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ABSTRACT

Long sequence time-series forecasting (LSTF) has become increas-
ingly popular for its wide range of applications. Though superior
models have been proposed to enhance the prediction effectiveness
and efficiency, it is reckless to neglect or underestimate one of the
most natural and basic temporal properties of time series: history
has inertia. In this paper, we introduce a new baseline for LSTF,
named historical inertia (HI). In HI, the most recent historical data
points in the input time series are adopted as the prediction results.
We experimentally evaluate HI on 4 public real-world datasets and
2 LSTF tasks. The results demonstrate that up to 82% relative im-
provement over state-of-the-art works can be achieved. We further
discuss why HI works and potential ways of benefiting from it.
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1 INTRODUCTION

Time series forecasting, i.e., given historical values of time series
and making predictions for future time-slots, can be deemed as
one of the main enablers of modern society. An accurate prediction
model can benefit a wide range of applications, e.g., predicting stock
prices [2, 11], monitoring traffic flows and electricity consumption
[4,7, 10, 13].

Rather than the typical setting of predicting values of a limited
number of time-steps, i.e. 48 steps or fewer [4, 7, 10, 11], an emerging
line of work focuses on the problem of long sequence time-series
forecasting (LSTF), where up to 720 steps can be predicted at a
time [13]. Such an increasing sequence length can be troublesome
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Input Prediction

L, L,
Figure 1: The proposed baseline HI, illustrated in the sce-
nario of multivariate time series forecasting. HI directly
takes the most recent time steps in the input as prediction.
Ly is the input length and L, is the prediction length. d. de-
notes the number of variables in inputs.

to most existing works, which are designed for relatively short
prediction horizons.

To deal with the challenges of effectively modeling temporal
correlations in long sequence and efficiently operating on long in-
puts and outputs, the state-of-the-art (SOTA) work Informer [13]
proposes a novel variant of Transformer [9] to reduce time and
space complexity while maintaining prediction accuracy, which
is indeed a breakthrough. Despite that the extensive experiments
on five real-world datasets demonstrate Informer’s superiority to
its baselines, the enhanced performance can be limited when con-
sidering the baseline of taking the most recent values in inputs as
outputs, which can be referred to as the historical inertia (HI).

In this paper, we first address this issue by providing an experi-
mental evaluation of the proposed baseline HI and SOTA models
and on a variety of public real-world datasets, and then make a
comprehensive discussion on why HI is powerful and how we can
benefit from HI.

2 PROBLEM AND THE PROPOSED BASELINE

Long Sequence Time-series Forecasting (LSTF): At time ¢, given
a Ly-length time series, ie., X(t) = {Xi(t),...,Xr_(t)}, where
Xi(t) = [xi,1(t), ... x5, 4, (t)] € R% i € [1, ..., Ly], is the observed
univariate (dy = 1) or multivariate (dy > 1) variable at the i-th
time-stamp, the goal of LSTF is to predict the corresponds Ly-
length sequence A steps ahead, i.e., Y (t) = [Y1(¢), .., Yi, (t)], where
Yi(t) = [yi1(0), - y1.q, (D] € R% and dy > dy > 1. Whendy = dy,
Y(t) = [Xperas1(t)s . XL vasr, (O]

Historical Inertia: The historical inertia (HI) baseline takes
Ly-length subsequence of X(t) as prediction results, i.e., ytt) =
(XL -1y +1(), .. XL, ()]

Note that HI requires prediction length to be no longer than the
input length, ie., Ly > Ly, which is not necessary for learning-
based LSTF models. Considering that in real application scenarios,
the dataset is usually orders of magnitude larger than Ly, this
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condition can be easily achieved. An illustration of the proposed
baseline is shown in Figure 1.

3 EXPERIMENT AND RESULTS
3.1 Datasets and Metrics

We compare HI with SOTA models on four real-world public datasets.

ETT (Electricity Transformer Temperature) ': The ETT dataset
from the Informer paper contains 2 years of electric power deploy-
ment collected from two Chinese counties. There are 7 features
in total. Three sub-datasets are included in our experiments, i.e.
ETTh1 and ETTh2 with a 1-hour sampling frequency and ETThm1
with a 15-min sampling frequency. In the univariate forecasting
task, the feature "oil temperature” is chosen as the prediction target.

