the complex, heterogeneous, and often nonlin-
ear channel dependencies prevalent in HDTS. Moreover, computing
and storing the full correlation matrix incurs undesirable quadratic
complexity and additional preprocessing overhead.
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To address these issues, we propose a learnable channel re-
ordering mechanism that integrates seamlessly into the forecasting
model and learns to discover energy-minimized permutations in a
data-driven manner. At first, we leverage the trend and seasonal
representations extracted from the input time series as the founda-
tion for learning channel-wise permutation scores. This is because
the raw HDTS inherently contains entangled intricate temporal
patterns [51], such as long-term trends, seasonal periodicities, and
irregular fluctuations, which can obscure the underlying relation-
ships between channels. Specifically, we perform a simple yet ef-
fective time series decomposition to separate each channel into its
trend and seasonal components [46], which can be formulated as:

Xirend = AVgPOOI(Padding(X)), Xseasonal = X — Xirend (4)

The trend component Xirend € REXT s extracted via moving aver-

age smoothing, which filters out periodic fluctuations to capture
the long-term dynamics. The seasonal component Xeasonal € RE*T
is obtained by subtracting the trend from the raw series. After de-
composition, both trend and seasonal components are projected
into latent feature spaces via channel-wise linear embedding:

T T
Hirend = I’Vtrendxtrend’ Hgeasonal = ‘/Vseasonalxseasonap (5)

where Wirend, Waeasonal € R?*T are learnable parameters. The result-
ing embeddings are fed into a projection layer to produce channel-
wise reordering scores:

S= (Wproletrend + bprojl) + (Wproszseasonal + bprojz)a (6)

where Wpoj, € RIXd Whroj, € R4 and bproj, € R, bproj, € R are
learnable parameters. Channels are then reordered according to the
predicted scores S € RC, resulting in the energy-minimized MTS
X e ROXT:

X = X[x], where 7 = rank(S). 7)

While the projection provides initial permutation scores, we
further design energy-based losses (see Section 3.3.1 and 3.3.2) to
encourage channels with higher mutual attention to be grouped
adjacently after reordering. These losses directly aligns the learned
permutations with the emergent attention-derived energy land-
scape. Through this mechanism, the reordering module adaptively
learns permutations that reduce the HDTS’s energy, thereby un-
covering and preserving the intrinsic local-global dependencies.

3.1.2 Channel Grouping. Upon obtaining the reordered HDTS X
through the energy-based reordering mechanism, we further parti-
tion the reordered channels into fixed-size groups along the channel
dimension. This design is inspired by the success of spatial patching
strategies in recent computer vision models [9], where dividing
neighbored pixels into patches reduces the computational complex-
ity of attention mechanisms and enhances the model’s capacity to
capture localized patterns while disentangling them from global
dynamics. Analogously, we extend this intuition to the channel of
HDTS: by partitioning reordered channels into groups, we effec-
tively reduce the scope of attention within each group, achieving
both computational efficiency and a natural separation between lo-
cal and global channel dependencies. Formally, given the reordered
sequence of C channels, we divide it into groups of size P. The total
number of groups is determined as G = {9] where [-] denotes the

P
ceiling operation to ensure that all channels are covered. If the final
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group does not contain P channels, we apply padding to extend it .
Then the grouped channel sequence can be formed as:

X = [)_((1),)_((2), o ,X(G)] € RGXPXT’ (8)

where each group X9 € RP*T contains P consecutive channels
and the full time span T.

3.2 Group Fusion Transformer Module

Overview. After reordering and grouping HDTS into G groups,
we adopt a group fusion Transformer to separately model local-
global dependencies: Extract fine-grained local dependencies within
groups via intra-group attention and capture global dependencies
across groups through inter-group attention.

3.2.1 Intra-Group Attention. For each group g, we first apply self-
attention within the group’s P channels along channels. The time
span T is projected into latent embeddings and the group after
projection can be represented as X9 e RPXd, Intra-group attention
is then computed independently for each group:

Q(!}) :f((g)WQ! K9 :f((g)WK) v :X(g)WV,

OF<2N . 9)
H? softmax | £ VO 4 X0,
Vd

intra

where Hi;gtia € RP*4 contains refined representations with captured
local intra-group dependencies. Following the attention, we append
a feed-forward network [42] to further refine the representations of
intra-group channels. Thus the outputs from all groups are stacked

as:

gD 4@ (G) GxPxd
Hintra = Hintra’ Hintra’ T Hintra eR .

