Evolving Proxy Kills Drift: Data-Efficient Streaming Time Series
Anomaly Detection

Qing Wei" Hao Miao” Yan Zhao® Kai Zheng"
Yangtze Delta Region The Hong Kong Shenzhen Institute for University of Electronic
Institute (Quzhou), Polytechnic University Advanced Study, University ~ Science and Technology of
University of Electronic hao.miao@polyu.edu.hk of Electronic Science and China (UESTC)
Science and Technology of Technology of China zhengkai@uestc.edu.cn
China zhaoyan@uestc.edu.cn

qingwei@std.uestc.edu.cn

Bin Yang Volker Markl Christian S. Jensen

East China Normal TU Berlin Aalborg University
University volker.markl@tu-berlin.de csj@cs.aau.dk

byang@dase.ecnu.edu.cn

Abstract

Time series anomaly detection aims to identify samples that deviate
from a normal sample distribution in a time series, enabling various
web-centric applications. Most existing approaches are static, tar-
geting pre-defined types of anomalies. These methods thus fail to
work well on streaming time series with changing data distributions
and anomaly formats. To contend with such streaming time series
and to accommodate memory constraints, we propose the first
data-efficient streaming time series anomaly detection framework,
called DESS. To accumulate historical knowledge, DESS includes a
novel evolving proxy generation module to synthesize a small but
informative proxy summarizing the historical data, facilitating data
efficiency. Next, DESS employs an innovative heterogeneous tem-
poral feature extraction module to explicitly capture correlations of
multi-level time series semantics. Finally, DESS enables fast stream-
ing anomaly detection by employing a parameter-efficient training
scheme that only activates a subset of lightweight parameters while
ensuring performance. Extensive experiments on real data offer
insight into the effectiveness and efficiency of DESS, showing that
it is able to outperform the best baselines by up to 17.53% while
reducing the training time by up to 64.88%.

CCS Concepts

« Information systems — Data mining; - Computing method-
ologies — Anomaly detection.

Keywords

Anomaly Detection, Time Series, Evolving Proxy Generation

“Equal contribution.

1LCorresponding authors: Yan Zhao and Kai Zheng. Kai Zheng is with Yangtze Delta
Region Institute (Quzhou), School of Computer Science and Engineering, UESTC. He
is also with Shenzhen Institute for Advanced Study, UESTC.

This work is licensed under a Creative Commons Attribution 4.0 International License.
WWW °26, Dubai, United Arab Emirates

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2307-0/2026/04

https://doi.org/10.1145/3774904.3792440

ACM Reference Format:

Qing Wei, Hao Miao, Yan Zhao, Kai Zheng, Bin Yang, Volker Markl, and Chris-
tian S. Jensen. 2026. Evolving Proxy Kills Drift: Data-Efficient Streaming
Time Series Anomaly Detection. In Proceedings of the ACM Web Conference
2026 (WWW °26), April 13-17, 2026, Dubai, United Arab Emirates. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3774904.3792440

1 Introduction

The growing Internet of Things (IoT) generates an unprecedented
stream of time series [9, 10, 33], motivating various intelligent
web services [15, 32], e.g., microservice log analytics [7]. As a key
functionality integrated into these services, time series anomaly
detection (TSAD) aims to identify abnormal data points or subse-
quences that deviate from normal patterns, denoting unexpected
behaviors based on historical data.

TSAD has received substantial interest across academia and
industry [1, 28, 32, 35]. Existing TSAD methods can be catego-
rized as: discord-based [36], proximity-based [3, 24], forecasting-
based [26, 50], and reconstruction-based [28, 40] methods. Anomalies
are often subtle in web-related time series and may not deviate sig-
nificantly from normal distributions. To address this, unsupervised
reconstruction-based methods have become mainstream because of
their superior performance and not requiring labeled anomalies.
These methods often employ autoencoders [42] to reconstruct the
original time series. Then, when the difference, i.e., the reconstruc-
tion error, between data points in an original and a reconstructed
time series exceeds a threshold, an anomaly is detected. In this
study, we focus on reconstruction-based TSAD.

Next, existing TSAD methods are primarily tailored to detect
pre-defined types of anomalies [32], limiting their adaptability to
real-world scenarios. Streaming time series [3] often exhibit consid-
erable concept drift, including intra-domain and inter-domain drift.
In single-domain time series (e.g., the MSL dataset in Figure 1), new
anomalies may differ in formats from those previously observed,
e.g., including point anomaly (4) and subsequence anomaly (3), re-
sulting in intra-domain drift. Further, we visualize the distributions
of three MSL subsets (split over time) in Figure 1 using kernel
density estimation, which intuitively indicates the intra-domain
shift. In addition, streaming web systems often ingest time series

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3774904.3792440
https://doi.org/10.1145/3774904.3792440

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

Streaming Time Series Anomaly Detection Applications
D@®®: Subsequence Anomaly @O : Point Anomaly Log Anomaly
A | Detection
I Anomaly E
@ L
i ‘ |
M] ‘ \ \ | Abnormal Traffic
\ ‘ l l | Detection
(M 1/ | u|l il '
A VWA LR ¥ vl A o] 3
0 1000 2000 3000 4000 5000 6000 .
Time :
—sor ’ =
— wstos / =S Fraud Detection

Intra-domain Shift Inter-domain Shift il

Figure 1: Streaming Time Series Anomaly Detection
from multiple domains where data distributions and characteristics
vary over time, causing inter-domain drift. For example, the sudden
change at time slot 4000 in Figure 1 exhibits notable inter-domain
drift, which can also be seen from the varying distributions across
MSL, PSM, and SMAP. The complex inner- and inter-drifts can con-
fuse TSAD methods, limiting their generalized capabilities. Most
existing TSAD methods [34, 48] are static and ill-equipped to han-
dle streaming anomalies, suffering from catastrophic forgetting, i.e.,
abruptly forgetting previously learned knowledge when adapting
to new data.

In real-world web streaming settings, data streams are typically
read once, making past accuracy degrade arbitrarily, especially
when streaming time series are not independent and identically
distributed. Although SAND [3] presents a statistics-based stream-
ing TSAD, it struggles with complex temporal correlations [29]
and emphasizes subsequence anomalies while overlooking point
anomalies [32]. This underscores the need for a TSAD method that
operates effectively under realistic web-scale streaming, adapts to
evolving patterns, and handles diverse anomaly types. Thus, a need
remains for a new TSAD method capable of operating in more
realistic streaming settings. Such a method must be able to contend
with the changes that occur over time and learn new characteris-
tics, e.g., different types of anomalies. However, it is non-trivial to
develop such a method due to three main challenges.

Challenge I: Progressive Knowledge Retention. It is challenging to
progressively retain historical temporal knowledge of streaming
time series and anomalies. First, anomalies in streaming time series
often exhibit different patterns. Newly collected time series may
introduce unseen anomalies whose patterns differ from those of
previous ones (see Figure 1), making it necessary to adapt to new
anomaly patterns without forgetting historical knowledge. Further,
real-world streaming time series from different domains often ex-
hibit markedly different characteristics, e.g., sampling rates, feature
attributes, and data volumes. Such variations can confuse a model,
causing reduced model performance [17, 41].

Challenge II: Complex Semantics Interaction. Existing TSAD meth-
ods often fall short in capturing complex interactions among multi-
level temporal semantics, i.e., local patterns, trend, and seasonality,
impeding effective cross-domain time series feature extraction. The
capture of local semantics, encompassing contextual patterns in
localized subsequences of time series [27], facilitates the detection
of subtle or transient anomalies. Further, the capture of trend and
seasonal patterns enables time series global structural characteris-
tics modeling, enhancing anomaly separation from normal patterns.
Modeling these multi-level semantics adaptively enables anomaly

Qing Wei et al.

detection at different temporal granularities. Capturing their inter-
actions across domains facilitates common knowledge extraction,
which in turn enhances the generalizability of cross-domain TSAD.

Challenge III: Efficiency. The large volume of streaming time se-
ries and the large size of models often hinder efficient and scalable
streaming TSAD. Existing methods often require re-training of their
models on old and new data simultaneously to ensure performance.
However, as data volumes keep growing over time, redundant re-
training is required, incurring substantial computational overheads,
leading to low efficiency. Although replay-based streaming meth-
ods [29, 41] utilize a subset of historical data to alleviate catastrophic
forgetting, these methods still store different amounts of historical
data to maintain their primary patterns, which are difficult in many
resource-constrained environments [38, 46].

This paper introduces DESS to address the above challenges.
First, DESS introduces an evolving proxy mechanism that progres-
sively summarizes historical time series into compact synthetic
proxies, enabling continual knowledge retention and alleviating
catastrophic forgetting. Second, to capture multi-level temporal
semantics, we design a semantics-aware feature extraction module
that decomposes time series into local, trend, and seasonal compo-
nents, and leverages a cross-modality query with residual fusion
to model their interactions. Third, to ensure efficient adaptation in
streaming settings, DESS employs a lightweight refinement module
with parameter-efficient training, which updates only a subset of
parameters while maintaining competitive detection accuracy.

To achieve progressive knowledge retention (Challenge I), we
innovatively propose evolving proxy generation, including proxy
initialization and data-efficient adaptation. This module automati-
cally synthesizes a small but informative proxy to summarize his-
torical time series such that historical knowledge is progressively
accumulated in the synthetic proxy. To enable streaming TSAD, we
incorporate the proxy into the current model training, alleviating
catastrophic forgetting. Specifically, we initialize the small-scale
proxy using a sampling-autoencoding scheme. Then, we update
the small-scale proxy carefully employing data-efficient adaptation
to retain knowledge spanning old and new time series.

To capture multi-level temporal semantics (Challenge II), we pro-
pose dual-decomposition data preprocessing and semantics-aware
feature extraction (SeFAE) featuring a cross-modality query and
residual fusion mechanism. We disentangle original time series into
multi-level contextual semantics, i.e., local semantics, trend, and
seasonality, by means of patching and frequency decomposition. A
set of feature extractors, employing cross-modality query, is pro-
posed to extract effective high-dimensional features of contextual
semantics for reconstruction. The contextual semantics capture
original time series from different perspectives. Thus, we consider
each semantics as a modality. The proposed cross-modality query
mechanism adaptively captures the dependencies among extracted
contextual semantics based on a novel residual fusion.

