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ABSTRACT
Recommender systems have shown great potential to solve the

information explosion problem and enhance user experience in

various online applications. To tackle data sparsity and cold start

problems in recommender systems, researchers propose knowledge

graphs (KGs) based recommendations by leveraging valuable exter-

nal knowledge as auxiliary information. However, most of these

works ignore the variety of data types (e.g., texts and images) in

multi-modal knowledge graphs (MMKGs). In this paper, we propose

Multi-modal Knowledge Graph Attention Network (MKGAT) to

better enhance recommender systems by leveraging multi-modal

knowledge. Specifically, we propose a multi-modal graph attention

technique to conduct information propagation over MMKGs, and

then use the resulting aggregated embedding representation for

recommendation. To the best of our knowledge, this is the first

work that incorporates multi-modal knowledge graph into recom-

mender systems. We conduct extensive experiments on two real

datasets from different domains, results of which demonstrate that

our model MKGAT can successfully employ MMKGs to improve

the quality of recommendation system.

CCS CONCEPTS
• Information systems→ Recommender systems;
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1 INTRODUCTION
Recently, knowledge graphs (KGs) are widely used in recommender

systems (i.e., KG-based recommendation) due to their comprehen-

sive auxiliary data for effective recommendation [24, 28]. Specifi-

cally, the KG-based recommendation alleviates the sparsity problem

of user-item interactions and the cold start problem by introducing

high quality side information (KGs). These problems often arise in

Collaborative Filtering (CF) [11] based methods.

However, existing KG-based recommendation methods largely

ignore the multi-modal information, such as images and text de-

scriptions of items. Those visual or textual features may play a

significant role in recommendation systems. For instance, before

watching a movie, users tend to watch the trailer or read some

related film reviews. When going to a restaurant for dinner, users

normally browse the pictures of dishes or the reviews of the restau-

rant on some online platforms, such as Yelp
1
or Dianping

2
at

first. So it is necessary to introduce these multi-modal information

into knowledge graph. The benefit is that multi-modal knowledge

graphs (MKGs) introduce visual or textual information into the

knowledge graph, regarding image or text as an entity or as an

attribute of the entity. It is a more general way of acquiring external

multi-modal knowledge, without giving the expert definitions of

visual or textual information. A simple example of MKGs is shown

in the figure 1.

The knowledge graph representation learning plays a key role

for the KG-based recommendation. The KG-based recommendation

models usually use the knowledge graph representation model to

learn the embedding of the KGs entities, which are then fed into the

downstream recommendation task. There are two types of multi-

modal knowledge graph representation learning: the feature-based

methods and the entity-based methods.

The feature-based methods [17, 30] treat the modal information

as an auxiliary feature of the entity. It extends the translational

models (TransE) [2] by considering visual representations, which

are extracted from images corresponding to the knowledge graph

entities. The energy of a triple (e.g., the scoring function for triples

in TransE) is defined in terms of the structure of the KGs as well

1
https://www.yelp.com/
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Figure 1: Example of a multi-modal knowledge graph.

as the visual representation of the entities. However, the feature-

based methods pose relatively requirements on the data source

of the knowledge graph since it requires that every entity in the

knowledge graph has multi-modal information.

In order to address the strict requirement on KGs data source,

the entity-based methods [19] is proposed. The entity-based meth-

ods treat different types of information (e.g., texts and images) as

relational triples of the structured knowledge instead of auxiliary

features, i.e., first-class citizens of the knowledge graph. It intro-

duces visual and textual information by considering new relation,

such as ℎ𝑎𝑠𝐼𝑚𝑎𝑔𝑒 (denoting if an entity has image information)

and ℎ𝑎𝑠𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 (denoting if an entity has text information to

describe it). Then, the entity-based method processes each triple,

(ℎ, 𝑟, 𝑡), by independently applying translational models [2] or Con-

volutional Neural Network (CNN) based models [18] to learn the

knowledge graph embedding, where ℎ and 𝑡 denote a head and

tail entity respectively, 𝑟 is the relationship (e.g., ℎ𝑎𝑠𝐼𝑚𝑎𝑔𝑒 and

ℎ𝑎𝑠𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛) between ℎ and 𝑡 .

Although the entity-based methods solve the problem of high de-

mand for data sources ofMKGs in the feature-basedmethods, it only

focuses on the reasoning relation between entities and ignores the

multi-modal information fusion. In fact, multi-modal information is

usually used as an auxiliary information to enrich the information

of other entities. Therefore, we need a direct interactive way to

explicitly fuses the multi-modal information into its corresponding

entity before modeling the reasoning relation between the entities.

Considering the limitations of the existing solutions, we believe

it is essential to develop a MKGs representation model that can

exploit MKGs in an efficient manner. Specifically, the model should

satisfy two conditions: 1) low requirements for MKGs data sources,

2) multi-modal information fusion is considered while preserving

the reasoning relation between entities. Towards this end, we follow

the entity-based methods to construct the multi-modal knowledge

graph. And then, we propose Multi-modal Knowledge Graph Atten-

tion Network (MKGAT), which models the multi-modal knowledge

graph from two aspects: 1) entity information aggregation, which

aggregates the entity’s neighbor node information to enrich the

entity itself, 2) entity relation reasoning, which constructs reason-

ing relations by the scoring function of the triple (e.g., TransE). We

first propose a new method to improve the graph attention neural

network (GATs), which aggregates neighbor entities while taking

into account the relation in the knowledge graph to complete entity

information aggregation. And then we use a translational model to

model the reasoning relation between entities. A visible advantage

of our MKGAT model lies in that it does not require each entity

in the knowledge graph to have multi-modal information, which

means it has no particularly high requirements for knowledge graph

data. Besides, the MKGAT model does not process each knowledge

graph triple independently but aggregates the neighbor informa-

tion of the entity. As a result, it can learn the entity embedding that

fuses other modal information better. The primary contributions of

this work can be summarized as follows:

• To the best of our knowledge, this is the first work to intro-

duce amulti-modal knowledge graph into a recommendation

system.