3.2.2  Inter-Group Attention. To perform inter-group attention across

groups, we transpose the group and channel:

Hinter = (Hintra)T € RPXGXd- (10)

Here, P now indexes the original group-internal positions, and G
indexes the group number, effectively enabling us to capture global
dependencies across groups for each intra-group position with same
energy, which can reflect diverse global dependencies compared
with cluster-based methods [10]. Specifically, the attention along
the group G for each intra-group position p € [1, P]:

Q(p) - g® Wo,»

inter

K® =7k wy,, v® =aP wy,,

inter
PP (11)
H'?) —Softmax Q—

inter

where Hi(xﬁZr € RG* captures global dependencies among groups at
position p. Similar to the intra-group attention, we also append the
feed-forward network to refine the representations of inter-group
channels. Finally, we transpose the group and channel back to

restore the original channel-wise ordering:

3 (1) (2) (P) T GxPxd
Hinter - ([Hinter’ Hinter’ Tt Hinter]) €R ’

(12)
Hyte = Reshape(Hinter) € REX,
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3.3 Triple-Loss Optimization

Overall. To ensure that our model learns both a reasonable channel
reordering and produces accurate forecasting results, we design
a triple-loss optimization objective that consists of energy-based
reordering loss, position regularization loss, and forecasting Loss.

L= -Erank + LPOS + LMSE . (13)

R e ——

Reordering  Regularization  Forecasting

3.3.1 Energy-based Reordering Loss. As discussed previously, the
purpose of channel reordering is to expose the inherent local-global
dependency structure of HDTS through the energy minimization
process. In practice, channels exhibiting strong attention interac-
tions are inherently more correlated and should be placed adjacently.
A natural formulation would align the output of the projection in
Eq. (6) with the spectral ordering via the Fiedler vector derived from
attention matrices. However, computing attention matrices across
all channels incurs O(C?) complexity. Moreover, spectral decompo-
sition requires eigenvector computations with O(C®) complexity,
making it impractical for HDTS.

To supervise channel reordering in a scalable manner. We adopt
a Laplacian smoothing strategy to approximate the Fiedler vec-
tor without explicit eigen-decomposition. Specifically, given an
attention correlation matrix A € RE¥C, we first compute the sym-
metric expression A = A+TAT € RY%C and its normalized Laplacian
L=1-D"Y2AD1/2 ¢ RE*C, where D is the diagonal degree ma-
trix with D;; = ¥ ; A%/, Then, rather than computing eigenvectors
explicitly, we iteratively apply Laplacian smoothing to a random
vector ry € RC:

rie1 = (I—al)r; = (I—al)'ro, (14)

where « is a smoothing coefficient. The process can be unfolded as:
. c .
risn =UI = aA)'UTry = E ] 1(1 —alj)(uj,ro)uj.  (15)
j=

Thus, the component of r, along each eigenvector u; is scaled by
(1- axlj)i, For A; = 0, this factor remains 1, while for A; > 0
of complete attention matrix, it decays exponentially with i. Af-
ter sufficient iterations, r; is dominated by the projections onto
smallest eigenvector u; and second smallest eigenvalue u, (see Ap-
pendix C for details). By further removing the mean from r (i.e.,
projecting onto the orthogonal complement of u;), the resulting
R € R€ is primarily aligned with the Fiedler vector u, and serves as
the reordering proxy for channels, reflecting their position in the
energy-minimized ordering.

Furthermore, instead of constructing an attention correlation
matrix of full channels, we then leverage the already-derived intra-
group and inter-group attention matrices Ainya € RE*P*P and
Ainter € RPXCXC interchangeably to approximate it. That is, inter-
group Fiedler vector Rinter € RPXC supervise inter-group reordering
to capture global structure and intra-group vector Rintra € REXP
supervise intra-group reordering to refine local channel position-
ing. Specifically, to align the reshaped scores S € R®*F with low-
energy configurations derived from attention matrices, we min-
imize the ranking discrepancy between them. A natural choice
is the SoftRank-based differentiable Spearman ranking loss [19],
which measures how well the ordering 7 € R®*F and 77 € RPXC
induced by S aligns with that of Rintra and Rigter- Mathematically,
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the reordering loss is composed of intra- and inter-group Spearman
ranking loss Liar and Liggr, which can be formulated as follows:

1 ~
LIAR = GXP ||7_T - rank(Rintra)”; s
L = =77 - rank(Rar) [ 19

Lrank = Liar + LiEr-

3.3.2  Position Regularization Loss. Although the alternating intra-
group and inter-group reordering provide an effective approxima-
tion to the reordering of full channels, this hierarchical design still
faces limitations in handling certain cross-group inversions. To
address this, we explicitly penalizes cross-group misordering by
encouraging channels to align their accurate group scores accord-
ing to their local-global attention discrepancies. This loss comple-
ments the energy-based reordering loss by fine-tuning cross-group
channel positioning. Consider a channel p within group g. If the
maximum intra-group attention it receives from any other chan-
nel within g is lower than its attention with some channel i from
another group q # ¢, this indicates that p’s current group assign-
ment may be suboptimal. Intuitively, p’s score 5@?) should be
close to scores in the group position set J (%), where group satisfy
max(Ai(ft’f;) < Ai(rﬁ’egr), reflecting their stronger interaction despite
being in separate groups. Mathematically, the position regulariza-
tion loss can be defined as:

G P
1 1 . .
— E 2 E (g.p.1) . 15(Lp) _ 5(g.p)
.EPos PxG v |](9>P)| w |S S |) (17)

ie](g»P)

where w(@P1) = Ai(ﬁ’egr’i) - max(Ai(ft’f a)) reflects the local-global at-
tention discrepancy serving as the importance weight and larger

discrepancy indicate a stronger misalignment.