To support efficient streaming TSAD (Challenge III), we pro-
pose a data-efficient, task-specific refinement module featuring a
parameter-efficient training scheme. In particular, DESS maintains
a buffer to store only a batch of proxies, considered as represen-
tative past samples. We feed these data-efficient proxies into the
task-specific refinement module so that DESS achieves good perfor-
mance when performing detection on historical and current data.

Evolving Proxy Kills Drift: Data-Efficient Streaming Time Series Anomaly Detection

Further, having obtained an initial TSAD detector, we update it via

a parameter-efficient training scheme, which activates a subset of

lightweight parameters and freezes other parameters that require

high computational resources, reducing training costs considerably.
The main contributions are summarized as follows.

e To our best knowledge, this is the first streaming time series
anomaly detection that goes beyond pre-defined anomalies and
is applicable in both single-domain and cross-domain settings.

e Evolving proxy generation and semantics-aware feature extrac-
tion are proposed to progressively preserve historical knowledge
and effectively capture multi-level temporal semantics.

e A novel data-efficient, task-specific refinement module and a
parameter-efficient training scheme enable efficiency.

e We report on experiments using real data, offering evidence of
the effectiveness and efficiency of the proposals.

2 Related Work

Time Series Anomaly Detection. Time series anomaly detec-
tion is crucial for the automated operation and maintenance in
web-sourced applications [42], aiming to identify unusual patterns
or outliers in time series [35]. Early studies propose discord-based
methods [5, 36] utilizing nearest neighbor distances among subse-
quences in time series for anomaly detection. Next, proximity-based
methods [3, 4, 24] estimate the density of different points in time
series to identify anomalies. To capture intricate temporal depen-
dencies, forecasting-based methods [11, 50] use historical values
in time series to predict future ones, where forecasting error is
often adopted as an anomaly error, assuming that anomalies are
much less frequent than normal behaviors. Reconstruction-based
methods [28, 40, 48] reconstruct time series and use reconstruction
errors as anomaly scores. Points with high anomaly scores are more
likely to be anomalies. However, existing methods are mainly static,
failing to adapt as needed in stream settings. Particularly, anomalies
may take on different formats and characteristics over time. In such
cases, the model performance may decrease due to concept drift.
Streaming Data Analytics. Data stream analytics attracts increas-
ing research interests [20, 29, 41], aiming to learn new tasks while
maximally preserving the knowledge learned from the previous
tasks. Generally, existing data stream analytics methods can be
divided into three categories. First, rule-based methods [18] include
a regularization term to explicitly alleviate forgetting problems.
Second, replay-based methods [6, 27, 41] often maintain a small
memory buffer to store a subset of historical data and then replay
this data when learning a new task. Third, architecture-based meth-
ods [37] adopt different sub-networks, where each sub-network
is responsible for a task, thus avoiding forgetting. We focus on
replay-based methods, which involve historical-data sampling [21].
However, existing sampling strategies are often either random [21]
or heuristic [29]. These methods can not promise representative
sample selection and thus fall short in overcoming the forgetting
problem, degrading the performance of data stream analytics.

3 Preliminaries

Definition 3.1 (Time Series). A time series T = (to, 11, ,tm—1) 1S
a time ordered sequence of m observations, where each observation

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

t; € R€ is a C-dimensional vector. If C = 1, T is univariate, and if
C > 1, T is multivariate.

In data streams, the size of the time series is not known and is
considered to be infinite as observations arrive incrementally [3].
We use cross-domain observations in this study, where C may vary.

Definition 3.2 (Streaming Time Series Batch). Given a time point
n, we denote a streaming time series batch as an ordered set of
time series T}, = {Tom, Tntt,ms * * * » Tntbgie—mymo» }» Where Ty is
a time series starting at time point n and bs;ze = [T, is the batch
size. T9, is the first batch.

Streaming Time Series Anomaly Detection. Given a database
consisting of a batch of T, extracted from a data stream, we aim
to compute an outlier score OS(¢;) for each time point i. A higher
OS(t;) means it is more likely that ¢; is an anomaly. We focus on
Top-K anomalies. Specifically, we consider the top r% of OS(#;) as
anomalies, where r is a threshold. We focus on reconstruction-based
methods and formulate the outlier score as OS(t;) = |t;—1;|, s.t.f; =
F(6,t;), where {; is the reconstructed value of ¢;, which is obtained
by the learned TSAD function F(-).

4 Methodology

We proceed to detail the data-efficient streaming TSAD frame-
work, DESS, as shown in Figure 2. DESS aims to adaptively detect
anomalies in newly incoming time series data while maintaining
historical knowledge, i.e., maximally preserving TSAD capabili-
ties on previous time series. It encompasses four major modules:
dual-decomposition data preprocessing, semantics-aware feature
extraction, evolving proxy generation, and task-specific refinement.
Given a streaming time series batch T, we first feed it into the
dual-decomposition data preprocessing module, which performs
patching and frequency decomposition, to capture multi-level tem-
poral semantics, i.e., local semantics, trend, and seasonality. Next,
we input these semantics into the semantics-aware feature extrac-
tion module, which includes a Transformer encoder and a cross-
modality query mechanism. Further, the evolving proxy genera-
tion module synthesizes a batch of time series, retaining historical
knowledge. This module encompasses proxy initialization and data-
efficient adaptation. Finally, the learned features and condensed
time series are fed into the task-specific refinement module for
reconstruction-based streaming TSAD.

4.1 Dual-decomposition Data Preprocessing

The dual-decomposition data preprocessing module is composed of
a channel-independent mechanism and a dual-decomposition layer.
The dual-decomposition layer includes patching and frequency de-
composition, which disentangle the multi-level semantics, i.e., local
semantics, trend, and seasonality, for subsequent feature extraction.

Channel-independent Mechanism. The cross-domain time
series, e.g., Tn,m and Tp,1p_ ., m, often differ in dimensionality due to
different sampling strategies and feature attributes. When stream-
ing cross-domain time series arrive, we activate CIM(-), the channel-
independent mechanism [27], to model each time series feature in-
dependently, avoiding uncontrollable influence by feature coupling
and enabling effectiveness. Specifically, the channel-independent
mechanism CIM(-) separates a batch of streaming time series Ty, ,,, €

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

Dual-decomposition Data

Hy Cross-modality Query

1hs S S
l: ”

Qing Wei et al.

|

|

|

|

. Multi-Head |
Attention :
|

|

|

|

I el o
Q| -Aver Torm \ BNl [4 Transform
@—'E Feed < l———PrEXX __________
______________ |
Forward

/‘

L QP Layer Norm

Frozen é Trainable

| i
| |
Preprocessin |
: P g | | Temporal-context
| _ | : Operators
www | | — .

: N Patch | : Multi-Head
| o’ 9 o l & | | Attention
-7 - B |B |
i T i '8 i’: Layer Norm ol : &
ety e — gCJ—,——» Layer Norm

RN RN Position ~ ¥1 Y
| | | (a8 =] |
| : H : : ¢ : =l g Embedding | I l &
| : I: :: >>: §_ ! : I Feed
A | 3 e _, Forward
1 :I : ! %i 2 = Trend —|'|—
Ph3ary | |

s 5L Y
12120 T - — Seasonahty—li— Layer Norm
| 11 13 m
|
|

': Attention

I
|
|
|
Multi-Head |
|
|
|

Figure 2: DESS Framework Overview

RbsizeXmXC(C > 1) with C features into C univariate time series
along the feature dimension, which is formulated as CIM(Tp,) =
Tlln, Tlfl, e ,Tii, where the separated univariate time series are
fed independently into the dual-decomposition layer.

Dual-decomposition Layer. The dual-decomposition layer in-
cludes a two-fold decomposition process, including patching and
frequency decomposition. Patching [8, 30] aims to capture the local
semantics of Tifl, where adjacent observations over several time
steps are aggregated into subseries-level patches. Give a patch
length L and a stride S, the separated T can be divided into a
sequence of patches Tj € RbsizeXIXN yhere N = [P L 42| isthe
number of patches. Patching allows the model to see longer histori-
cal sequences, further decreases the input length, and reduces the
computational complexity of the following Transformer encoder.

The frequency decomposition aims to extract the non-stationary
trend and stationary seasonality information from T} . Specifically,
we employ Discrete Fourier Transform (DFT) [43] to transform
Tlfl into the frequency domain, i.e., Z; = Zm Tc ced %”, t =
0,1,---,m— 1, where Tl.C is the i-th observatlon of Tﬁl and Z; de-
notes the ¢-th coefficient in the frequency domain. The coefficients
describe the contributions of each sinusoidal basis to T, [43]. Then,
we apply Top-K sampling to select the K largest amplitude compo-
nents from the transformed coefficients, i.e., Ky = Top-K(Amp(Z;)),
where Amp(Z;) computes the amplitude of Z;. Next, the trend
Tirend, can be extracted by means of the Inverse Discrete Fourier
Transform (IDFT) [13] on the filtered Z;, which reforms the Top-K
components:

Zz’ TR 01, K1
ko (1)

s.t.,Z; = Filter(K¢, Z¢),

Ttrend +

where Filter(-) retains the K; frequency components from Z;. We
obtain the seasonality Tseason, as Tseason, = Tt — Tirend, -

4.2 Semantics-Aware Feature Extraction

Capturing the correlations among the multi-level semantics, i.e.,
local semantics, trend, and seasonality, enhances feature extraction
and commonality learning from cross-domain time series. Thus, we

propose a semantics-aware feature extraction module, including
temporal-context operators, cross-modality query, and residual
fusion, where we consider each semantics as a time series modality.