Electricity 2: The raw dataset of Electricity is from the UCI
Machine Learning Repository 3, which contains electricity con-
sumption of 370 clients every 15 minutes from 2011 to 2014. We use
the pre-processed dataset from [4], which reflects the hourly con-
sumption of 321 clients from 2012 to 2014. The last client (column)
is used as the prediction target in the univariate forecasting task.

Statistics of the above datasets can be found in Table 1.

Table 1: Statistics of dataset.

Dataset  # samples # variables Sample rate
ETTh1 17420 7 1 hour
ETTh2 17420 7 1 hour
ETTm1 69680 7 15 minutes
Electricity 26304 321 1 hour

As a common practice, we evaluate the models by two metrics:
Mean Square Error (MSE) and Mean Absolute Error (MAE), which
are computed as:

1L 1 e
P G: (1) — us ()2
MSE= 2> 7 2, D00 -ui0F ()
=19 Y i=t; j=1
1 L1 v
MAE= 2 3 o > 3 lia i —yi0l @)
t=1"Y " j=p j=1

where g is the prediction output, y is the ground-truth value,
t € [t1, tr] is the time instance in test set.

All above settings are consistent with the Informer paper. Note
that we eliminate the dataset Weather that is also used in the paper
since only raw data is available and the preprocessing operations
are unclear.

3.2 Competitors

3.2.1 Univariate LSTF SOTA Models. Eight models ranging from
traditional statistical methods to recent-proposed deep models are
included as competitors for the task of univariate time series fore-
casting.
e Prophet [8]: A regression model that models common fea-
ture of time series in scale-aware way.

Ihttps://github.com/zhouhaoyi/
Zhttps://github.com/laiguokun/multivariate-time-series-data
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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o ARIMA [2]: An autoregressive integrated moving average-
based model for stock price prediction.

e DeepAR [6]: An autoregressive recurrent neural network.

e LSTMa [1]: A recurrent neural network-based neural ma-
chine translation model designed for long sentences.

e Reformer [3]: An efficient variant of Transformer using
locality-sensitive hashing and reversible residual layers.

e LogTrans [5]: An efficient variant of Transformer using
convolutional attention and sparse attention.

o Informer [13]: An efficient variant of Transformer using
ProbSparse self-attention and self-attention distilling.

e Informer- [13]: A variant of Informer removing the Prob-
Sparse self-attention mechanism.

3.2.2 Multivariate LSTF SOTA Models. Besides above mentioned
LSTMa, Reformer, LogTrans, Informer and Informer-,

e LSTNet [4]: A deep neural network that combines convolu-
tional neural networks and recurrent neural networks,

is used as a competitor in the task of multivariate time series fore-
casting.

3.3 Implementation Details

Basically, we follow the common practice in the community as
described in [13]. A is fixed as 1. Prediction length is set as [24, 48,
168, 366, 720] for ETTh1 and ETTh2, [24, 48, 96, 288, 672] for ETTm1
and [48, 168, 366, 720, 960] for Electricity. We split the ETT datasets
into 12:4:4 and Electricity dataset into 15:3:4 for training, validation,
and test. The above implementation settings are consistent with
the Informer paper. Since the method of HI doesn’t require training,
when the dataset split is fixed, the performance is fixed. Thus, only
one iteration is sufficient to compute the final results.

3.4 Main Results

Table 2 and Table 3 provide the main experimental results of HI
and SOTA models. The best results are highlighted in bold. The
last line in each Table calculates HI’s relative improvement over
the best SOTA model, which is calculated as (best_SOTA_Model —
HI)/best_SOTA_Model. Numbers in green indicate positive and in
red indicate negative. All reported results are on the test set. Besides
the results of HI, numbers are referenced from the updated results
on the paper of Informer [13]. We also follow the same scaling
strategy as Informer does.

We observe that HI achieves state-of-the-art results in many
cases, especially for the task of multivariate forecasting, in which
the relative improvement can be up to 82%. In the following, we
discuss experimental results of univariate and multivariate LSTF
respectively.