3.3.3 Forecasting Loss. Beyond channel reordering, the ultimate
goal of our framework is to produce accurate future forecasts. Af-
ter completing the group fusion Transformer, we project the final
representation Hy; € R back to the target forecasting horizon
via a linear mapping. Specifically, given forecasting horizon T, the
model predicts future values ¥ € RE*T as:

Y = HattWout + bout, (18)

where Wy € R*T and bout € RT are learnable parameters. Then
we leverage the Mean Squared Error (MSE) loss between the model’s
output and the future ground truth Y € R®*7:

V- vl (19)

1
LysE = ——=
CxT

3.4 Model Complexity Analysis

The decomposition of trend and seasonal components, followed
by linear embedding and projection, incurs O(C - T) complexity.
The reordering operation requires O(C log C), which is negligible
in practice. After reordering, intra-group attention scales as O(G -
P?), and inter-group attention scales as O(P - G?). Energy-based
reordering and position-based regularization operate within intra-
and inter-groups, contributing the same overhead. Therefore, the
dominant complexity of our model is O(max(G, P) - G - P), where
max(G,P) < C and G - P ~ C. Compared to O(C?)-based global
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attention or MLP mixers, our method achieves linear complexity
while decoupling local-global dependencies.

Table 1: Dataset statistics.

Datasets ‘ Domain Length Channel Horizon Frequency
Air [22] Environment 15,461 1,105 28 6 Hours
Measles [29] Healthcare 1,330 1,161 7 1 Day
SP500 [32] Finance 7,553 1,475 7 1D
Atec [16] Web 8,928 1,569 336 10 Mins
Neurolib [5] Healthcare 60,000 2,000 336 1 ms
Meter [32] Energy 28,512 2,898 336 30 Mins
SIRS [4] Healthcare 9,000 2,994 7 1 Day
M5 [30] Finance 1,941 3,049 7 1 Day
Temp [43] Weather 17,544 3,850 168 1 Hour
Wind [43] Weather 17,544 3,850 168 1 Hour
Solar [21] Energy 105,120 5,162 336 5 Mins
Mobility [1] Transportation 974 5,826 7 1 Day
Traffic-CA [26] | Transportation 43,824 7,491 168 1 Hour
Wiki-20k [36] Web 2,557 20,000 7 1 Day

4 Experiments

This section aims to address the following five essential research
questions by conducting comprehensive experiments.

e RQ1: How does CRAFT perform when compared to current
models in HDTSF?

RQ2: Do main components of CRAFT are effective?

RQ3: How does group size P impact CRAFT?

RQ4: How efficient is CRAFT in high-dimensional datasets?
RQ5: Does CRAFT output sensible groupings?

4.1 Experimental Setup

4.1.1 Datasets. To comprehensively evaluate the scalability and ef-
ficiency of models, we conduct experiments on 14 high-dimensional
time series datasets with high channel correlations. These datasets
are carefully selected from diverse domains, where the number
of channels ranges from 1, 105 to 20, 000, far exceeding the scale
of commonly used multivariate time series benchmarks [42, 50].
Such high-dimensional settings pose significant challenges for ex-
isting methods, providing a more rigorous testbed to verify our
model’s ability to handle complex and large-scale dependencies
while maintaining computational efficiency. For each dataset, the
time series is chronologically split into training, validation, and test
sets following a 7:1:2 ratio. Additionally, the forecasting horizon
T for each dataset is aligned with realistic temporal scales in each
domain. The detailed statistics of these datasets are summarized in
Table 1.

4.1.2  Evaluation Metrics. We employ a variety of metrics to com-
prehensively evaluate both the forecasting performance and the
computational efficiency of the proposed method. For prediction
accuracy, we employ two widely used metrics: mean absolute error
(MAE) and mean squared error (MSE), which quantify the differ-
ences between predicted and ground truth values. Detailed descrip-
tions of these metrics are provided in Appendix D. For evaluating
model efficiency, we report the wall-clock time and GPU memory
consumption of models in the training phase.
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4.1.3 Baselines. To comprehensively evaluate the effectiveness
of our CRAFT, we compare it against a diverse set of 8 baselines,
which we categorize into three classes according to their chan-
nel modeling strategies. 1) Channel-independent (CI) DLinear [46],
PatchTST [33], and PAttn [39], which treat each channel as an in-
dependent univariate time series and model them separately. 2)
Channel-dependent (CD) TimesNet [41], TSMixer [8], and iTrans-
former [27], which explicitly model interactions across all channels.
3) Channel clustering (CC) DUET [37] and U-CAST [32], which at-
tempt to reduce the complexity of full channel interactions through
soft clustering strategies based on masking or prototype. Detailed
descriptions of these baselines are provided in Appendix E.