Temporal-context Operators. We feed the decomposed patches
T, trend T7 . and seasonality Tg,,, into stacked Temporal-
context Operators, TCOperator(-), to learn latent features for the
following cross-modality query, i.e., Hy = TCOperator(T;), H; =
TCOperator(T;, 1), Hs = TCOperator(Tgon)-

Inspired by the success of large language models (LLMs) [12,
22] and their advances in time series analytics [19], especially
TimeCMA [23], we choose an LLM-like architecture for TCOperator(-)
while using fewer parameters. Given Tj as an example, the pro-
cess of TCOperator(-) is as follows. First, we map T} into a high-
dimensional space via a linear projection W), and a learnable ad-
ditive position encoding Wpos, where Wp,s aims to preserve the
temporal order of T, i.e., hy = WPij + Wpos. Then, we project hy,
into the query Qp, = hp Wy, key K, = hp W, and value Vj, = hp, W,
spaces, where Wy, Wi, and W, are linear projections. Then, we
employ multi-head attention MHA(-) to capture the temporal cor-
relations:

MHA(hp) = Attention(Qp, Ky, Vi) Winha
T

QnK
Attention(Qp, Ky, Vi) = Softmax(h
k

@)

Vi,

where dy, is a scaling factor. Next, we sequentially feed MHA(hy)
into a layer normalization LN(-), a feed-forward network FFN(-),
and an LN(-), where the residual connection is applied to enable
effective feature extraction:

Hp, = LN(FEN(LN(MHA(hp) + hp)) + LN(MHA(hp) + hp)) (3)

Similarly, we obtain H; and Hy by feeding Tfren d
MHA(-) and a layer normalization LN(-) sequentially.
Cross-modality Query and Residual Fusion. As H), captures
the local temporal semantics of time series subsequences, it may
contain redundant trend and seasonality information [14]. To re-
move such redundancy, we propose a novel cross-modality residual
query mechanism to effectively align and fuse the extracted fea-
tures of multi-level semantics. We treat the features of patches Hj,

c .
and Ty, into a

Evolving Proxy Kills Drift: Data-Efficient Streaming Time Series Anomaly Detection

trend H;, and seasonality Hy as distinct modalities, enabling com-
prehensive heterogeneous temporal patterns capturing [27, 46]. The
cross-modality residual query features a two-fold residual query,
where the residual denotes the variations between H, and the de-
composed components H; and Hs. We consider the residuals as
complementary information, the fusing of which with H; and Hg
enables error correction and enhances modality alignment [14].

Specifically, we employ MHA(-) and layer normalization LN(-)
to align Hy and H; (or Hs), which are considered as queries and
key-value pairs, respectively.

MHA(Hp, Hy) = LN(Dropout(Attention(Qp, Ky, V¢)) + Hp)

4
Qp = WepHp, K¢ = WeeHy, Vi = WeyHe @)

We denote the aligned trend features as Hy;. We obtain the aligned
seasonality features Hy, similarly. Next, we calculate the residuals
between Hp, and Hg and Hy, and Hgs.

Ry = Hp — Hat, Rs = Hp — Has (5)

Finally, we project the residuals into the embedding spaces of de-
composed features, i.e., H; and Hg, and fuse them as follows.

Hft = Hg + FEN(R;), Hfs = Hgs + FEN(R;) (6)

4.3 Evolving Proxy Generation

The evolving proxy generation module includes proxy initialization
and data-efficient adaptation, which progressively retains knowl-
edge across time series streams, automatically synthesizing a small-
but-informative set of (i.e., a batch) time series H¢op. We integrate
small-scale condensed time series with streaming time series batch
to avoid full retraining, ensuring data efficiency.

Proxy Initialization. Given an initial time series Tj,;, we syn-
thesize a small-scale set of time series to summarize Tjp; for proxy
initialization. To reduce considerable computational costs [27],
we propose a light dataset condensation process via Sampling-
AutoEncoding. Specifically, we average observations of Tj,; over
equivalent batches (e.g., a day), obtaining a batch of periodic samples
Ts. Next, we input the generated samples T; into an Encoder-only
architecture, extracting the informative compressed time series.
The encoder ¢, composed of stacked feed-forward networks, aims
to encapsulate the summarized characteristics of historical time
series, i.e., ¢ : Ty — Hcon. The full process can be formulated as
follows.

qp (Heon|Ts) = N (Heons u(Ts), o*(T5)), (7)
where N(-), u(+), and o(-) denote normal distribution, mean, and

standard deviation, respectively. H,p, is obtained via reparameteri-
zation.

Heon = p(Ts) + o(Ts) - € (®)
where € € N(0,I). We use the compressed but informative Hop
obtained by ¢ as the proxy, aiming to progressively retain the histor-
ical knowledge. When streaming time series arrive, we continuously
update the initialized proxy Ho, with data-efficient adaptation in-
stead of updating ¢ directly. The repeated updating of the small
H¢on enables data efficiency.

Data-efficient Adaptation. To accommodate the dynamic na-
ture of streaming time series, we consider H,, as an evolving proxy
and continuously update it via evolving data-efficient adaptation

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

when new data arrives. This allows Hyp to not only preserve es-
sential historical patterns but also to incorporate new knowledge
learned from current time series progressively. Specifically, we first
scale H,y, into a factor.

p =0.01 x sigmoid(avg(Hcon)), p € [0,1], 9)

where sigmoid(-) is an activation function, avg(-) is the averaging
operator, and we use 0.01 to ensure careful model updates and thus
alleviate catastrophic forgetting. Next, we use the factor p to guide
the model training, where we use 0; to denote the DESS model at
time point t. In particular, when new data arrives, we consider 6;
as the starting point and update it as follows.

1

Ory1 =0t +p- b V@[F, (10)

size

where Vg denotes the gradient. Traditional model updates often
focus on learning knowledge from current data batches [29], which
results in forgetting historical knowledge. The scale factor p serves
as an anchor to historical knowledge and enables the model to adapt
to new data while retaining important features from historical data.
Thus, we preserve essential patterns learned from historical data
and bridge the knowledge from historical time series to the new
time series, alleviating catastrophic forgetting.

4.4 Task-specific Refinement

Real-world streaming cross-domain time series often exhibit dif-
ferent characteristics. To accommodate such cross-domain data,
the task-specific refinement module serves to enable streaming
TSAD, which can adapt to the current domain of time series while
maintaining historical knowledge from previous ones.

This module integrates the features of only a batch of condensed
data, ie., the generated proxy Hcgn € RPsizeXmXCe with those of a
streaming time series batch, i.e., Hstream = Hp+Hf;, where Hstream €
RYsizeXmXCs and C, and Cs are dimensionalities. Given that cross-
domain time series may have different dimensionalities, we first
feed Hc,y, into a transform layer. To contend with dimensionality
differences, the transform layer performs dimension expansion if
C. < Cs and dimensionality reduction if C; > Cs.

Expansion(Heon) if Ce < Cs
Heow =4 Hcon if Cc =Cs (11)
Slicing(Hcon) if Cc > Cs

We use padding in Expansion(-). When new time series arrive, we
update the model parameters. First, we concat Hgtream With Hey,y
as Hyy = Hstream||Hcon' s Where || denotes concatenation. This
data-efficient integration aims to bridge the gap between the cross-
domain commonalities and task-specific features. Next, we input
H, g into a refinement layer composed of stacked FFNs for time
series reconstruction,

TP = FEN(- - FEN (Hqst)). (12)

where FFN (- - -) denotes stacked FFNs. We continuously update the
model from the prior phase to the next.

4.5 Parameter-efficient Training

To enable effective streaming TSAD, we propose a parameter-
efficient training scheme to further reduce the computational costs.

WWW °26, April 13-17, 2026, Dubai, United Arab Emirates

Qing Wei et al.

Table 1: Overall Streaming Single-domain TSAD Performance Comparison on Six Datasets

Dataset ~ Metric DESS OCSVM IF LOF S2G SAND TranAD Autoformer Informer FEDformer iTransformer PatchTST Dlinear AnoTrans DCDetector UniTS
Aff-F 0.9419 0.5342 0.5059 0.5414 0.1778 0.2010 0.5782 0.7395 0.8247 0.6917 0.5773 0.7163 0.4525 0.7484 0.2046 0.3403

SMAP VUS-PR 0.7727 0.1467 0.1460 0.1296 0.4569 0.4902 0.4170 0.6235 0.6994 0.5092 0.4117 0.5587 0.4005 0.7218 0.2376 0.5959
VUS-ROC 0.9316 0.4899 0.4828 0.4906 0.5210 0.5299 0.6108 0.7656 0.8491 0.6774 0.6073 0.7097 0.5672 0.8855 0.5051 0.5549
ROC-AUC 0.9488 0.3182 0.5857 0.5118 0.9195 0.7374 0.7343 0.9281 0.9395 0.8025 0.7299 0.8676 0.7695 0.9381 0.5253 0.7911

Aff-F 0.8359 0.4103 0.4137 0.3947 0.1092 0.3487 0.4956 0.4692 0.5164 0.4517 0.5239 0.5198 0.5057 0.4915 0.6674 0.4870

PSM VUS-PR 0.8278 0.4726 0.3818 0.6449 0.5673 0.5902 0.6907 0.6466 0.6966 0.6419 0.8095 0.8157 0.8313 0.6877 0.8082 0.7333
VUS-ROC 0.8775 0.5464 0.4969 0.5271 0.4968 0.5890 0.6861 0.6200 0.6896 0.6129 0.8626 0.8675 0.8745 0.7001 0.8511 0.6457
ROC-AUC 0.9491 0.6499 0.6287 0.7682 0.8564 0.7498 0.9101 0.9054 0.9154 0.9070 0.9289 0.9373 0.9258 0.9244 0.9036 0.9427

Aff-F 0.8657 0.6936 0.6732 0.6510 0.1721 0.3094 0.8086 0.7413 0.8204 0.6748 0.7540 0.7866 0.8050 0.7432 0.6329 0.6308

MSL VUS-PR 0.6580 0.2725 0.2156 0.1984 0.3764 0.4576 0.6184 0.5555 0.6433 0.4939 0.5797 0.6122 0.6228 0.5787 0.4196 0.6248
VUS-ROC 0.8439 0.5515 0.5279 0.5184 0.5148 0.5279 0.8100 0.7483 0.8239 0.6874 0.7657 0.7968 0.8168 0.7671 0.5989 0.6905
ROC-AUC 0.9214 0.5119 0.5156 0.5765 0.8245 0.6252 0.8959 0.8593 0.9090 0.8294 0.8679 0.8859 0.8934 0.8767 0.7335 0.8762

Aff-F 0.6285 0.4213 0.2787 0.2941 0.1778 0.2051 0.4032 0.4391 0.3974 0.4338 0.4580 0.3798 0.4112 0.4579 0.1613 0.2640