• We develop a new MKGAT model, which employs informa-

tion propagation on the multi-modal knowledge graph, to

obtain better entity embedding for recommendation.

• Extensive experiments conducted on two large-scale real-

world datasets demonstrate the rationality and effectiveness

of our model.

The remainder of this paper is organized as follows. Section 2

surveys the related work. The preliminary concepts are introduced

in Section 3. We then present the MKGAT model in Section 4, fol-

lowed by the experimental results in Section 5. Section 6 concludes

this paper.

2 RELATEDWORK
In this section, we introduce existing works that are related to our

research, including multi-modal knowledge graph and KG-based

recommendation.

2.1 Multi-modal Knowledge Graphs
Multi-modal Knowledge Graphs (MKGs) enriches the types of

knowledge by introducing information of other modals into the tra-

ditional KGs. Entity images or entity description could provide sig-

nificant visual or textual information for knowledge representation

learning. Most conventional methods learn knowledge representa-

tions merely from structured triples, ignoring the variety of data

types (such as texts and images) that are often used in knowledge

base. Recently, several efforts have been made to explore the multi-

modal knowledge graph representation learning. These works have

proved that the multi-modal knowledge graph plays an impor-

tant role in knowledge graph completion and triple classification

[5, 17, 30]. From the perspective of knowledge graphs construc-

tion, multi-modal knowledge graph representation learning works

can be categorized into two types: features-based methods and

entity-based methods.

Features-based methods. [17, 30] treat multi-modal informa-

tion as auxiliary features of the entity. Thesemethods extend TransE

[2] by taking visual representations into account. The visual repre-

sentations can be extracted from images associated with the knowl-

edge graph entities. In these methods, the energy of a triple (e.g.,

the scoring function for triple in TransE) is defined in terms of the

structure of knowledge graph as well as visual representations of

entities, which means each entity must contain the image attribute.

However, in real scenes, some entities do not contain multi-modal

information. So this method cannot be widely used.



Entity-based methods. [19] treats different modal informa-

tion (e.g., texts and images) as relational triples of the structured

knowledge instead of predetermined features. In these works, multi-

modal information is considered as first-class citizens of the knowl-

edge graphs. And then entity-based methods use CNN-based KGE

method to train the knowledge graph embedding. Nevertheless,

existing entity-based methods process each triple independently

ignoring multi-modal information fusion, which is not friendly to

multi-modal tuples.

As multi-modal knowledge graph has only been introduced in

recent years, there are only limited research works in this direction.

2.2 KG-based Recommendation
Recently, some researches have attempted to leverage KGs structure

for recommendation, which can be categorized into three types,

embedding-based methods, path-based methods and unified meth-

ods.

Embedding-based methods. Embedding-based methods [23,

25, 27] first use KnowledgeGraph Embedding (KGE) [27] algorithms

to preprocess knowledge graph and then use the learned entity

embeddings in a recommendation framework, which unifies vari-

ous types of side information in the CF framework. Collaborative

Knowledge base Embedding (CKE) [35] combines a Collaborative

Filtering (CF) module with knowledge embedding, text embedding,

and image embedding of items in a unified Bayesian framework.

Deep Knowledge-based Network (DKN) [25] treats entity embed-

dings and word embeddings as different channels, and then uses

a Convolutional Neural Networks (CNN) framework to combine

them together for news recommendation.

Embedding-based methods show high flexibility in utilizing

knowledge graph to assist recommender systems, but the KGE

algorithms (translational models or CNN-based models) adopted in

these methods is not suitable for multi-modal tuples (The reason

is the same as the entity-based method in MKGs). In other words,

these methods are not friendly to multi-modal knowledge graphs.

Path-based methods. Path-based methods [33, 36] explore var-

ious patterns of connections among items in knowledge graph to

provide additional guidance for recommendations. For example, re-

garding knowledge graph as a Heterogeneous Information Network

(HIN), Personalized Entity Recommendation (PER) [33] and meta-

graph based recommendation [36] extract the meta-path/meta-

graph based latent features to represent the connectivity between

users and items along different types of relation paths/graphs.

Path-based methods make use of knowledge graph in a more nat-

ural and intuitive way, but they rely heavily on manually designed

meta-paths, which is hard to be optimized in practice. Another

concern is that it is impossible to design hand-crafted meta-paths

in certain scenarios where entities and relations do not belong to

one domain.

Unified methods. Embedding-based methods leverage the se-

mantic representations of entities in the KGs for recommendation,

while path-based methods use the patterns of connections among

entities in KGs. Both of them utilize only one aspect of information

in the KGs. To fully exploit the information in the KGs for better

recommendations, unified methods have been proposed, which

integrate the semantic representations of entities and relations, as

well as the patterns of connectivity information. However, unified

methods also depend on knowledge graph embedding technology.