4.1.4 Implementation Details. To better reproduce experiments,
we summarize all default settings as follows. During training, our
CRAFT is optimized by the Adam optimizer with a learning rate of
0.001 and the batch size is initially set to 32. If an out-of-memory
error occurs, the batch size is automatically halved until the issue
is resolved. The latent model feature d and group size P of our
CRAFT are searched from [128, 256,512] and [16, 32, 64, 128, 256
for different datasets. For baselines, they are trained using their de-
fault configurations as reported in their respective papers. Moreover,
input length T of our CRAFT and baselines is searched from[3 x
T,4xT,5%xT].

4.2 Performance Comparisons (RQ1)

The forecasting results on 14 HDTS datasets are reported in Table 2.
We summarize the following key observations:

Necessity of Dynamic Channel Dependency. The channel-
dependent iTransformer achieves superior performance over channel-
independent baselines across most datasets. In contrast, TSMixer
and TimesNet do not demonstrate clear improvements over their
channel-independent counterparts. This underscores the critical ad-
vantage of the Transformer architecture in dynamically capturing
time-evolving channel dependencies.

Limitations of Channel Clustering. While channel clustering
strategies like DUET and U-CAST aim to reduce modeling complex-
ity, they sometimes underperform compared to channel-dependent
models. This is because prototype-based U-CAST may lose fine-
grained local information, while mask-based DUET are prone to
mistakenly suppress informative channels, leading to degraded per-
formance. These results highlight the trade-off between efficiency
and fidelity in HDTSF designs.

Consistent Performance Superiority. Our CRAFT consistently
achieves the best performance on 14 datasets in terms of MSE and
13 datasets in terms of MAE, demonstrating its scalability across
diverse domains. This consistent superiority stems from our design,
which explicitly disentangles and captures both local (intra-group)
and global (inter-group) channel dependencies through energy-
aligned channel reordering and group fusion Transformer.

4.3 Model Analysis

4.3.1 Ablation Study (RQ2). To verify the contribution of each
key component in our model, we conduct ablation studies on five
crucial modules:

e w/o Dec: without the trend-seasonal decomposition.
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Table 2: High-dimensional MTSF performance comparison between our CRAFT and the baselines. Bold font indicates the best
performance, underline denotes the second-best performance, and ‘—’ indicates that the model ran out of memory.

\ CI \ CD \ cc \ CR
Methods |~ ppinear PatchTST PAttn TimesNet TSMixer | iTransformer DUET U-CAST CRAFT
(2023) (2023) (2024) (2023) (2023) (2024) (2025) (2025) (ours)
Metrics | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
Air 0449  0.446 | 0448 0.432 | 0449 0432 | 0457 0438 | 0447 0438 | 0447 0431 | 0452 0444 | 0446 0430 | 0413 0.408
Measles | 0.128 0.252 | 0.013 0.058 | 0.011 0.048 | 0.018 0.060 | 0.569 0.547 | 0.010 0.048 | 0.015 0.064 | 0.010 0.042 | 0.010 0.039
SP500 0.630 0367 | 0.523 0313 | 0.516 0309 | 0.611 0343 | 2.674 1.120 | 0.511 0306 | 0.568 0.335 | 0.555 0.328 | 0.441 0.274
Atec 0318 0314 | 0.298 0.298 | 0.299 0.275 | 0.493 0.429 | 0.398 0.387 | 0345 0319 | 0.330 0.339 | 0.287 0.280 | 0.272  0.260
Neurolib | 1.793 0.381 | 2.395 0.438 | 2458 0.445 | 2475 0458 | 2.240 0532 | 1718 0347 | 2.519 0451 | 1.750 0.350 | 1.640 0.333
Meter 0944 0549 | 1.254 0706 | 0941 0552 | 1.034 0.586 | 0.987 0.564 | 0.949 0556 | 1.308 0731 | 0.943 0.551 | 0.925 0.543
SIRS 0.058 0163 | 0.033 0.129 | 0.025 0.109 | 0.162 0.327 | 0.016 0.078 | 0.028 0.113 | 0.095 0.236 | 0.007 0.052 | 0.003 0.041
M5 3.688 0.870 | 3.655 0.872 | 3.650 0.867 | 4.490 0.919 | 6.863 1.623 | 3.549 0853 | 3.768 0.880 | 3.501 0.849 | 3.309 0.819
Temp 0272 0391 | 0279 0396 | 0.278 0.395 | 0.287 0.408 | 0.266 0.389 | 0.265 0.386 | 0.435 0511 | 0.262 0.383 | 0.258 0.381
Wind 1128 0.697 | 1254 0757 | 1.256 0758 | 1.161 0.708 | 1.346 0742 | 1116  0.699 | 1.227 0.746 | 1104 0.692 | 1.080 0.688
Solar 0.174 0255 | 0.416 0.469 | 0.604 0582 | 0.157 0.224 | 0.155 0216 | 0343 0427 | — — | 0172 0246 | 0153 0217
Mobility | 0.344 0359 | 0.344 0341 | 0.337 0336 | 0.410 0388 | 1.165 0787 | 0.312 0314 | 0439 0410 | 0315 0317 | 0.287 0.297
Traffic-CA | 0.063 0.141 | 0.295 0.417 | 0491 0554 | 0.101 0.205 | 0.082 0.186 | 0271 0391 | — — | 0061 0131 | 0054 0.126
Wiki-20k | 10.740 0.394 | 10.291 0.305 | 10.290 0.306 | 10.586 0.325 | 10.446 0332 | 10.933  0.405 | 10.278 0.304 | 10.273 0.302 | 10.138 0.290
istCount | 0 0 0 o | o o | o o | o 1] 0 0o ] o 0 0 0 14 13
Table 3: Ablation study of CRAFT on all datasets with MSE.
Methods ‘ Air  Measles SP500 Atec Neurolib Meter SIRS M5 Temp Wind Solar Mobility Traffic-CA Wiki-20k
w/o Dec ‘ 0.419 0.011 0.445 0.277 1.646 0.929 0.004 3.312 0.261 1.088 0.155 0.289 0.055 10.232
w/o Intra | 0.419 0.011 0.446 0.283 1.649 0.930 0.005 3.386 0.263 1.085 0.158 0.291 0.057 10.239
w/o Inter | 0.425 0.014 0.477  0.294 1.706 0.946 0.010 3.534 0.283 1.082 0.167 0.326 0.062 10.380
w/o Lpos | 0.415 0.011 0.444  0.283 1.700 0.926  0.003 3.312 0.259 1.088 0.154 0.289 0.054 10.154
w/0 Lrank | 0.493 0.012 0.443 0.682 1.705 0.939 0.005 3466 0.264 1.187 0.284 0.292 0.206 10.159
CRAFT ‘ 0.413 0.010 0.441 0.272 1.640 0.925 0.003 3.309 0.258 1.080 0.153 0.287 0.054 10.138
029 0159 Benefits Brought by Local-Global Modeling. Both w/o Intra
o156 1019 and w/o Inter exhibit a substantial drop in performance compared
8 o2 g g to group fusion Transformer that jointly leverages dual attentions.
10.16 . . . . . . . .
0153 This significant degradation highlights the necessity of modeling
. w150 1013 both local and global dependencies, demonstrating that their syner-
1632 64 128 256 16 32 64 128 256 16 32 64 128 256 gistic integration is critical to capture intricate channel correlations
(a) P on Atec (b) P on Solar () P on Wiki and achieving superior accuracy.