3.4.1 Univariate LSTF Results. Table 2 shows that in the task of
predicting a single variable over time, HI outperforms SOTA models
significantly on ETTh1 and ETTm1 datasets. Informer and its vari-
ant almost dominate the ETTh2 dataset while DeepAR, Informer,
and HI claim part of the best results on the Electricity dataset. The
relative improvement brought by HI can be up to 80% on MSE and
58% on MAE.
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Table 2: Summary of univariate long sequence time-series forecasting comparison results.

Dataset | ETThi | ETTh2

‘ ETTm1 | Electricity

Method Metric‘ 24 48 168 336 48 168 336

48 96 288 168 336 720 960

MSE
MAE

0.115
0.275

0.168 1.224 1.549 2.735

0.330 0.763 1.820 3.253

0.199
0.381

0.304
0.462

2.145
1.068

2.096

Prophet 2543

3.355
4.664

0.120
0.290

0.133
0.305

0.194 0.452
0.396 0.574

2.747
1.174

0.524
0.595

2.725 2.246 4.243
1.273 3.077 1.415

6.901
4.264

MSE
MAE

3.554 3.190

0.474

2.800
0.595

2.753
0.738

0.108
0.284

0.175 0.396 0.468 0.659

ARIMA 0.424 0.504 0.593

2.878
1.044

0.090 0.179

0.306

0.272  0.462
0.399 0.558

0.639
0.697

0.879 1.032 1.136 1.251

0.833 0.876 0.933

1.370
0.982

MSE
MAE

0.107
0.280

0.162 0.239 0.445
0.327 0.422 0.552

0.658
0.707

0.098
0.263

0.163
0.341

0.255
0.414

0.604

DeepAR 0.607

0.315 0.414 0.563
0.436 0.519 0.595

0.429
0.580

0.091
0.243

0.219
0.362

0.364 0.948
0.496 0.795

2.437
1.352

0.204
0.357

0.657
0.683

MSE |0.114

0.272

0.193 0.236 0.590
0.358 0.392 0.698

0.155
0.307

0.190
0.348

0.385
0.514

0.558

LSTMa 0.606

0.768

0.121
0.233

0.305
0.411

0.287 0.524
0.420 0.584

0.493
0.539

0.723 1.212 1.511
0.655 0.898 0.966

1.545

0.681 0.873 1.006

MSE
MAE

0.222
0.389

0.284 1.522 1.860
0.445 1.191 0.124

2.112
1.436

0.263
0.437

0.458
0.545

1.029
0.879

1.668

Reformer 1228

2.030
1.721

0.095
0.228

0.249
0.390

0.920 1.108
0.767 1.245

1.793
1.528

0.971
0.884

1.671 3.528 4.891
1.587 2.196 4.047

7.019
5.105

MSE
MAE

0.273]0.102

0.255

0.169
0.348

0.246
0.422

0.267
0.437

0.103
0.259

0.167 0.207 0.230

LogTrans 0.328 0.375 0.398 0.463

0.303
0.493

0.065
0.202

0.078
0.220

0.199 0.411
0.386 0.572

0.598
0.702

0.280
0.429

0.454 0.514 0.558
0.529 0.563 0.609

0.624
0.645

MSE
MAE

0.092
0.246

0.161 0.187 0.215 0.257
0.322 0.355 0.369 0.421

0.099 0.159
0.241 0.317

0.235
0.390

0.258

Informer- 0.423

0.285
0.442

0.034 0.066

0.194

0.187 0.409
0.384 0.548

0.519
0.665

0.238 0.442 0.501 0.543 0.594

0.514 0.552 0.578 0.638

MSE
MAE

0.098
0.247

0.158 0.183 0.222
0.319 0.346 0.387

0.269 [0.093 0.155
0.435(0.240 0.314

0.232

0.389

MAE ‘
Informer ‘

| 2
0683‘

0.263 0.277(0.030
0.417 0.431|0.137

0.069
0.203

0.194 0.401
0.372 0.554

0.512
0.644

0.239
0.359

0.447 0.489 0.540 0.582

0.640‘
‘ 0.503 0.528 0.571 0.608

| 4
1.064 ‘

0.095 0.150 0.257
0.231 0.300 0.409

0.318
HI 0.465

MSE |0.046 0.069 0.116 0.137 0.186
MAE |0.166 0.210 0.271 0.306 0.351

0.872
0.690

0.328 0.415
0.393 0.463

1.178
0.836

1.302

0.549(0.115 0.156 0.167 0.229 0.894

0.449 (0.023 0.039 0.046 0.081
0.270

0.115 ‘

50 %
33%

56%
34%

37%
37%

36%
17%

28%
17%

2%
4%

3%
4%

11%
5%

23%

MSE
Improve 12%

MAE

62%
27%

23%
16%

41%
20%

75%
55%

80%
58%

78%
58%

327%
93%

4%
10%

0%
11%

118%
46%

124%
47%

3.4.2 Multivariate LSTF Results. Table 3 compares HI against SOTA
models for the task of predicting multiple variables over time. We
observe that almost all the best results are achieved by HI and the
improvement is significant. In the task of predicting 168 and 720