Translational models are widely used for training knowledge graph

embeddings. Representative works includes attention-enhanced

knowledge-aware user preference model (AKUPM) [12] and knowl-

edge graph attention network (KGAT) [28]. They process each triple

independently without considering multi-modal information fu-

sion. Similar to embedding-based methods, Unified methods are

not friendly to multi-modal knowledge graphs.

3 PROBLEM FORMULATION

Toy Story

Tom Hanks

Walt Disney

John Lasseter

director actor

producer

Figure 2: Example of a knowledge graph.

In this section, we introduce a set of preliminary concepts, and

then formulate the task of multi-modal knowledge graph based

recommendation.

Definition 1 (Knowledge Graph). In order to improve the rec-
ommend performance, we consider side information of items in knowl-
edge graphs. Typically, such auxiliary data consists of real-world
entities and relationships among them to profile an item.

A Knowledge Graph (KG), 𝐺 = (𝑉 , 𝐸), is a direct graph, where 𝑉
denotes the node set and 𝐸 denotes the edge set. The nodes are entities
and edges are subject-property-object triple facts. Each edge belongs
to a relation type 𝑟 ∈ R, where R is a set of relation types. Each edge
in the form of (head entity, relation, tail entity) (denoted as (ℎ, 𝑟 , 𝑡),
where ℎ, 𝑡 ∈ 𝑉 , 𝑟 ∈ R) indicates a relationship of 𝑟 from head entity
ℎ to tail entity 𝑡 .

Figure 2 illustrates an example of a knowledge graph, in which

a movie (called Toy Story) described by its director, actor, and

producer. We can use (Toy Story, DirectorOf, John Lasseter) to state

the fact that Toy Story is directed by John Lasseter.

Definition 2 (Multi-modal Knowledge Graph). A Multi-
modal Knowledge Graphs (MKGs) are certain type of knowledge
graphs, which additionally introduce multi-modal entities (e.g., texts
and images) as first-class citizens of the knowledge graph.

Taking Figure 1 as an example that shows a multi-modal knowl-

edge graph, we use (Toy Story, hasImage, a picture of film promotion)
to represent the fact that the movie entity (i.e., Toy Story) has an

image entity, which describes some visual information of this movie

entity.
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Definition 3 (Collaborative Knowledge Graph). A Collab-
orative Knowledge Graph (CKG) encodes user behaviors and item
knowledge as a unified relational graph. A CKG first define a user-item
bipartite graph, which is formulated as {(𝑒𝑢 , 𝑦𝑢𝑖 , 𝑒𝑖 ) |𝑒𝑢 ∈ U, 𝑒𝑖 ∈ I)}
where 𝑒𝑢 is a user entity, 𝑦𝑢𝑖 denotes the link between user 𝑢 and item
𝑖 , 𝑒𝑖 denotes an item entity,U and I separately denote the user and
item sets. When there is an interaction between 𝑒𝑢 and 𝑒𝑖 ,𝑦𝑢𝑖 = 1; oth-
erwise, 𝑦𝑢𝑖 = 0. Then, CKG incorporates the user-item bipartite graph
into the knowledge graph, in which each user’s behavior is represented
as a triplet, (𝑒𝑢 , 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡, 𝑒𝑖 ). 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡 = 1 means there exists an ad-
ditional interact relation between 𝑒𝑢 and 𝑒𝑖 . Based on the item-entity
alignment set, the user-item graph can be seamlessly integrated with
knowledge graph as a unified graph. As illustrated in Figure 3, 𝑒𝑖1,
𝑒𝑖2 and 𝑒𝑖3 appear in both knowledge graph and user-item bipartite
graph, and the alignment of CKG depends on them.

Task description. We now formulate the multi-modal KGs

based recommendation task to be addressed in this paper:

• Input Collaborative knowledge graph that includes the user-
item bipartite graph and multi-modal knowledge graph.

• Output A prediction function that predicts the probability

of a user adopting an item.

4 METHOD
In this section, we present the MKGAT model proposed in this

paper. The framework overview of MKGAT model is illustrated in

Figure 5, which consists of two main sub-modules:multi-modal
knowledge graph embedding module and recommendation
module.

Before discussing the sub-modules, we first introduce two key

components, multi-modal knowledge graph entity encoder
andmulti-modal knowledge graph attention layer, which serve
as the basic building blocks for both KG embedding module and

recommendation module.

• Multi-modal knowledge graph entity encoder, which
use different encoder to embed each specific data type.

• Multi-modal knowledge graph attention layer, which
aggregates the neighbor entity information of each entity to

each entity itself to learn a new entity embedding.

Now we present the two sub-modules in MKGAT.

• Multi-modal Knowledge Graph Embedding Module
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Figure 4: Multi-modal knowledge graph encoder.

Taking a collaborative knowledge graph as input, the knowl-

edge graph embeddingmodule utilizes theMulti-modal Knowl-

edge Graph (MKGs) entity encoder andMKGs attention layer

to learn a new entity representation for each entity. The new

entity representation aggregates information of their neigh-

bors while retaining information about itself. Then the new

entity representations can be used to learn the knowledge

graph embedding in order to represent the knowledge rea-

soning relation.

• Recommendation Module
Taking knowledge graph embedding of entities (obtained by

the knowledge graph embedding module) and a collabora-

tive knowledge graph as input, the recommendation module

also employ the MKGs entity encoder and MKGs attention

layer to leverage corresponding neighbors to enrich the rep-

resentation of users and items. Finally, the matching scores

between users and items can be generated following tradi-

tional recommendation models.