SWaT VUS-PR 0.6609 0.3230 0.3127 0.3758 0.4224 0.4681 0.3437 0.4856 0.4235 0.4633 0.4471 0.3928 0.4176 0.4632 0.4823 0.3934
VUS-ROC 0.7972 0.7039 0.6308 0.5108 0.5845 0.5355 0.5941 0.6220 0.5784 0.6089 0.8359 0.7805 0.6915 0.5846 0.5268 0.5430
ROC-AUC 0.9520 0.7977 0.7132 0.8081 0.9195 0.7417 0.8467 0.8937 0.8333 0.8644 0.9311 0.9214 0.8988 0.7759 0.6512 0.7885

Aff-F 0.8318 0.6989 0.6992 0.7097 0.1932 0.4710 0.8113 0.7847 0.8211 0.7807 0.8284 0.8213 0.8060 0.7861 0.6664 0.6105

SMD VUS-PR 0.6458 0.3001 0.2902 0.4320 0.0982 0.2074 0.5711 0.5014 0.6051 0.4936 0.6224 0.6227 0.6225 0.6303 0.4714 0.5651
VUS-ROC 0.9347 0.5426 0.5945 0.5654 0.4815 0.5272 0.8682 0.8014 0.9158 0.7932 0.9133 0.9130 0.9139 0.7669 0.7520 0.6266
ROC-AUC 0.9552 0.6053 0.6454 0.5952 0.5606 0.6770 0.9086 0.9007 0.9433 0.8997 0.9337 0.9334 0.9336 0.9570 0.9155 0.8162

Aff-F 0.8526 0.6615 0.6804 0.6340 0.0513 0.3429 0.6901 0.8403 0.7054 0.8383 0.8254 0.8474 0.8107 0.5849 0.6775 0.1507

UCR VUS-PR 0.5646 0.1287 0.1954 0.0316 0.2152 0.4823 0.5368 0.5583 0.5288 0.5445 0.5572 0.5532 0.5442 0.5157 0.5405 0.4964
VUS-ROC 0.9341 0.5502 0.6028 0.5015 0.5181 0.6434 0.9083 0.9243 0.9014 0.9112 0.9278 0.9238 0.9151 0.8833 0.9195 0.6034
ROC-AUC 0.9444 0.5584 0.5943 0.5004 0.7339 0.8906 0.9228 0.9347 0.9197 0.9307 0.9328 0.9344 0.9384 0.9199 0.9203 0.9408

As shown in Figure 2, we divide the model parameters into train-
able parameters 0, and frozen parameters Hf, ie, 0= (06, Gf). We
freeze the majority of parameters, ie., |0¢| < 0.

Given the initial time series dataset 7 stored in the local database,
we activate all parameters of 0 to obtain an initial 6. In addition,
existing studies [19] show that LLMs are capable of encapsulating
most of the generic knowledge learned from previous tasks. The
architecture used in the SeFAE module resembles those of LLMs. In-
spired by this, we assume that SeFAE learns generalized knowledge
for TSAD. Then, when streaming time series batch T7, arrives, we
freeze the parameters of the multi-head attention layers MHA(-) in
SeFAE, thereby reducing the computational costs substantially. Fur-
ther, to enhance streaming TSAD with minimal cost, we fine-tune
the lightweight layers in DESS, including the layer normalization
LNs(-), feed-forward networks FFNs(+), and the evolving proxy gen-
eration module. This captures the task-specific information and
allows DESS to adapt to streaming TSAD.

Given a streaming time series batch T?,, DESS aims to enable
streaming time series anomaly detection on T}, while preserving
knowledge of maximally historical time series based on the evolving
proxy generation. This avoids the raw reuse of historical datasets,
thus facilitating computational efficiency.

Overall Objective Function. We proceed to specify the overall
objective of the proposed method. It updates the trainable parame-
ters by optimizing the loss function £, . In particular, for the ini-

. 2
-l
where 7; and 7; denote the reconstructed and real values of the
Jj-thtime series in 7~ and 6 denotes that all parameters are trainable.
For the streaming time series batch T, we have L, (0e; Th) =

1 bsize A, .
Zj:l Tj - TJl

bsize

tial time series datasets, we have L, (0;7) = |17| >

2 .
, where 0, denotes the trainable parameters.

5 Experimental Evaluation

5.1 Experimental Setup

5.1.1 Datasets. The experiments are carried out on six widely-used
multivariate time series anomaly detection datasets [32]: SMAP,
PSM, MSL, SWaT, SMD, and UCR, covering web-centric applica-
tions such as server monitoring, satellite telemetry, and industrial

systems. We include UCR to enable more reliable and fair Stream-
ing TSAD [45]. We consider these datasets as representing distinct
domains, and we process their data sequentially to enable stream-
ing TSAD. The datasets contain different types of anomalies [32].
We provide more dataset details and streaming TSAD settings in
Appendix A.2.

5.1.2 Baselines. We compare DESS with 15 baselines covering
classical machine learning and deep learning-based methods. The
classical methods include OCSVM [39], Isolation Forest (IF) [24], Lo-
cal Outlier Factor (LOF) [4], Series2Graph (S2G) [2], and SAND [3],
where SAND [3] is designed for streaming subsequence time se-
ries anomaly detection. Among deep learning approaches, we in-
clude TranAD [40], Autoformer [44], Informer [52], FEDformer [53],
iTransformer [25], PatchTST [30], Dlinear [51], AnomalyTrans-
former (AnoTrans) [47], DCDetector [49], and UniTS [11].

5.1.3 Evaluation Metrics. To enable fairness and avoid bias [32, 34],
we adopt the Affiliated F1-Score (Aff-F) [16], Volume Under the
Surface of the Precision-Recall Curve (VUS-PR), Volume Under the
Surface of the ROC Curve (VUS-ROC) [31], and Area Under the
Receiver Operating Characteristic curve (AUC-ROC) [47] as the
evaluation metrics. The higher the values for these metrics, the
more accurate a method is.

5.2 Experimental Results

5.2.1 Overall Performance on Streaming Single-domain Time Series.
We compare the methods of streaming single-domain TSAD using
the experimental settings from Appendix A.2.3. The overall best
performance is marked in bold, and the second-best performance
is underlined. Streaming single-domain TSAD aims to assess the
capability of a method to alleviate intra-domain drift. We report the
results in Table 1. DESS achieves the best results across all evalua-
tion metrics in most cases, performing better than the best among
the baselines by up to 17.05%, 17.53%, 4.61%, and 2.09% in terms
of Aff-F, VUS-PR, VUS-ROC, and ROC-AUC, respectively. The per-
formance improvements obtained by DESS on SWaT exceed those
on SMAP, PSM, MSL, and UCR. This is because SWaT has much
more training data than the other datasets. DESS trained with more

Evolving Proxy Kills Drift: Data-Efficient Streaming Time Series Anomaly Detection

Table 2: Streaming Cross-domain TSAD Performance Comparison

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

Dataset Metric DESS OCSVM IF LOF S2G SAND TranAD Informer Dlinear AnoTrans DCDetector UniTS
ARF | 03934 02643 02417 02975 02270 0.1623 03891 02188 02073 0.1256 0.3068 0.1381
MSL VUS-PR 0.5967 0.3839 0.2060 0.3232 0.4360 0.4251 0.5859 0.4292 0.5414 0.5742 0.5698 0.4440
VUS-ROC | 05707 04759 05191 04781 05307 05069 0.5611 0509 05267 0.5202 0.5338 0.5118
ROC-AUC | 0.7786 05248 05392 05646 05976 0.5898 07426 05367 07101 07660 0.7412 0.7211
ARF | 04158 01947 01864 02047 02100 0.1878 04003 02597 03859 0.05% 0.3942 0.1192
VUS-PR | 07084 03839 06400 05009 06114 06407 06792 06608 06964 0.6495 0.6582 0.6538
MSL—PSM—SMAP | PSM | ysROC | 05944 05009 05009 05367 05208 05147 05602 05354 05837 05124 0.5379 0.5246
ROC-AUC | 0.8801 05808 0.6638 05367 08053 08169 08498 07509 0.8438 08253 0.8470 0.8637
ARF | 03385 02164 02053 02385 00907 0.1747 03088 01824 01632 0.1520 0.3006 0.2997
sMap | VUSPR | 05826 0.1419 0.1349 01652 04899 05326 05679 05730 05625 05716 0.5605 0.5617
VUS-ROC 0.5494 0.4128 0.4793 0.5028 0.5041 0.5026 0.5304 0.5237 0.5203 0.5197 0.5269 0.5268
ROC-AUC | 07625 03191 0.6347 06259 06692 05242 07515 07521 07507 07502 0.7262 0.7425
ARF | 0.6147 02194 03579 03643 06034 03547 05426 05829 05686 05411 0.6015 0.5852
sup | VUSPR | 05564 00961 04254 05227 02143 01448 05534 05341 00028 05346 0.5429 0.5222
VUS-ROC | 0.6374 04981 04579 05010 05205 04993 0.6204 06163 05449 0.5860 0.5769 0.5743
SMD — UCR ROC-AUC | 0.8306 05833 0.5909 05473 07110 05923 08222 07965 08018 07577 0.7925 0.8008
AfF | 0.1430 01037 01025 0.1104 01149 01093 _ 00190 _ 00289 _ 00329 _ 0.0909 0.1154 0.0910
Ucg | VUSPR | 04512 01272 01954 00383 03743 03383 0009 03904 03998 04159 0.4062 0.4285
VUS-ROC | 05981 05462 04136 05046 05420 05021 04982 05118 05121 0.5415 0.5116 05219
ROC-AUC 0.9371 0.5613 0.5954 0.5100 0.9017 0.8906 0.4979 0.9015 0.9043 0.9107 0.9032 0.9106
P . . I Aff-F BN Aff-F
100 95
training data yields better results. Although SMD has substantial VUS.ROC VUS-ROC
training data, DESS performs slightly better than baselines. This ‘% 92 g8
. . . . I < 7
is because of the fewer anomalies in SMD, which can be captured g™ g7
. o . . S 76 S 68
easily by existing methods. Traditional methods, i.e., OCSVM, IF, b= £
. A 68 A 59
LOF, S2G, and SAND, perform worse than deep learning methods.
. . ; . 60 50
This is because the complex temporal correlations of time series FECHC o & & \°<0° o N 8¢
o . W0 [\ B S 107 S
are hard to capture due to the limited feature extraction capabilities A o) o h
of these methods. Although SAND is capable of streaming TSAD, (a) SMAP (b) PSM

it targets mainly subsequence anomalies, failing to adapt to more
general TSAD scenarios with different types of anomalies.