Figure 3: The influence of channel number in the group.

e w/o Intra: without the intra-group attention.

o w/o Inter: without the inter-group attention.

e w/o Ly0s: without the position regularization loss.

® w/0 Lank: without the energy-based reordering loss.

The key observations of Table 3 are as follows.

Benefits Brought by Decomposition. Eliminating the trend-
seasonal decomposition also leads to noticeable performance drops.
This confirms that explicitly disentangling temporal patterns helps
stabilize the training of the reordering module, as raw time series
contain complex dynamics that are harder to align for effective
permutation learning.

Effectiveness of Energy-Based Reordering Loss. Removing the
reordering loss leads to severe performance degradation across all
datasets, in some cases causing near collapse. This demonstrates
that hierarchical attention across groups fundamentally relies on
the channel ordering to preserve the inherent local-global structure.
Effectiveness of Position Regularization Loss. Removing the
position regularization loss consistently results in degraded per-
formance, though less dramatically than removing the reordering
loss. This highlights the importance of correcting cross-group mis-
alignments. While L,k effectively captures intra- and inter-group
hierarchy, it cannot approximate global ordering perfectly due to
the alternating mechanism.

4.3.2  Group Size Sensitivity Analysis (RQ3). We further analyze
the sensitivity of our model to the group size P, which controls
the granularity of local dependency modeling and affects compu-
tational efficiency. Experiments are conducted on three datasets
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Figure 4: Visualization of energy and correlations.

with increasing channel scales. The results show that the optimal
group size grows with the number of channels, which validates the
design intuition. Smaller datasets benefit from smaller group size
to capture finer local structures, while larger datasets require larger
group size to balance between local modeling and global scalability.
As group size increases with channel count, the complexity reduc-
tion is more pronounced, avoiding redundant local interactions
while preserving global information flow.

4.3.3 Case Study (RQ4). In this section, we visualize both the en-
ergy minimization process during training and the statistical prop-
erties of channel correlations, as shown in Figure 4.

Energy Convergence Behavior. Figure 4a presents the curve
of the energy value as training proceeds. The energy decreases
rapidly in the early stages, reflecting the model’s ability to quickly
learn coarse global structure. As training progresses, the energy
curve stabilizes and enters a phase of low-amplitude oscillations,
indicating a convergence to locally optimal configurations. These
fluctuations likely capture fine-grained adjustments to preserve
local-global dependency balance under dynamic attention shifts,
supporting the hypothesis of a data-driven stable structure.
Local-Global Patterns. Figure 4b compares five key metrics (de-
tailed in Appendix D) across channels of the intra-group, inter-
group, and full dataset: 1) CV (Coefficient of Variation) reflects the
heterogeneity of attention weights [12]. 2) FD (Frequency Distance)
measures shape-level dissimilarity of channels [6]. 3) Pearson, MAE,
and MAPE quantify pairwise similarity of channels. The intra-group
channels exhibits the best FD, Pearson, MAE, and MAPE, confirm-
ing that our adaptive grouping mechanism effectively partitions
closely related channels into the same group and thus preserves lo-
cal dependencies. Meanwhile, inter-group channels maintain lower
CV of its attention weights (i.e., uniform attention weights) while
preserving similar MAPE and FD with full setting, indicating that
global dependencies as illustrated in Figure 1 are captured with
reduced redundancy.