In the following, we will elaborate the knowledge graph embed-

ding module and recommendation module.

4.1 Multi-modal Knowledge Graph Embedding
In this section, we first introduce MKGs entity encoder and MKGs

attention layer, and then introduce the training process of knowl-

edge graph embedding.

4.1.1 Multi-modal Knowledge Graph Entity Encoder. To incorpo-
rate multi-modal entities into the models, we propose to learn

embeddings for different modal data as well. We utilize recent ad-

vances in deep learning to construct encoders for these entities to

represent them, essentially providing an embedding for all entities.

Here we describe the encoders we use for multi-modal data. As

Figure 4 shows, we use different encoders to embed each specific

data type.



2020/5/13 draw.io

chrome-extension://pebppomjfocnoigkeepgbmcifnnlndla/index.html 1/1

 hop = 1

hop = 2
mkgat layer

knowledge graph embedding recommendation

concat

 hop = 1

hop = 2
mkgat layer

update embedding

update embeddinghead relation tail

 hop = 1

hop = 2
mkgat layer

 hop = 1

hop = 2
mkgat layer

concat

share
e1 e2 e3

e4 e5 e6 e7

u1 u2 u3 u4

e1 e2 e3

e4 e5 e6 e7

u1 u2 u3 u4

+ =

MKG Entity Encoder

output

y(u, i) output

input input

MKG Attention Layer MKG Attention Layer

MKG Entity Encoder

Figure 5: Framework overview of the MKGAT model.

Structured knowledge. Consider a triplet of information in the

form of (ℎ, 𝑟, 𝑡). To represent head entity ℎ, tail entity 𝑡 and relation
𝑟 as independent embedding vectors, we pass their entity 𝑖𝑑 or

relation 𝑖𝑑 through an embedding layer to generate dense vectors.

Images. A variety of models have been developed to compactly

represent the semantic information in the images, and have been

successfully applied to tasks such as image classification [8], and

question-answering [32]. In order to embed images to make the

encoding represent such semantic information, we use the last

hidden layer of ResNet50 [6], which is pretrained by Imagenet [3].

Texts. These textual information is highly related to the content,

and can capture users’ preferences. For text entities, we useWord2Vec

[16] to train word vectors, and then apply Smooth Inverse Fre-

quency (SIF) model [1] to obtain the weighted average of the word

vectors of a sentence, which is used as the sentence vector to rep-

resent the textual features. For the efficiency of the model, we use

the sentence vector technique instead of using the LSTM to encode

sentences. And SIF will have better performance than simply using

the average of word vectors.

Finally, as illustrated in Figure 4, we use dense layers to unify

all modal of entities into the same dimension, so that we can train

it on our model.

4.1.2 Multi-modal Knowledge Graph Attention Layer. The MKGs

attention layer illustrated in Figure 6, which recursively propa-

gate embeddings along high order connectivity [10]. Moreover, by

exploiting the idea of graph attention network (GATs) [22], we

generate attentive weights of cascaded propagations to reveal the

importance of such connectivity. Despite the success of GATs, they

are unsuitable for KGs as they ignore relation of KGs. So we modify

the GATs to take into account the embedding of the KGs relation.
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the relation of knowledge graph.

And the introduction of attention mechanism [21] can reduce the

influence of noise and make the model focus on useful information.

Here we start by describing a single layer, which consists of two

components: propagation layer and aggregation layer, and then

discuss how to generalize it to multiple layers. The multi-modal

knowledge graph attention layer is not only used in knowledge

graph embedding but also used in recommendation.



Propagation layer. Given a candidate entity ℎ, we must consider

two aspects when learning its knowledge graph embedding. Firstly,

we learn the structured representation of knowledge graph through

the transE model, i.e., h+ r ≈ t. Secondly, for entity ℎ’s multi-modal

neighbor entities, we want to aggregate this information to entity ℎ

to enrich the representation of entity ℎ. Following the way in [28],

we useNℎ to denote the set of triplets directly connected to ℎ. e𝑎𝑔𝑔
is a representation vector that aggregates neighbor entities informa-

tion, which is the linear combination of each triple representation

and can be calculated in Equation 1.

e𝑎𝑔𝑔 =
∑

(ℎ,𝑟,𝑡 ) ∈Nℎ

𝜋 (ℎ, 𝑟, 𝑡)e(ℎ, 𝑟, 𝑡), (1)

where e(ℎ, 𝑟, 𝑡) is the embedding of each triplet (ℎ, 𝑟, 𝑡) and 𝜋 (ℎ, 𝑟, 𝑡)
is the attention score on each triplet e(ℎ, 𝑟, 𝑡). 𝜋 (ℎ, 𝑟, 𝑡) controls how
much information being propagated from triplets e(ℎ, 𝑟, 𝑡).