5.2.2 Overall Performance on Streaming Cross-domain Time Series.
Time series are often incrementally from sensors deployed across
different domains. Streaming cross-domain TSAD is thus desirable
but challenging because anomalies across domains often differ in
anomaly categories, feature attributes, and feature correlations,
causing considerable concept drift. We determine whether DESS
enables streaming cross-domain TSAD. Table 2 shows the perfor-
mance of DESS at streaming cross-domain TSAD, where MSL —
PSM — SMAP (and SMD — UCR) indicate that we feed MSL, PSM,
and SMAP (and SMD and UCR) into DESS and baselines sequen-
tially. For brevity, we compare DESS with 5 classical baselines and
6 deep learning baselines that achieve competitive performance in
streaming single-domain TSAD (see Table 1). As shown in Table 2,
DESS consistently achieves the best performance on all datasets.
Specifically, DESS outperforms baselines by up to 12.40% and 44.14%
in terms of Aff-F and VUS-PR on UCR, and by up to 24.78% and
44.77% in terms of Aff-F and VUS-PR on SMAP. Despite having been
trained on highly heterogeneous datasets from different domains,
DESS maintains robust performance on early datasets, such as MSL
and SMD, while maintaining strong performance on subsequent
datasets, such as SMAP and UCR. The results suggest that DESS
can effectively preserve the knowledge learned from earlier tasks
without replay mechanisms or access to historical data, which at-
tributes to the evolving proxy generation mechanism. In addition,
we observe that TranAD performs better than other baselines in
most cases due to its multi-modal feature extraction capabilities.

5.2.3 Ablation Study. To gain insight into the effects of the differ-

ent components of DESS, we evaluate three variants:

e w/o_TCO. DESS without the temporal-context operators (TCO),
which are replaced by stacked feed-forwarded networks.

Figure 3: Ablation Study Results of DESS and Its Variants
e w/o_CMRQ. DESS without the cross-modality query and resid-
ual fusion (CMRQ), which is replaced by a feed-forward network.
e w/o_EPG. DESS without the evolving proxy generation (EPG).
Figure 3 shows results on SMAP and PSM. We report the average
results of streaming single-domain TSAD. Regardless of the datasets,
DESS outperforms three variants. This shows that the three com-
ponents all contribute to improved streaming TSAD. DESS obtains
Aff-F and VUS-ROC improvement by up to 32.06% and 27.90%,
respectively, compared to w/o_CMRQ. In addition, DESS obtains
Aff-F and VUS-ROC improvement by up to 17.24% and 17.72%, re-
spectively, compared to w/o_TCO, which shows the benefits of the
TCO module. More results are provided in Appendix A.3.1.

; 5 5 >
420510 x10% oo 160 X10 X107 s
—— SMAP '/ —— MSL
354 834 147 124
SWaT SMD
22388 6885 125 1030
s / I
%222 / 5428 1.03 0824
1561 % 3.96 081 061
.//\ o /
0.90 —=1250 0. —+-10.40
ovoga% &09%‘5

o & b & Y &t &
‘@o:\)\0@@\‘\;06‘;@@6‘;@«@ '(‘%‘\P»M\oio(\‘\\&g((:g()@(@boé&

Figure 4: Training Time of Single-domain TSAD (s/epoch)
5.2.4 Training Time. As efficiency is important for TSAD on stream-
ing data, we study the training time (per epoch) on four datasets
for single-domain streaming TSAD; see Figure 4. We select 5 well-
performed baselines (without proxy generation) for comparison.
DESS (with proxy generation) consumes the least training time. For
example, DESS is faster than FEDformer by 57.45%, which is largely
because of the proposed parameter-efficient training scheme and
data-efficient proxy generation mechanism. In addition, TranAD
achieves the least training time among the baselines. However,
compared to TranAD, DESS reduces the training time by 4.83% on
four datasets, showing its efficiency. These findings indicate the
feasibility of DESS for deployment in large-scale streaming TSAD
scenarios.

WWW °26, April 13-17, 2026, Dubai, United Arab Emirates

Point Anomalies

23 . L0 Anomaly Score
1.8 Ioput Series 0.8 Ground Truth
. Ground Truth o Jrou Y

213 5 0.6
= S
> 0.8 “0.4

03 0.2

-0.2 0.0

0 25 50 75 100 0 25 50 75 100
Time Time

Figure 5: Case Study on SMD
5.25 Case Study. To intuitively illustrate the effectiveness of DESS,
we provide a case study on SMD. Figure 5 reports the performance
of DESS at detecting point anomalies on SMD. We show the orig-
inal input time series in the first column and the corresponding
anomaly scores in the second column. For point anomalies, the
anomaly scores exhibit sharp increases at the anomalous point,
indicating that the anomalies in the time series are detected suc-
cessfully by the difference between reconstructed and actual values.
For subsequence anomalies (see Figure 9), the anomaly scores re-
main elevated across the anomalous time interval, showing strong
sensitivity to the boundaries of subsequence anomalies. Overall,
the case study exemplifies how DESS can accurately identify point
anomalies, escaping from specific anomalies, showing its practical-
ity in real-world scenarios.
Table 3: Effect of Different Streaming TSAD Strategies
Dataset MSL PSM SMAP
Metric Aff-F VUS-PR Aff-F VUS-PR Aff-F VUS-PR
DESS 0.3934 0.5967 0.4158 0.7084 0.3385 0.5826
OneForAll 03899 0.5849 0.3564 0.6808 03145 0.5709
Finetune 0.3394 0.5254 0.3891 0.6713 0.3093 0.5684
Replay 0.3330 0.5000 0.3289 0.6964 0.3062 0.5519
Retrain 0.3327 0.5256 0.4055 0.6849 0.3185 0.5691
5.2.6 Effect of Different Streaming TSAD Strategies. We propose
data-efficient streaming TSAD based on evolving proxy generation.
To evaluate the performance of training on streaming time series,
we use four representative training strategies to replace the evolving
proxy generation on MSL, PSM, and SMAP: 1). OneForAll: Trains
a model with MSL and then perform TSAD on all datasets; 2).
Finetune: Trains an initial model on MSL. Then, we repeatedly
sample 500 time series from other datasets to fine-tune the initial
model; 3). Replay: Fuses the 500 historical time series, which are
stored in a replay buffer, with the current training data to train
DESS; 4). Retrain: Trains a model using all available datasets.
Table 3 shows the results on MSL, PSM, and SMAP. Generally,
DESS performs best among the five methods, showing the bene-
fits of the evolving proxy mechanism. Specifically, DESS outper-
forms Retrain by 6.07% and 7.11% in terms of Aff-F and VUS-PR on
MSL, respectively. Further, compared to Replay, DESS obtains Aff-F
and VUS-PR improvement by up to 6.04% and 9.67% on MSL, re-
spectively. The results indicate that the evolving proxy generation
mechanism and the parameter-efficient training effectively preserve
essential temporal features and mitigate catastrophic forgetting,
enabling effective streaming TSAD. Additionally, the simple Fine-
tune strategy is insufficient for effective streaming TSAD, as it has
forgetting problems. DESS achieves relatively stable performance
on all datasets. Additional results on VUS-ROC and ROC-AUC are
provided in Appendix A.4.

5.2.7 Resource Efficiency Comparison. We conduct the following
resource-efficiency experiments referring to TimeEmb [46], with
additional experiments in the Appendix. We adopt TranAD and
UniTS for brevity due to their outstanding performance.

Qing Wei et al.

GFLOPS-SMD 105
GFLOPS-UCR

1700 N Time-SMD Memory-SMD 8000 0.1807 M Parameter-SMD
Time-UCR Memory-UCR Parameter-UCR

GFLOPS

&\ A \Y] S S ¢ A D 55 S
w\a\\“‘ q\w\”ﬂ \w\\”‘\“&\l" R w\c\\)“ @Q\“ Q@\\”‘\ Pty RO o

(a) Training Time and Memory (b) Parameter and GFLOPS
Figure 6: Resource Efficiency Comparison
Streaming Training Time and Memory. We compare the stream-
ing training time (per epoch) and GPU memory consumption of
DESS, Finetune, Replay, Retrain, TranAD, and UniTS on SMD —
UCR. The results are shown in Figure 6a. We observe that DESS
achieves training times comparable to those of existing methods on
the initial dataset, SMD, and that its training time is reduced on the
streaming dataset, UCR. This is because of the parameter-efficient
training scheme, which freezes the majority of parameters, acceler-
ating the streaming training. DESS exhibits similar GPU memory
usage with Finetune, Replay, and Retrain. We note two exceptions:
UniTS achieves less training GPU memory on SMD and UCR, but
UniTS is also much less accurate. Further, it is clear that DESS uses
fewer resources than the most competing baseline, TranAD, on
streaming data. More specifically, DESS reduces the training time

by 64.88% compared to TranAD on UCR.

Parameters and Computational Cost. We study the number of
parameters and computational costs on SMD — UCR. We use Giga
Floating-point Operations Per Second (GFLOPS) to quantify the
computational costs. The results are shown in Figure 6b. Generally,
DESS has the fewest parameters and low computational costs, while
the other methods fail to obtain a good balance between these
two costs. Although TranAD has fewer GFLOPS and very similar
numbers of parameters, it performs worse than DESS in handling
streaming data. The low computational costs and few parameters
of DESS are due to the data-efficient proxy generation mechanism.
The results indicate the feasibility and scalability of DESS for model
deployment in real-world streaming TSAD scenarios.

6 Conclusion

We present DESS, a novel data-efficient streaming TSAD frame-
work that features evolving proxy generation. To capture intricate
temporal correlations, DESS is equipped with a semantics-aware
feature extraction module featuring stacked TCOperators and cross-
modality query and residual fusion. Additionally, DESS comes with
an evolving proxy generation module that summarizes historical
data to preserve historical knowledge and avoid catastrophic forget-
ting. Further, to enable efficient TSAD, DESS employs data-efficient
task-specific refinement and parameter-efficient training, which
is able to reduce memory and computational overhead substan-
tially. Extensive experiments on real-world datasets offer evidence
that DESS is able to advance the state-of-the-art in detection perfor-
mance in both streaming single-domain and cross-domain scenarios
while consuming fewer computational resources.