4.4 Efficiency Comparisons (RQ5)

To assess scalability and computational efficiency, we compare our
model with superior baselines in Table 2 across four datasets with
increasing channel dimensions. As shown in Figure 5, channel-
independent PAttn avoids modeling inter-channel dependencies
but suffers from redundant per-channel temporal processing, which

Yuchen Fang et al.
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Figure 5: Efficiency comparison of four models on four
datasets with increasing scale.

results in growing resource consumption on high-dimensional
datasets. Second, channel-dependent model iTransformer incurs
quadratic complexity with respect to the number of channels. While
effective on small datasets, they demand near 100 GB of memory
at the ultra high-dimensional wiki-20k dataset, which exceeds the
capacity of common GPU hardware and leads to out-of-memory
failures. Despite our CRAFT may exhibit slightly higher training
time due to additional reordering and feed-forward networks. As the
number of channels increases, our method shows superior training
time and memory usage based on group fusion Transformer. Fi-
nally, compared to U-CAST, a recent HDTS-oriented efficient model,
CRAFT achieves lower memory consumption and training time
while maintaining a more expressive dependency structure. This
highlights the strength of our structure-aware channel grouping in
balancing performance and scalability. In conclusion, CRAFT offers
a compelling solution for HDTSF, with practical efficiency benefits
validated under diverse scenarios.

5 Conclusion

We propose a novel CRAFT for high-dimensional time series fore-
casting that addresses quadratic complexity and entangled local-
global dependencies. Inspired by energy minimization in physical

systems, we formulate the reordering of channels as an adaptive

energy optimization task, which efficiently aligns with Laplacian-
smoothing approximated spectral sorting. By reorganizing channels

into groups, our model applies a group fusion Transformer to de-
couple intra- and inter-group modeling that capture both local and

global dependencies. We further design a three-part loss—comprising
energy-based reordering, positional regularization, and forecasting

objectives—to jointly guide structure formation and predictive ac-
curacy. Experiments on 14 real-world datasets with up to 20,000

channels demonstrate that our CRAFT consistently outperforms

state-of-the-art baselines in both accuracy and efficiency. In future

work, we aim to extend CRAFT to industrial-grade applications

involving hundreds of thousands or even millions of channels.
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Figure 6: Sketch of conventional channel-dependent (CD),
advanced channel-clustering (CC), and our channel reorder-
ing (CR) paradigms in HDTSF.

A Channel Strategies

In high-dimensional time series forecasting (HDTSF), the complex-
ity and heterogeneity of channel dependencies pose significant
challenges for both predictive performance and computational scal-
ability. Over the years, two primary paradigms have emerged for
channel modeling: channel-dependent approaches and channel clus-
tering approaches. However, both methods have notable limitations
in terms of complexity, information preservation, and adaptability
to heterogeneous channel structures. To address these challenges,
we propose a novel channel reordering paradigm, which leverages
energy minimization to reorganize channels, maintaining both local
and global structures while simplifying modeling. Figure 6 provides
a conceptual overview of these three paradigms.

e Channel-Dependent (CD): Conventional CD methods explicitly
model the dependencies between every pair of channels, resulting
in a quadratic complexity with respect to the number of channels.
As illustrated in Figure 6, each channel is connected to all others,
capturing intricate correlations but also potentially introducing
noise. This is because CD approaches are unable to distinguish
between meaningful and spurious inter-channel associations,
which can lead to the inclusion of irrelevant information and
the omission of critical relationships. This limitation is particu-
larly pronounced in web-scale scenarios, where channels may
represent vastly different types of data streams.

Channel Clustering (CC): CC methods aim to reduce computa-
tional complexity by grouping channels into clusters based on
similarity, as shown in Figure 6. This approach can be imple-
mented via hard clustering algorithms, which require additional
steps and may impose rigid group boundaries, or through neural
soft clustering, which can blur local channel distinctions and re-
sult in the loss of fine-grained information. Although clustering
effectively lowers the number of channel interactions, it often
relies on external algorithms or neural mechanisms that may not
fully preserve the nuanced structures inherent in the data.
Channel Reordering (CR): To overcome the limitations of both
CD and CC paradigms, we introduce a CR approach. This method
employs energy minimization to reorganize channel order, ensur-
ing that both local and global channel structures are preserved. By
reordering channels in this manner, the resulting sequence can be
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efficiently grouped using simple reshape operations, eliminating
the need for explicit clustering algorithms. This not only reduces
computational complexity but also maintains the integrity of
meaningful channel relationships, enabling more effective mod-
eling of high-dimensional time series data.