Since relation is important in the knowledge graph, we keep the

embedding of relation in e(ℎ, 𝑟, 𝑡) and 𝜋 (ℎ, 𝑟, 𝑡), and the parameters

in them are learnable. For triplet e(ℎ, 𝑟, 𝑡), we learn this embedding

by performing a linear transformation over the concatenation of

the embedding of head entity, tail entity and relation, which is

formulated as follows:

e(ℎ, 𝑟, 𝑡) = W1 (eℎ ∥e𝑟 ∥e𝑡 ). (2)

where 𝑒ℎ and 𝑒𝑡 are embedding of entities, and 𝑒𝑟 is embed-

ding of relation. We implement 𝜋 (ℎ, 𝑟, 𝑡) via relational attention
mechanism, which can be computed in the following:

𝜋 (ℎ, 𝑟, 𝑡) = LeakyReLU (W2e(ℎ, 𝑟, 𝑡)) , (3)

where we follow the way in [22] to select LeakyReLU [15] as

the nonlinear activation function. Hereafter, we normalize the co-

efficients across all the triplets connected with ℎ by adopting the

softmax function:

𝜋 (ℎ, 𝑟, 𝑡) = exp(𝜋 (ℎ, 𝑟, 𝑡))∑
(ℎ,𝑟 ′,𝑡 ′) ∈Nℎ

exp (𝜋 (ℎ, 𝑟 ′, 𝑡 ′)) . (4)

Aggregation layer. This phase is to aggregate the entity represen-

tation eℎ and the corresponding e𝑎𝑔𝑔 as the new representation

of entity ℎ in order not to lose the initial eℎ information. In this

work, we implement the aggregation function 𝑓
(
eℎ, e𝑎𝑔𝑔

)
via the

following two methods.

1) Add aggregation method considers the element-wise add fea-

ture interaction between eℎ and e𝑎𝑔𝑔 , which can be obtained by

Equation 5.

𝑓
add

= W3eℎ + e𝑎𝑔𝑔 , (5)

where we perform a linear transformation on the initial eℎ and

add it to the e𝑎𝑔𝑔 . W3 is a weight matrix that transfers the current

representations into the common space, which denotes the trainable

model parameters. This operation is similar to that in the residual

network [6].

2) Concatenation aggregation method concatenates the eℎ and

e𝑎𝑔𝑔 , using a linear transformation:

𝑓concat = W4

(
eℎ ∥e𝑎𝑔𝑔

)
, (6)

where ∥ is the concatenation operation, and W4 is the trainable

model parameters.

High-order propagation. By stacking more propagation and ag-

gregation layers, we explore the higher-order connectivity inherent

in the collaborative knowledge graphs. In general, for a 𝑛-layer

model, the incoming information is accumulated over a𝑛-hop neigh-

borhood.

4.1.3 Knowledge Graph Embedding. We learn a new entity repre-

sentation for each entity after passing it through the MKGs entity

encoder and MKGs attention layer. And then, we input these new

entity representations to knowledge graph embedding, which is an

effective way to parameterize entities and relations as vector repre-

sentations, while preserving the reasoning of relation in knowledge

graph structure.

More specifically, we employ the translational scoring func-

tion [2], a widely used method in knowledge graph embedding, to

train knowledge graph embedding. It learns to embed each entity

and relation by optimizing the translation principle eℎ + e𝑟 ≈ e𝑡
when a triplet (ℎ, 𝑟, 𝑡) is valid, in which eℎ and e𝑡 are the new entity

embeddings from MKGs attention layer, e𝑟 is the embeddings of

relation. Equation 7 depicts the score of triplet (ℎ, 𝑟, 𝑡).

𝑠𝑐𝑜𝑟𝑒 (ℎ, 𝑟, 𝑡) = ∥eℎ + e𝑟 − e𝑡 ∥22 . (7)

The training of knowledge graph embedding considers the rela-

tive order between valid triplets and broken ones, and encourages

their discrimination through a pairwise ranking loss:

LKG =
∑

(ℎ,𝑟,𝑡,𝑡 ′) ∈T
− ln𝜎

(
𝑠𝑐𝑜𝑟𝑒

(
ℎ, 𝑟, 𝑡 ′

)
− 𝑠𝑐𝑜𝑟𝑒 (ℎ, 𝑟, 𝑡)

)
, (8)

where T = {(ℎ, 𝑟, 𝑡, 𝑡 ′) | (ℎ, 𝑟, 𝑡) ∈ G, (ℎ, 𝑟, 𝑡 ′) ∉ G}, and (ℎ, 𝑟, 𝑡 ′ is a
broken triplet constructed by replacing one entity in a valid triplet

randomly. 𝜎 (·) is the sigmoid function. This layer models the en-

tities and relations on the granularity of triples, working as a reg-

ularizer and injecting the direct connections into representations,

which can increase the model representation ability.

4.2 Recommendation
After each entity gets its corresponding embedding by the knowl-

edge graph embedding module, it will be input to the recommenda-

tion module. Similar to the knowledge graph embedding module,

the recommendation module also uses MKGs attention layer to

aggregate neighbor entity information.

In order to retain the 1-𝑛 hop information, we follow the setup

from [28] that retains the output of the candidate user and item

from the 𝑙-th layer. The output of different layers represents the

information of different hops.We hence adopt the layer-aggregation

mechanism[31] to concatenate the representations at each step into

a single vector, which can be found as follows:

e∗𝑢 = e(0)𝑢 ∥ · · · ∥e(𝐿)𝑢 , e∗𝑖 = e(0)
𝑖

∥ · · · ∥e(𝐿)
𝑖

, (9)

where ∥ is the concatenation operation and 𝐿 is the number of

the MKGs attention layers. By doing so, we can not only enrich

the initial embeddings by performing the embedding propagation

operations, but also allow controlling the strength of propagation

by adjusting 𝐿.