Acknowledgments

This work is partially supported by NSFC (No. 62472068), Municipal
Government of Quzhou under Grant (No. 2024D036), and DFF Inge
Lehmann grant (No. 4303-00014).

Evolving Proxy Kills Drift: Data-Efficient Streaming Time Series Anomaly Detection

References
[1] Paul Boniol, Ashwin K Krishna, Marine Bruel, Qinghua Liu, Mingyi Huang,

[12

[13

[14

[15

[16

[17

[18
[19
[20
[21

[22

[23

[24

[25

[26

[27

[28

]

]

]

]

]

]

]

Themis Palpanas, Ruey S Tsay, Aaron Elmore, Michael J Franklin, and John
Paparrizos. 2025. VUS: effective and efficient accuracy measures for time-series
anomaly detection. VLDBJ 34, 3 (2025), 32.

Paul Boniol and Themis Palpanas. 2020. Series2Graph: Graph-based Subsequence
Anomaly Detection for Time Series. PVLDB 13, 11 (2020), 1821-1834.

Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J Franklin. 2021.
Sand in action: subsequence anomaly detection for streams. PVLDB 14, 12 (2021),
2867-2870.

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and J6érg Sander. 2000.
LOF: identifying density-based local outliers. In SIGMOD. 93-104.

Yingyi Bu, Tat-Wing Leung, Ada Wai-Chee Fu, Eamonn Keogh, Jian Pei, and Sam
Meshkin. 2007. WAT: Finding top-k discords in time series database. In SDM.
449-454.

Badrish Chandramouli and Jonathan Goldstein. 2017. Shrink: Prescribing re-
siliency solutions for streaming. PVLDB 10, 5 (2017), 505-516.

He Cheng, Depeng Xu, and Shuhan Yuan. 2025. Backdoor Attack against Log
Anomaly Detection Models. In WWW. 915-918.

Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, and
Shirui Pan. 2022. Triformer: Triangular, Variable-Specific Attentions for Long
Sequence Multivariate Time Series Forecasting. In IJCAL 1994-2001.

Yuchen Fang, Hao Miao, Yuxuan Liang, Liwei Deng, Yue Cui, Ximu Zeng, Yuyang
Xia, Yan Zhao, Torben Bach Pedersen, Christian S. Jensen, Xiaofang Zhou, and Kai
Zheng. 2026. Unraveling Spatio-Temporal Foundation Models Via the Pipeline
Lens: A Comprehensive Review. TKDE (2026), 1-24.

Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri, and Asterios Katsifodimos.
2024. A survey on the evolution of stream processing systems. VLDBJ 33, 2
(2024), 507-541.

Shanghua Gao, Teddy Koker, Owen Queen, Tom Hartvigsen, Theodoros
Tsiligkaridis, and Marinka Zitnik. 2024. UniTS: A unified multi-task time series
model. NeurIPS 37 (2024), 140589—-140631.

Xiao Han, Chen Zhu, Hengshu Zhu, and Xiangyu Zhao. 2025. Swarm intelligence
in geo-localization: A multi-agent large vision-language model collaborative
framework. In SIGKDD. 814-825.

Neil D Hargreaves and Andrew J Calvert. 1991. Inverse Q filtering by Fourier
transform. Geophysics 56, 4 (1991), 519-527.

Min Hou, Chang Xu, Zhi Li, Yang Liu, Weiqing Liu, Enhong Chen, and Jiang
Bian. 2022. Multi-granularity residual learning with confidence estimation for
time series prediction. In WWW. 112-121.

Sihao Hu, Tiansheng Huang, Ka-Ho Chow, Wengi Wei, Yanzhao Wu, and Ling
Liu. 2024. Zipzap: Efficient training of language models for large-scale fraud
detection on blockchain. In WWW. 2807-2816.

Alexis Huet, Jose Manuel Navarro, and Dario Rossi. 2022. Local evaluation of
time series anomaly detection algorithms. In SIGKDD. 635-645.

Duc Kieu, Tung Kieu, Peng Han, Bin Yang, Christian S. Jensen, and Bac Le. 2024.
TEAM: Topological Evolution-Aware Framework for Traffic Forecasting. PVLDB
18, 2 (2024), 265-278.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, , et al. 2017. Overcoming
catastrophic forgetting in neural networks. PNAS 114, 13 (2017), 3521-3526.
Guoliang Li, Xuanhe Zhou, and Xinyang Zhao. 2024. LLM for Data Management.
PVLDB 17, 12 (2024), 4213-4216.

Weihe Li and Paul Patras. 2024. Stable-sketch: A versatile sketch for accurate,
fast, web-scale data stream processing. In WWW. 4227-4238.

Yiming Li, Yanyan Shen, and Lei Chen. 2022. Camel: Managing data for efficient
stream learning. In SIGMOD. 1271-1285.

Chenxi Liu, Kethmi Hirushini Hettige, Qianxiong Xu, Cheng Long, Shili Xiang,
Gao Cong, Ziyue Li, and Rui Zhao. 2025. ST-LLM+: Graph Enhanced Spatio-
Temporal Large Language Models for Traffic Prediction. TKDE 01 (2025), 1-14.
Chenxi Liu, Qianxiong Xu, Hao Miao, Sun Yang, Lingzheng Zhang, Cheng Long,
Ziyue Li, and Rui Zhao. 2025. Timecma: Towards llm-empowered multivariate
time series forecasting via cross-modality alignment. In AAAI Vol. 39. 18780—
18788.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In ICDM.
413-422.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and
Mingsheng Long. 2024. iTransformer: Inverted Transformers Are Effective for
Time Series Forecasting. In ICLR.

Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, Puneet Agarwal, et al. 2015. Long
short term memory networks for anomaly detection in time series. In Proceedings,
Vol. 89. 94.

Hao Miao, Zigiao Liu, Yan Zhao, Chenjuan Guo, Bin Yang, Kai Zheng, and
Christian S. Jensen. 2024. Less is more: Efficient time series dataset condensation
via two-fold modal matching. PVLDB 18, 2 (2024), 226-238.

Hao Miao, Ronghui Xu, Yan Zhao, Senzhang Wang, Jianxin Wang, Philip S Yu,
and Christian S. Jensen. 2025. A Parameter-Efficient Federated Framework for
Streaming Time Series Anomaly Detection via Lightweight Adaptation. TMC 01

[29

[30

[31

[33

[34

[35

[36

@
=

(38

[39

[40

[41

=
)

[43

[44

[45

[46

[47

[48

[49

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

(2025), 1-14.

Hao Miao, Yan Zhao, Chenjuan Guo, Bin Yang, Kai Zheng, Feiteng Huang, Jian-
dong Xie, and Christian S. Jensen. 2024. A unified replay-based continuous
learning framework for spatio-temporal prediction on streaming data. In ICDE.
1050-1062.

Yugqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. 2023.
A Time Series is Worth 64 Words: Long-term Forecasting with Transformers. In
ICLR.

John Paparrizos, Paul Boniol, Themis Palpanas, Ruey S Tsay, Aaron Elmore, and
Michael J Franklin. 2022. Volume under the surface: a new accuracy evaluation
measure for time-series anomaly detection. PVLDB 15, 11 (2022), 2774-2787.
John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S Tsay, Themis Palpanas, and
Michael J Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate
time-series anomaly detection. PVLDB 15, 8 (2022), 1697-1711.

Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu, and Bin Yang.
2025. DUET: Dual Clustering Enhanced Multivariate Time Series Forecasting. In
SIGKDD. 1185-1196.

Sebastian Schmidl, Felix Naumann, and Thorsten Papenbrock. 2024. AutoTSAD:
Unsupervised Holistic Anomaly Detection for Time Series Data. PVLDB 17, 11
(2024), 2987-3002.

Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly
detection in time series: a comprehensive evaluation. PVLDB 15, 9 (2022), 1779—
1797.

Pavel Senin, Jessica Lin, Xing Wang, Tim Oates, Sunil Gandhi, Arnold P Boedi-
hardjo, Crystal Chen, and Susan Frankenstein. 2015. Time series anomaly dis-
covery with grammar-based compression.. In EDBT. 481-492.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. 2018. Over-
coming catastrophic forgetting with hard attention to the task. In ICML. 4548—
4557.

Kai Sheng Tai, Vatsal Sharan, Peter Bailis, and Gregory Valiant. 2018. Sketching
linear classifiers over data streams. In SIGMOD. 757-772.

David MJ Tax and Robert PW Duin. 2004. Support vector data description.
Machine learning 54 (2004), 45-66.

Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. 2022. TranAD: deep
transformer networks for anomaly detection in multivariate time series data.
PVLDB 15, 6 (2022), 1201-1214.

Zhuoyi Wang, Yugiao Chen, Chen Zhao, Yu Lin, Xujiang Zhao, Hemeng Tao,
Yigong Wang, and Latifur Khan. 2021. CLEAR: Contrastive-Prototype Learning
with Drift Estimation for Resource Constrained Stream Mining. In WWW. 1351-
1362.

Zexin Wang, Changhua Pei, Minghua Ma, Xin Wang, Zhihan Li, Dan Pei, Saravan
Rajmohan, Dongmei Zhang, Qingwei Lin, Haiming Zhang, et al. 2024. Revisiting
vae for unsupervised time series anomaly detection: A frequency perspective. In
WWW. 3096-3105.

Shmuel Winograd. 1978. On computing the discrete Fourier transform. Mathe-
matics of computation 32, 141 (1978), 175-199.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. 2021. Autoformer: De-
composition transformers with auto-correlation for long-term series forecasting.
NeurlIPS 34 (2021), 22419-22430.

Renjie Wu and Eamonn J Keogh. 2021. Current time series anomaly detection
benchmarks are flawed and are creating the illusion of progress. TKDE 35, 3
(2021), 2421-2429.

Mingyuan Xia, Chunxu Zhang, Zijian Zhang, Hao Miao, Qidong Liu, Yuanshao
Zhu, and Bo Yang. 2025. TimeEmb: A Lightweight Static-Dynamic Disentangle-
ment Framework for Time Series Forecasting. In NeurIPS.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. 2022. Anomaly
Transformer: Time Series Anomaly Detection with Association Discrepancy. In
ICLR.