B Related Work

Beyond modeling temporal dependencies within each univariate
series [23, 24, 31, 44], modeling the complex dependencies among
channels is a core challenge in multivariate time series forecast-
ing [11, 36]. To capture such dependencies, a variety of channel-
dependent methods have been proposed, typically extending atten-
tion mechanisms [14, 27, 43, 48] or graph neural networks [18] to
explicitly model inter-channel relationships. More recently, MLP-
based architectures such as TSMixer [8] utilize global channel mix-
ing layers to capture inter-variable relationships. These models have

demonstrated strong performance on datasets where inter-channel
correlations are significant, highlighting the necessity of explicitly

modeling cross-channel interactions. However, as the number of
channels increases, the computational cost of these models becomes

prohibitive on high-dimensional datasets. To alleviate this issue, a

line of work has explored channel clustering strategies to reduce

computational overhead. Some methods leverage conventional clus-
tering methods such as spectral and KMeans clustering to partition

channels into smaller, locally correlated groups [28]. These meth-
ods reduce computational complexity within clusters but introduce

additional modules, which often require iterative optimization and

increase the overall model overhead. An alternative direction in-
volves soft clustering via learnable masks to approximate grouping

behavior. For instance, TimeFilter [18] employs graph structures

with soft adjacency matrices, while DUET [37] applies probabilistic
matrix to implicitly capture group-wise structures. However, these

approaches still involve dense channel-wise computations, failing
to fundamentally break the quadratic complexity bottleneck. Re-
cently, prototype-based soft clustering has emerged as a promising
solution to reduce complexity. For example, CCM [7], SOFTS [15],
and LIFT [49] leverage latent prototypes to abstract channels into
fewer representations, thereby reducing the computational burden.
These methods replace dense channel interactions with prototype-
to-channel interactions, which scales linearly with the number of
prototypes. While this effectively reduces complexity, it inevitably
sacrifices fine-grained local information, which is crucial for ac-
curate time series forecasting. In this work, we focus on seeking
a more principled solution that can both reduce complexity and
preserve local-global dependencies.

C Convergence Analysis

Let L € R*€ be the normalized Laplacian matrix derived from a
symmetric, fully-connected attention correlation matrix A, with
eigenvalues 0 = 1; < A; < A3 < -+ < A¢ and corresponding
orthonormal eigenvectors uy, uy, . . ., uc. In dense graphs, such as
those arising from attention mechanisms in high-dimensional time
series, the spectrum of L may exhibit small gaps between consec-
utive nontrivial eigenvalues, i.e, A; & A3. Consider the iterative
Laplacian smoothing process:

rig1 = (I - aL)iro, (20)
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where a > 0 is the smoothing coefficient. Expanding ry in the
eigenbasis of L, we have:

c
ro = Z(u]', I’o)llj. (21)
7=
After i iterations,
c
_ i i
ri={I—aL)'ry —Z(l—a/lj) <uj,ro>u;. (22)
=

For the trivial eigenvector u; (A; = 0), the component remains
unchanged: (1 — aA;)’ = 1. For the nontrivial eigenvectors (j > 2),
the scaling factor (1—a4;)" decays exponentially with i, but the rate
of decay is governed by the magnitude of A;. When A, = A3, both
uy and us (and potentially higher-order eigenvectors) will persist
longer in the iteration process, and the resulting vector after many
iterations is dominated by the subspace spanned by these leading
eigenvectors. Formally, after sufficient iterations,

k
1 & <uy, ro>up + Z(l - adj) <uj, ro>uj, (23)
j=2
where k is the smallest index such that (1 — aly)’ is still significant
for the chosen i.
Subtracting the mean (the u; component), i.e., projecting onto
the orthogonal complement of u;, yields:
k
Fi=ri— <u, ri>u; ~ Z(l - alj)i<uj, ro>Uj. (24)
j=2

Despite the presence of multiple slowly decaying eigenvector
components, the standard practice for spectral ordering remains
to use the Fiedler vector (u;) alone. This is because the ordering
induced by u; provides a monotonic sequence that reflects the most
prominent direction of variation in the graph, and is robust to small
perturbations in the spectrum. When additional eigenvectors are
present in the principal subspace, their influence on the ordering is
typically limited to minor local rearrangements, without altering
the global structure captured by u, [40].

D Evaluation Metrics

To comprehensively assess both the predictive performance and
the interpretability of our proposed method, we employ a suite of
evaluation metrics that capture different aspects of HDTSF. These
metrics include mean absolute error, mean squared error, mean
absolute percentage error, Pearson correlation, frequency distance,
and coefficient of variation. Each metric is selected to provide in-
sight into either the accuracy of the forecasts, the similarity of
temporal patterns, or the heterogeneity of channel interactions.
Below, we detail the definition and motivation for each metric.
e Mean Absolute Error (MAE): MAE measures the average mag-
nitude of errors between predicted values and ground truth, re-
gardless of direction. It is defined as:

1 .
MAE = —— [Y -Y]|,,
-, @

C
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where Y is the ground truth, Y is the predicted value, and T
is the number of time slices. MAE provides a straightforward

interpretation of average forecast error.
Mean Squared Error (MSE): MSE quantifies the average squared

difference between predicted and actual values, penalizing larger
errors more heavily. The formula is:

1 A 2
MSE = —— ||¥ - Y5, 26
C><T” I (@)

MSE is sensitive to outliers.
Mean Absolute Percentage Error (MAPE): MAPE expresses the
discrepancy as a percentage, enabling comparison across chan-
nels with different scales:
1 |Y-Y

C X 'f Y 1
MAPE is especially useful for evaluating relative differences in
multivariate settings.
Pearson Correlation (PC): Pearson correlation measures the linear
relationship between channels, ranging from -1 (perfect negative
correlation) to 1 (perfect positive correlation):

MAPE = , (27)

Zc,t (gc,t - Y) (yc,t - Y)

\/Zc,t (gfxt - ):/)2 \lzc,t (Yer — Y)z

where ¥ and Y denote the mean of ground truth and predictions,
respectively. High Pearson correlation indicates strong agree-
ment in temporal patterns.

Frequency Distance (FD): FD measures the dissimilarity between
the frequency spectra of two time series, capturing shape-level
differences in temporal patterns. One common formulation is:

PC=1- , (28)

1 A 2
FD = o |[F¥) - F)|;. (29)

where ¥ (x) and ¥ (y) denote the Fourier transforms of time
series x and y, respectively. FD is particularly useful for assessing
whether the model preserves the underlying periodicity and
structure of multivariate time series.

Coeflicient of Variation (CV): The CV is defined as the ratio of
the standard deviation to the mean of attention weights:

1 < o

V= ; " (30)
where o is the standard deviation and y is the mean of the at-
tention weights. CV quantifies the heterogeneity of attention
allocation among channels. A higher CV indicates that the model
assigns diverse levels of importance to different channels, which
reflects underlying heterogeneity. Conversely, a lower CV sug-
gests more uniform attention, potentially indicating homoge-
neous or redundant channel relationships. Thus, CV serves as
an indicator of how well the model captures the diversity and
distinctiveness among channels.
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Figure 7: The influence of the number of Laplacian smoothing iterations and the smoothing coefficient.

E Baseline Details

To rigorously assess the effectiveness of our proposed CRAFT frame-
work, we benchmark it against a comprehensive set of eight base-
line models. These baselines are selected to represent a wide range
of channel modeling strategies and are grouped into three main
categories: channel-independent, channel-dependent, and channel
clustering methods. Below, we provide detailed descriptions of each
baseline within these categories.

e DLinear: A linear forecasting model that applies independent lin-
ear transformations to each channel, focusing solely on temporal
patterns within individual series.

e PatchTST: Utilizes patch-based transformers for time series, pro-
cessing each channel separately to capture temporal features.

o PAttn: Employs a patch attention mechanism, modeling each
channel independently to extract relevant temporal information.

o TimesNet: TimesNet is a CNN-based model that revolutionizes
time series analysis by transforming 1D time series into 2D ten-
sors based on learned multi-periodicity.

o TSMixer: Applies mixing operations across channels and time
steps, enabling direct modeling of complex interactions.

e iTransformer: Rethinks the application of Transformer architec-
ture by inverting the input dimensions. Instead of treating time
steps as tokens, iTransformer treats channels as tokens.

e DUET: Introduces dual clustering on both the temporal and chan-
nel dimensions. It designs a Temporal Clustering Module to han-
dle heterogeneous temporal patterns and a Channel Clustering
Module to capture relationships among channels.

o U-CAST: Learns latent hierarchical channel structures through
an innovative query-based attention mechanism. To prevent cor-
related representations from becoming entangled, U-CAST in-
corporates a full-rank regularization term during training.

F Hyperparameter Studies

To evaluate the robustness and effectiveness of our proposed chan-
nel reordering method, we conduct a comprehensive parameter
sensitivity analysis on two key hyperparameters: the number of
Laplacian smoothing iterations and the smoothing coefficient. This
analysis helps to understand how these parameters influence the
forecasting performance and guides the selection of optimal values
in practical applications.

o Effect of Iterations (iters): We systematically vary the number
of iters (i = 10,30, 50, 70, 90) and observe its impact on predic-
tion accuracy. The results show that as the iteration number
increases, forecasting performance improves initially but gradu-

ally plateaus. This indicates that a moderate number of iterations
is sufficient to achieve near-optimal channel reordering, while

excessive iterations yield diminishing returns. The convergence
behavior suggests that the iterative process effectively extracts
the dominant spectral structure after a certain point, and further
iterations have limited additional benefit.

o Effect of Smoothing Coefficient («): We also investigate the influ-
ence of the smoothing coefficient (¢ = 0.1,0.2, 0.4, 0.8) on model
performance. The analysis reveals a non-monotonic trend: as
«a increases, forecasting accuracy initially improves, reaches a
peak, and then declines. This pattern suggests that an appropri-
ately chosen smoothing coefficient enhances the extraction of
meaningful channel relationships, while an excessively large o
may over-smooth the data, leading to loss of important structural
information and reduced performance. Therefore, selecting an op-
timal « is crucial for balancing smoothing effects and preserving
relevant channel dependencies.
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