Finally, we conduct inner product of user and item representa-

tions by Equation 10, so as to predict their matching score:

𝑦 (𝑢, 𝑖) = e∗⊤𝑢 e∗𝑖 (10)

Then, we optimize our recommendation prediction loss by using

the Bayesian Personalized Ranking (BPR) loss [20]. Specifically, we

assume that the observed records, which indicate more user prefer-

ences, should be assigned higher prediction scores than unobserved

ones. The BPR loss can be constructed in Equation 11.

Lrecsys =
∑

(𝑢,𝑖, 𝑗) ∈𝑂
− ln𝜎 (𝑦 (𝑢, 𝑖) − 𝑦 (𝑢, 𝑗)) + 𝜆∥Θ∥2

2
, (11)

where 𝑂 =
{
(𝑢, 𝑖, 𝑗) | (𝑢, 𝑖) ∈ R+, (𝑢, 𝑗) ∈ R−}

denotes the training

set, R+
indicates the observed interactions between user 𝑢 and item

𝑗 , R−
is the sampled unobserved interaction set, and 𝜎 (·) is the

sigmoid function. And Θ is the parameters set, 𝜆 is the parameter

of the L2 regularization.

We update the parameters in MKGs embedding module and rec-

ommendation module alternately. In particular, for a batch of ran-

domly sampled (ℎ, 𝑟, 𝑡, 𝑡 ′), we update the knowledge graph embed-

dings for all entities. Then we sample a batch of (𝑢, 𝑖, 𝑗) randomly,

retrieve their representations from knowledge graph embedding.

The loss functions of the two modules are optimized alternately.

5 EXPERIMENTS
In this section, we evaluate MKGAT model using two real-world

datasets from different domains. We first present our experimental

settings in Section 5.1 and then discuss the major experimental

results in Section 5.2. Furthermore, we also conduct detailed case

study in Section 5.3.

5.1 Experimental Setup
5.1.1 Datasets. We conduct our experiments using two recommen-

dation datasets from movie and restaurant domains. The details

are as follows.

• MovieLens 3. This dataset has been widely used for evalu-

ating recommender systems. It consists of explicit ratings

(ranging from 1 to 5) on the MovieLens website. In our ex-

periment, we use the MovieLens-10M dataset. We transform

the ratings into implicit feedback data, in which each entry

is marked as 1 indicating that a user has rated the item, and

0 if unrated. The knowledge graph for MovieLens datasets

comes from [26], which uses Microsoft Satori to construct

the knowledge graph for this dataset. In particular, [26] first

selects a subset of triples from the whole knowledge graph

with a confidence level greater than 0.9. Given the sub-KG,

[26] collect Satori IDs of all valid movies by matching their

names with tail of triples. After having the set of item IDs,

[26] match these item IDs with the head of all triples in Satori

sub-KG, and select all well-matched triples as the final KG

for each dataset. In order to construct the image entity of

the MovieLens knowledge graph, we crawl the correspond-

ing trailers instead of the full-length videos from Youtube
4
.

3
https://grouplens.org/datasets/movielens/

4
https://www.youtube.com/

Table 1: Statistics of datasets

dataset MovieLens Dianping

# of users 41849 40388

# of items 4828 29969

# of interactions 1813381 624499

# of entities 65801 93798

# of relations 19 6

# of triplets 145406 635656

We use FFmpeg
5
to extract the key frames of each trailer,

and use the pre-trained ResNet50 [6] models to extract the

visual features from key frames. In order to construct the

text entity of the MovieLens knowledge graph, we crawl the

corresponding movie descriptions from TMDB
6
.

• Dianping 7
, a Chinese life information servicewebsite, where

users can search and get information of restaurants. Dian-

ping is provided by Meituan-Dianping Group, wherein the

types of positive interactions include buying, and adding

to favorites. We sample negative interactions for each user.

The knowledge graph for Dianping-Food is collected from

Meituan Brain, an internal knowledge graph built for din-

ing and entertainment by Meituan-Dianping Group. The

types of entities include POIs (i.e., restaurants), first-level

and second-level categories, business areas, and tags. In or-

der to construct the image entities of the knowledge graph

for Dianping dataset, we chose the images of the top recom-

mended dishes of POIs. Similar to MovieLens datasets, we

use the pre-trained ResNet50 [6] models to extract the visual

features from the images of recommended dishes. In order to

construct the text entity of the Dianping knowledge graph,

we use user reviews for every POIs.

The statistics of the two datasets are shown in Table 1.

5.1.2 Evaluation Metrics. For each user in test set, we treat the

items that user has not interacted with as negative items. Then

each method outputs the user’s preference scores over all items,

except positive ones in training set. We randomly select 20% of

the interactions as ground truth for testing and the remaining

interactions for training. To evaluate the effectiveness of top-𝑘

recommendation and preference ranking, we adopt two widely-

used evaluation metrics: 𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 and 𝑛𝑑𝑐𝑔@𝑘 . The default value

of 𝑘 is 20. We report the average results for all users in the test set.

5.1.3 Baselines. We compare our proposed MKGAT model with

some state-of-the-art baselines, which include FM-based Method

(NFM), KG-basedmethod (CKE, KGAT),Multi-modalmethod (MMGCN).

• NFM: Neural Factorization Machines (NFM) [7]is a state-of-

the-art Factorization Machines (FM), which subsumes FM

under neural network. Specially, we employ one hidden layer

on input features as suggested in [7].