Ronghui Xu, Hao Miao, Senzhang Wang, Philip S Yu, and Jianxin Wang. 2024.
PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly
Detection. In SIGKDD. 3621-3632.

Yiyuan Yang, Chaoli Zhang, Tian Zhou, Qingsong Wen, and Liang Sun. 2023.
DCdetector: Dual Attention Contrastive Representation Learning for Time Series
Anomaly Detection. In SIGKDD. 3033-3045.

Zahra Zamanzadeh Darban, Geoffrey I Webb, Shirui Pan, Charu Aggarwal, and
Mahsa Salehi. 2024. Deep learning for time series anomaly detection: A survey.
CSUR 57, 1 (2024), 1-42.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. 2023. Are transformers
effective for time series forecasting?. In AAAIL Vol. 37. 11121-11128.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. 2021. Informer: Beyond efficient transformer for long se-
quence time-series forecasting. In AAAI Vol. 35. 11106-11115.

Tian Zhou, Ziging Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. 2022.
FEDformer: Frequency enhanced decomposed transformer for long-term series
forecasting. In ICML. 27268-27286.

WWW °26, April 13-17, 2026, Dubai, United Arab Emirates

A Appendix

A.1 More Details About Semantics-Aware
Feature Extraction

Algorithm 1 shows the process of semantics-aware feature ex-
traction. We first input decomposed time series into the stacked
TCOperator(-) for feature extraction (lines 1-8). Then, the extracted
features are fed into cross-modality query and residual fusion
(line 9) to obtain the aligned features (lines 10-11).

Algorithm 1: Semantics-Aware Feature Extraction

Input: a batch of decomposed time series: T5, T¢

P’ “trend’
Tseasons the number of TCOperators: Nop.
. . (4 C
Output: extracted features: H o H b5
1 for1 <c<Cdo
0 .10 10)
2 hP < T[f’ ht — T[Crgnd’ hs — Tsceason’
3 for 1 < ngp < Nyp do
n nep—1
4 hye = TCOperator(h,” 1);
5 h?zp = TCOperator(h';a’7);
op—1
6 hs¥ = TCOperator(hy™ ");
ny Nop-1 Mo Nop-1 ny, Nop-1
7L hp,g - hP,Cp ;ht,cp ht,cp ;hs,cp — hs,cp 5

s Hp, Hy, Hy — Concatenate {hpc} . {hec} ;. {hsc}S,
along the channel;

9 Hgys, Hys — Cross-modality residual query with Equation 4;

10 R;, Ry < Residual calculation with Equation 5;

11 Hp, Hfg < Residual projection with Equation 6;

12 return Hjﬁ[HCS

A.2 Additional Experimental Setup

A.2.1 Datasets. Dataset statistics are provided in Table 4.

o SMAP. The SMAP dataset provides 25-dimensional time series
capturing the behavior of satellite subsystems during nominal
operations and fault episodes.

e PSM. The PSM dataset is collected from eBay’s internal sys-
tems, including 25-dimensional multivariate time series showing
server resource usage such as CPU, memory, and I/O.

e MSL. The MSL dataset contains time series of spacecraft teleme-
try from the Curiosity rover of NASA, where anomalies are
denoted as mission incident reports.

e SWaT. The cyber-physical SWaT dataset is collected from a
water treatment testbed with 51 sensors, where anomalies denote
cyber-attacks under continuous control operations.

e SMD. The SMD dataset is collected from a server monitoring In-
ternet company, including 38-dimensional time series and anom-
alies reflecting system faults and service degradation.

e UCR. The UCR dataset includes a wide range of domains, such
as human activity recognition, sensor networks, and financial
data.

A.2.2 Implementation Details. We implement our method using
the PyTorch framework and use an NVIDIA RTX 3080 GPU for the
experiments. Adam is adopted as the optimizer, where we set the
weight decay to le-4 and the learning rate to 1e-4. The number of

Table 4: Dataset Statistics

Qing Wei et al.

Datasets Dimension Window # Train # Test Anomaly (%)

SMAP 25 100 135,183 427,617 12.79%
PSM 25 100 132,481 87,841 27.76%
MSL 55 100 58,317 73,729 10.53%
SWaT 51 100 495,000 449,919 12.14%
SMD 38 100 708,405 708,420 4.16%
UCR 1 100 35,000 44,795 1.47%
s EEE AffF 100 AP
VUS-ROC VUS-ROC

986 g 9%

584 é 30

£82 £ 7

& g0 £ 60
8 R < o R . &© o@% 50 © o o ‘ogo 0%3%

SO et Rl W oo Rl
(a) MSL (b) UCR

Figure 7: Ablation Study Results of DESS and Its Variants

TCOperator layers is 3. The number of heads in the self-attention
layer is set to 8. We set the hidden states of TCOperator and the
Cross-modality Query module to 512 and 512, respectively. An input
length of 100 for all methods and on all datasets. We use Top-10
sampling for frequency decomposition. A non-overlapping sliding
window of length 100 is applied, followed by standardization using
StandardScaler. To enable fairness, we set the threshold r following
existing studies [47, 48]. The parameters of the baseline methods
are set according to the configurations used in the original papers
and any accompanying code.

A.2.3 Streaming TSAD Settings. We conduct experiments for stream-
ing TSAD with single-domain and cross-domain time series to
assess the performance of baselines in dealing with intra- and
inter-domain shift. For single-domain TSAD, we divide each of
the datasets SMAP, PSM, MSL, SWaT, and SMD into three sequen-
tial sub-datasets. UCR is split into two sub-datasets due to its sparse
anomalies. We input these sub-datasets in chronological order to
perform single-domain streaming TSAD. In cross-domain TSAD, we
input selected datasets sequentially, achieving a streaming setting.
For brevity, we report average results.

A.2.4 Training Process. To enable fair comparisons among the
baseline methods (except SAND), we map their original training
process into a streaming TSAD process. For example, given the two
sequential datasets SMAP and PSM, we first train the baselines on
SMAP and then re-train a new model 6y, on PSM based on the
last learned model 6,,;;. We then use the new model 8., for testing
on both datasets.

A.3 Additional Experimental Results on
Streaming Single-domain Time Series

A.3.1 Additional Ablation Results on MSL and UCR. Figure 7 shows

the results on MSL and UCR. Similar to SMAP and PSM, DESS

achieves the best performance across variants, confirming that

each component contributes to overall effectiveness. The observed
gains in Aff-F and VUS-ROC further highlight the robustness of

Evolving Proxy Kills Drift: Data-Efficient Streaming Time Series Anomaly Detection

9 9
0\07/40—'/4 ’—/\.\‘
86 86
o |53
g |l 2
< 7 <
g7 ——ALF g” —— AREF
£
< 68 VUS-PR s VUS-PR
B —— VUS-ROC] s —— VUS-ROC
59 59
i 3 3 P! 3 305 3 3 7 3
Layers Layers
(a) SMD (b) UCR
9 1
0”’%
W/A‘\o—/\
W8 L
S Q
g 2 ,’__4—/\ 2 0
£ —— AffF g ALLF
g
g 71 VUS-PR Lg 70 VUS-PR
—+— VUS-ROC —_— 5
5 US-ROC B VUS-ROC
63 60
5 38 25 512 768 61 138 256 512 768

Hidden states Hidden states

(c) SMD (d) UCR
Figure 8: Parameter Sensitivity Analysis on SMD and UCR

both the evolving proxy mechanism and the TCO module across
diverse datasets.

A.3.2 Effect of the Number of TCOperators. We report the effect
of the number of TCOperator layers on model performance in Fig-
ures 8a and 8b. Specifically, we vary the number of layers from 1 to
5. We observe that the effect varies across datasets. For example,
the Aff-F curve first increases, then drops suddenly, and finally
increases slightly on SMD. However, on UCR, the Aff-F curve first
decreases slightly, then peaks when the number of layers is set to
3, and finally drops. This shows that too many TCOperator layers
degrade the model performance on SMD. This is because deeper
networks may result in overfitting, reducing model performance.
Overall, the model offers acceptable performance when we set the
number of TCOperators to 3 on both datasets, and we conclude that
3 TCOperators layers is an appropriate setting for DESS.

A.3.3 Effect of Hidden States. Next we study the sensitivity to
the hidden state size of TCOperators on SMD and UCR. We report
the results in Figures 8c and 8d, varying the number of hidden
states from 64 to 768. We observe that the model achieves the
best performance with 512 hidden states. In addition, when the
number of hidden states increases, the model first performs better
and then performs worse in terms of Aff-F, VUS-PR, and VUS-ROS
on SMD because more hidden states result in dimensional collapse,
degrading performance. Further, one can see that DESS achieves
stable performance on UCR in terms of VUS-PR and VUS-ROC,
indicating the robustness of DESS.

Subsequence Anomalies

6.6 4 N 10 Anomaly Score

Input Series 0.8
5.1 G d Truth : Ground Truth

lz) 35 roun Tu g 0.6
s 204
0.2

. 0.0+ |

0 25 50 75 100 0 25 50 75 100
Time Time

Figure 9: Case Study on SMD

A.3.4 Additional Case Study on SMD. Figure 9 shows the case
study for subsequence anomalies detection. The results demonstrate
how DESS effectively distinguishes between normal and anomalous

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

Table 5: Effect of Different Streaming TSAD Strategies on
Three Datasets

Dataset MSL PSM SMAP
Metric VUS-ROC ROC-AUC VUS-ROC ROC-AUC VUS-ROC ROC-AUC
DESS 0.5707 0.7786 0.5944 0.8801 0.5494 0.7625
OneForAll 0.5611 0.7429 0.5844 0.8652 0.5018 0.7383
Finetune 0.5186 0.5680 0.5601 0.8209 0.5082 0.7392
Replay 0.5183 0.5663 0.5825 0.8461 0.5179 0.7204
Retrain 0.5184 0.5663 0.5709 0.8249 0.5174 0.7453

patterns in the time series, confirming its practical applicability in
real-world scenarios.