5
http://ffmpeg.org/

6
https://www.themoviedb.org/

7
https://www.dianping.com/



Table 2: Overall performance of recommendation

Models

MovieLens Dianping

recall ndcg recall ndcg

NFM 0.3591 0.4698 0.1163 0.0724

CKE 0.3600 0.4723 0.1321 0.0895

KGAT 0.3778 0.4827 0.1522 0.1301

MMGCN 0.3966 0.5023 0.1424 0.1255

MKGAT 0.4134 0.5181 0.1646 0.1433
%Improv. 4.2% 3.1% 8.1% 10.1%

• CKE: Collaborative Knowledge Base Embedding (CKE) [35]

combines Collaborative Filtering (CF) with structural knowl-

edge, textual knowledge, and visual knowledge in a unified

framework for recommendation. We implement CKE as CF

plus structural knowledge module in this paper.

• KGAT: Knowledge Graph Attention Network (KGAT) [28]

first applies the TransR model [13] to obtain the initial repre-

sentations for entities. Then, it runs the entity propagation

from the entity itself outwardly. In this way, both the user

representation and the item representation can be enriched

with the corresponding neighbor information.

• MMGCN:Multi-modal GraphConvolutionNetwork (MMGCN)

[29] is a state-of-the-art multi-modal model, which considers

individual user-item interactions for each modal. specifically,

MMGCN builds user-item bipartite graph for each modal,

then uses GCN to train each bipartite graph, and finally

merges the node information of different modals.

5.1.4 Parameter Settings. We use Xavier initializer [4] to initialize

themodel parameters, and optimize themodel with Adam optimizer

[9]. The mini-batch size and learning rate are searched in [1024;

5120; 10240] and [0:0001; 0:0005; 0:001] respectively. The number of

MKGAT layers in the recommendation component and knowledge

graph embedding component is searched in [1; 2; 3]. For visual

entity, we use the 2048-dimensional features of the last hidden

layer of Resnet. For text entity, we train 300-dimensional word

embeddings by word2vec [16] and generate the corresponding

sentence vectors using the SIF [1] algorithm. Finally, we set the

dimension of the all entity as 64.

5.2 Experimental Results
We first report the performance of all the methods, and then study

the effect of different factors (i.e., modalities, model depth and

combination layers) on the models.

5.2.1 Performance of All the Methods. The results of all models are

shown in Table 2.We can see that our proposedMKGATmodel(where

the modalities include structured knowledge, text and vision; the

model depth of the knowledge graph part and the recommendation

part is set as 2; and combination layers is set as add aggregation

layer) outperforms all the baselines on both two dataset in terms of

𝑟𝑒𝑐𝑎𝑙𝑙 and 𝑛𝑑𝑐𝑔. Besides, we have the following observations.

• MKGAT consistently yields the best performance on both

datasets. Specifically, In particular, MKGAT improves over

the strongest KG-based baseline KGAT w.r.t. ndcg@20 by

7.33%, and 10.14% and w.r.t. recall@20 by 9.42%, and 8.15%

Table 3: Performance of recommendation: effect of modali-
ties on Dianping dataset

Models

KGAT MKGAT

recall ndcg recall ndcg

base 0.1522 0.1301 0.1542 0.1341

base + text 0.1544 0.1343 0.1589 0.1389

%Improv. 1.5% 3.2% 3.1% 3.5%
base + image 0.1572 0.1352 0.1612 0.1396

%Improv. 3.3% 3.9% 4.5% 4.1%
base + text + image 0.1598 0.1361 0.1646 0.1433

%Improv. 4.9% 4.6% 6.7% 6.8%

in MovieLens, Dianping, respectively. This verifies the va-

lidity of the multi-mode knowledge graph. And jointly ana-

lyzing Tables 2 and 3, in the situation of introducing multi-

modal entities, our method can achieve a greater improve-

ment compared to other KG-based methods. This verifies

that our method is more friendly to multi-modal information

than other methods.

• Among all the comparison methods, KG-based methods (i.e.,

CKE and KGAT) outperform the plain CF-based method (i.e.,

NFM) on the two datasets across two evaluation metrics,

which demonstrates that the usage of KGs indeed greatly

improves the recommendation performance.

• Comparing the performance of the two KG-based methods,

CKE and KGAT, we find that KGAT has a better performance

than CKE in both metrics, which demonstrates the power of

graph convolutional networks in recommender systems.

• It’s worth mentioning that MKGAT can beat MMGCNmodel

on MovieLens data, which is a state-of-the-art multi-modal

recommendation method. This shows that our method can

make rational use of multi-modal information.

5.2.2 Effects ofModalities. To explore the effects of differentmodal-

ities, we compare results of the KGAT and our MKGAT model on

different modalities over the Dianping dataset. The performance

comparison results are presented in Table 3. We have the following

observations:

• As expected, the methods with multi-modal features outper-

forms those with single-modal features in both KGAT and

MKGAT, as shown in Table 3.

• The visual modality plays a more important part than the

text modality in recommendation effectiveness due to the

fact that the visual information (such as pictures) tends to

attract a user’s attention when he/she views the restaurant

information on an online platform.

• Our MKGAT model, also as a KG-based method, can take

advantage of image information to improve the recommenda-

tion performance better compared to KGAT. In other words,

compared with other KG-based methods, our method will

have a greater improvement when multi-modal information

is introduced. The reason behind it is that when we train

the knowledge graph embeddings, MKGAT can aggregate

the information of image entities into item entities better, as

shown in Table 3.



Table 4: Performance of recommendation: effect of model
depth

Models

MovieLens Dianping

recall ndcg recall ndcg

KGE

one layer 0.4113 0.5169 0.1632 0.1424

two layer 0.4134 0.5181 0.1646 0.1433
three layer 0.4149 0.5192 0.1604 0.1413

REC

one layer 0.4082 0.5152 0.1546 0.1365

two layer 0.4134 0.5181 0.1646 0.1433
three layer 0.4104 0.5147 0.1628 0.1420

5.2.3 Effect of Model Depth. To evaluate the effectiveness of layers
stack, we conduct experiments on different numbers of layers. The

number of layers is regarded as the model depth. In our model, both

knowledge graph embedding and recommendation components

use the MKGAT layers, so we discuss knowledge graph embedding

component and recommendation component separately. When it

comes to the knowledge graph embedding part, we fix the number

of the MKGAT layers of recommendation to 2. And when discussing

the recommendation part, we fix the number of the MKGAT layers

of knowledge graph embedding to 2. The experimental results are

shown in Table 4.

The effect of different model depth (i.e., different numbers of

MKGAT layers) in the knowledge graph embedding (marked as

KGE) and recommendation (marked as REC) can be summarized in

the following.

• For knowledge graph embedding, in the MovieLens dataset,

as the number of MKGAT layers increases, the evaluation

metrics (i.e., recall and ndcg) also increases. It demonstrates

that the effectiveness of neighborhood information fusion

in knowledge graph embedding. In the Dianping dataset,

as the number of MKGAT layers increasing, the evaluation

metrics grow first and then decreases. This may be caused

by the multi-hop information of Dianping data is relatively

sparse. Combined with the results in Table 3, we can see

that our method (that takes into account the information of

neighbor entities when doing knowledge graph embedding)

can provide higher quality entities embeddings for recom-

mendation, compared with those methods (e.g., KGAT) that

consider knowledge graph entity triplets independently.

• When referring to the recommendation part, with the num-

ber of MKGAT layers increasing, the evaluation metrics grow

first in two datasets, which verifies that knowledge graph

embeddings of different hops are helpful for the recommen-

dation system. However, when the number of layers in the

two datasets is greater than 2, the evaluation metrics will

decline. In other words, when the number of layers increases

to a certain level, the evaluation metrics decline. This may

be caused by overfitting due to the sparsity of data.

5.2.4 Effect of Combination Layers. In this set of experiments, we

study the effect of combination layers in our model. Specifically, we

use two types of aggregation layers, i.e., add layers and concatenate

layers, to learning the knowledge graph embeddings. The model

depth is fixed as 2. Table 5 summarizes the experimental results,

Table 5: Performance of recommendation: effect of combi-
nation layers

combine method

MovieLens Dianping

recall ndcg recall ndcg

ADD 0.4134 0.5181 0.1646 0.1433

CONCAT 0.4162 0.5209 0.1657 0.1452

which depicts the method with concatenate layers (marked by

CONCAT) is superior to that with add layers (marked by ADD).

One possible reason is that the neighbor entities of each entity

contain textual and visual information, which are heterogeneous

to the general entities in the knowledge graph. They are not in

the same semantic space. In fact, ADD is an element-by-element

feature interaction method, which is suitable for features in the

same semantic space. Because in the same semantic space, the

meaning of each dimension of each feature is the same, it makes

sense to add each dimension of each feature. However, CONCAT

is an extension of the dimension between features, which is more

suitable for the interaction of features in different semantic spaces.

5.3 Case study
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Figure 7: Real Example from dianping datasets, we use dif-
ferent colored dots to represent different types of entities.

To intuitively demonstrate the role of multi-modal entities in

the MKGAT model, we give a case study by randomly selecting a

user 𝑢 from the Dianping dataset, and a relevant item. Benefiting

from the attention mechanism, we can calculate the relevance score

(unnormalized) between the candidate items and the entity (or

items and users). We can also observe the relevance scores between

each entity and other entities. The higher the relevance score is,

the model believes that the current entity has a greater effect on

the model. We visualize the relevance score in Figure 7.

In Figure 7, for item entities (i.e., item entity 8992, 4962 and

530), their neighboring entities include multi-modal entities and

non-multimodal entities (interactions or ordinary KG entities). We

visualize the edge weight of each item entity and its neighboring

entities, as shown in Figure 7. The multi-modal relation usually has



a relatively high relevance score in collaborative knowledge graph,

indicating the importance of multi-modal entities.

6 CONCLUSION AND FUTUREWORK
In this paper, we present a novel KG-based model for recommen-

dation, called Multi-modal Knowledge Graph Attention Network

(MKGAT), which introduces the multi-modal knowledge graph to

the recommendation system innovatively. By learning the reason-

ing relationship among entities and aggregating the neighbor entity

information of each entity to itself, the MKGAT model can make

better use of the multi-modal entity information. Extensive experi-

ments on two real-world datasets demonstrate the rationality and

effectiveness of our proposed MKGAT model.

This work represents an initial attempt to explore the use of

multi-modal knowledge graphs in recommendation systems, based

on which further interesting research can be conducted. For exam-

ple, it is natural to explore more ways of multi-modal fusion under

the framework of multi-modal knowledge graph, such as Tensor

Fusion Network (TFN) [34] or Low-rank Multimodal Fusion (LMF)

[14].
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