Table 6: Historical Data Storage Comparison (MB)
DESS Finetune Replay Retrain TranAD UniTS

Dataset

SMD— UCR 0.06 0.19 0.19 102.69 102.69 102.70
MSL— PSM 0.08 477 4.77 2447 2447 2447
MSL—PSM—SMAP 0.04 9.54 9.54 85.15 85.15 85.15

A.4 Additional Results of Different Streaming
TSAD Strategies

Table 5 presents the results on VUS-ROC and ROC-AUC. Consistent
with the main paper, DESS achieves superior performance across
datasets, further confirming its stability and robustness in streaming
TSAD.

A.5 Additional Results of Resource Efficiency
Comparison

Historical Data Volume. As the volume of historical time series
is a main concern in streaming TSAD, we report the storage costs
of DESS, Finetune, Replay, Retrain, TranAD, and UniTS in Table 6.
Generally, DESS reduces the storage substantially compared with
the other methods. For example, the storage of DESS is only 1.68% of
that of Finetune on MSL — PSM. This is because of the lightweight
data-efficient proxy generation mechanism in DESS. It only needs
a batch of synthetic time series to summarize the historical data.
Thus, DESS enables much lower storage volumes while achieving
better performance at streaming TSAD.

A.6 Non-streaming TSAD Performance

To achieve a comprehensive comparison, we conduct experiments
for non-streaming TSAD. We follow experimental settings of ex-
isting studies [40, 48], ensuring fairness. The results are given in
Table 7. Overall, DESS has the best performance except for VUS-PR
on SMD, indicating its stable and outstanding performance. In par-
ticular, DESS performs better than the best among the baselines by
up to 9.35% and 6.84% in terms of Aff-F and VUS-PR, respectively. In
addition, DESS outperforms baselines by 9.35% and 1.40% in terms
of Aff-F and ROC-AUC on PSM, respectively, and by 6.84% and
6.24% in terms of VUS-PR and VUS-ROC on UCR, respectively. In
addition to the results in Table 1, we observe that the performance
improvements by DESS on streaming TSAD are higher than those
in non-streaming settings. This indicates that DESS is capable of
alleviating the concept drift and the resulting catastrophic forget-
ting, which is attributed to the proposed evolving proxy generation
mechanism. Overall, the experimental results in Tables 1, 2, and 7

WWW °26, April 13-17, 2026, Dubai, United Arab Emirates

Qing Wei et al.

Table 7: Non-streaming TSAD Performance Comparison on Six Datasets

Dataset Metric DESS OCSVM IF LOF S2G SAND TranAD Autoformer Informer FEDformer iTransformer PatchTST Dlinear AnoTrans DCDetector UniTS
Aff-F 0.4473 0.3500 0.3065 0.3421 0.0682 0.1852 0.3057 0.3291 0.3162 0.3263 0.2443 0.2992 0.3106 0.4243 0.4213 0.2757

SMAP VUS-PR 0.6432 0.1868 0.1369 0.3731 0.5185 0.5587 0.5769 0.5868 0.5801 0.5835 0.5759 0.5931 0.5815 0.6104 0.5524 0.5802
VUS-ROC 0.6110 0.4862 0.4837 0.5636 0.5060 0.5024 0.5425 0.5525 0.5455 0.5496 0.5336 0.5550 0.5450 0.6034 0.5179 0.5380
ROC-AUC 0.8489 0.3352 0.6420 0.6259 0.7421 0.7354 0.7591 0.7726 0.7617 0.7628 0.7595 0.7706 0.7616 0.8272 0.5790 0.7718

Aff-F 0.6245 0.4352 0.3888 0.3942 0.2224 0.2817 0.5097 0.4090 0.4690 0.4087 0.5310 0.5113 0.5071 0.5028 0.3840 0.4313

PSM VUS-PR 0.7151 0.4295 0.4695 0.6401 0.6181 0.5573 0.7042 0.7058 0.7071 0.6884 0.6508 0.6847 0.6726 0.6504 0.6993 0.6942
VUS-ROC 0.6038 0.5046 0.5275 0.5016 0.5263 0.5792 0.5877 0.5944 0.6021 0.5944 0.5879 0.5936 0.5967 0.5582 0.5866 0.5970
ROC-AUC 0.9091 0.6086 0.7135 0.7303 0.8914 0.8893 0.8872 0.8801 0.8951 0.8801 0.8963 0.8613 0.8927 0.8714 0.8535 0.8728

Aff-F 0.3929 0.2883 0.2751 0.3004 0.0702 0.2998 0.3700 0.3719 0.3846 0.3729 0.3773 0.3843 0.3101 0.3824 0.2668 0.2089

MSL VUS-PR 0.6048 0.2455 0.2234 0.2991 0.5547 0.5185 0.5850 0.5933 0.5940 0.5836 0.5819 0.5902 0.5655 0.5492 0.5441 0.5455
VUS-ROC 0.5772 0.5406 0.5324 0.5619 0.5160 0.4718 0.5609 0.5575 0.5568 0.5657 0.5684 0.5455 0.5348 0.5292 0.5136 0.5284
ROC-AUC 0.8070 0.5682 0.6126 0.5560 0.6792 0.5906 0.7434 0.7717 0.7724 0.7874 0.7877 0.7987 0.7681 0.7734 0.5212 0.6988

Aff-F 0.4757 0.3938 0.3632 0.3946 0.2970 0.3193 0.0046 0.0078 0.1659 0.0269 0.4032 0.4200 0.3998 0.4640 0.3003 0.3818

SWaT VUS-PR 0.5741 0.5176 0.5255 0.5654 0.5224 0.4639 0.5649 0.5653 0.5531 0.5469 0.5046 0.5247 0.5331 0.5499 0.5529 0.5253
VUS-ROC 0.5146 0.4799 0.4813 0.5097 0.4845 0.5134 0.5038 0.5042 0.4954 0.5060 0.4961 0.4674 0.4946 0.5049 0.5023 0.4725
ROC-AUC 0.8426 0.7354 0.7311 0.7459 0.8224 0.7903 0.8277 0.8278 0.8238 0.8281 0.7945 0.7949 0.8245 0.8249 0.5081 0.8175

Aff-F 0.7614 0.5265 0.5499 0.4821 0.5769 0.6357 0.6423 0.6430 0.6424 0.6428 0.7390 0.7359 0.7385 0.7435 0.5967 0.6344

SMD VUS-PR 0.5863 0.2117 0.2299 0.4811 0.0301 0.2201 0.5538 0.5551 0.5541 0.5550 0.5479 0.5086 0.5058 0.6939 0.4703 0.6022
VUS-ROC 0.6682 0.5751 0.5912 0.5950 0.4798 0.5376 0.6124 0.6425 0.6424 0.6425 0.6534 0.6465 0.6463 0.6525 0.5788 0.6481
ROC-AUC 0.8520 0.6257 0.6751 0.6454 0.4967 0.7919 0.8222 0.8223 0.8222 0.8223 0.8412 0.8442 0.8393 0.8406 0.7796 0.8334

Aff-F 0.2814 0.1288 0.1531 0.1444 0.0926 0.0785 0.0190 0.1461 0.1375 0.2577 0.0420 0.0841 0.0286 0.2619 0.2509 0.1172

UCR VUS-PR 0.5757 0.1265 0.1973 0.0383 0.3667 0.3021 0.0098 0.4973 0.4651 0.4805 0.3991 0.4058 0.3986 0.5073 0.4935 0.4148
VUS-ROC 0.6767 0.5455 0.6027 0.5046 0.5328 0.4386 0.4982 0.5836 0.5498 0.5795 0.5132 0.5144 0.5121 0.6143 0.6059 0.5528
ROC-AUC 0.9386 0.5588 0.5925 0.5100 0.9089 0.8906 0.4979 0.9091 0.9090 0.9157 0.9181 0.9088 0.9081 0.9108 0.9097 0.8973

offer evidence that DESS is more effective than existing methods in
both streaming and non-streaming scenarios.

Table 8: Precision, Recall, and F1 Score Comparison on SMD
(Single-domain)

Metric DESS TranAD Informer DCDetector UniTS
Precision 0.3659 0.3021 0.3104 0.3002 0.3114
Recall 0.9969 0.9492 0.9551 0.9206 0.9843
F1 Score 0.5353 0.4498 0.4685 0.4467 0.4732

A.7 Performance Comparison with Additional
Evaluation Metrics

In addition to the advanced evaluation metrics, i.e., Aff-F, VUS-
PR, and VUS-ROC, classic metrics, including Precision, Recall, and
F1 Score, are also important when assessing the effectiveness of
DESS [3, 48]. We conduct experiments on both single-domain and
cross-domain streaming TSAD. We select 4 competitive baselines,
and report the results in Tables 8 and 9. Overall, regardless of the

experimental setting, DESS has the best performance, indicating
stable and superior performance. In single-domain streaming TSAD,
UniTS achieves the best performance among the baselines, while
DESS performs better than UniTS by 5.45% and 6.21% in terms of
Precision and F1 Score, respectively. In addition, in cross-domain
streaming TSAD, UniTS performs the best among the baselines on
the streaming dataset UCR due to its multi-task learning capabilities.
DESS performs better than UniTS by up to 9.49%, showing the best
performance consistently.

Table 9: Precision, Recall, and F1 Score Comparison on SMD
— UCR (Cross-domain)

Dataset Metric DESS TranAD Informer DCDetector UniTS

Precision 0.7983 0.7785 0.7566 0.7619 0.7102
SMD Recall 0.6713 0.6526 0.6473 0.5426 0.6230
F1 Score 0.7293 0.7100 0.6976 0.6338 0.6638
Precision 0.7379 0.0597 0.6344 0.5737 0.6430
UCR Recall 0.8818 0.3252 0.8572 0.8625 0.8679
F1 Score 0.8034 0.1009 0.7292 0.6891 0.7387

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Methodology
	4.1 Dual-decomposition Data Preprocessing
	4.2 Semantics-Aware Feature Extraction
	4.3 Evolving Proxy Generation
	4.4 Task-specific Refinement
	4.5 Parameter-efficient Training

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 More Details About Semantics-Aware Feature Extraction
	A.2 Additional Experimental Setup
	A.3 Additional Experimental Results on Streaming Single-domain Time Series
	A.4 Additional Results of Different Streaming TSAD Strategies
	A.5 Additional Results of Resource Efficiency Comparison
	A.6 Non-streaming TSAD Performance
	A.7 Performance Comparison with Additional Evaluation Metrics