steps ahead on the ETTh2 dataset, competitors’ best MSE are 3.242
and 3.467, HI reduces them to 0.572 and 0.635, bringing in up to
82% relative improvement.

3.5 Study of HI

While Table 2 and Table 3 already demonstrate HI's performance
against SOTAs, in this section, we emphasize the potential of HI
serving as an effective trick by showing how it can help to improve
the of a basic model. We combine HI with another simple method:
multi-layer perceptron (MLP) to further explore the effect of HI.
The implementation of MLP is the same for all tests in this sec-
tion. We use a 2-layer MLP with embedding dimension 200. A 1d
batch normalization layer, a ReLU layer, and a dropout layer with
a dropout rate of 0.05 are added to each hidden layer of the MLP.
We set the batch size as 32. The training epoch is set as 30 with
early stopping patience 3 on validation loss, which is defined as
MSE. The learning rate is initialized as 0.0003 and will be reduced
by half every epoch. For each test, we run 5 iterations and report
the mean values as the final results, as shown in Table 4 and Table
5. Informer is also included for comparison.

The very first observation is that MLP itself is also a strong
baseline, which outperforms HI and state-of-the-art models across
almost all datasets and prediction lengths. Regardless of this point,
we take MLP as a basic model, and evaluate the ensemble of MLP
and HI. We operate weighted summation over MLP’s and HI's
outputs to get the final prediction. The weights of the two models
are set as 0.5/0.5. From Table 4 and Table 5, it could be concluded
that this hybrid model can obtain better results in many cases,
which is especially evidential for the task of univariate forecasting.
MLP + HI brings up to 32% relative improvement over HI and 45%

relative improvement over MLP on MSE, and 20%, 27% relative

improvement on MAE.

4 DISCUSSION

Given the above results, it could be concluded that though naive,
HI is a strong baseline but unfortunately neglected for comparison
in LSTF research. However, it is more important why it is powerful
and how we could benefit from it.

4.1 Why Historical Inertia Works

A common belief'is that predictable time series should have tractable
patterns in phase and magnitude. We credit the very first reason
HI is powerful to that it guarantees the outputs are in similar mag-
nitude of the inputs. This is especially true in the scenario of long
sequence time-series forecasting because the temporal patterns of
a time series can be steadier if viewed in the long run.

However, the phase is much trickier. On the one hand, longer
time series provide more evident periodic patterns that can not
be reflected in short horizons. This increases the chance that the
HI be of a similar phase as the prediction target, especially in the
case that the prediction length is an exact integer multiple of the
time series’ period when there is any. On the other hand, HI could
also badly hurt the prediction results when 1) there is no periodic
pattern; 2) the periodic pattern is not included in historical data;
3) or the historical data is in the opposite phase as the prediction
target. The multivariate prediction results on the ETTm1 dataset
serve as good evidence of the above statements. Since the data was
sampled by 15-minute, a prediction length of 24 or 48 is too short
to reflect periodic patterns. Therefore, HI performs much worse
than SOTA models. However, for predicting lengths of 96, 288, and
672, where the 1-day (4x24 data-points) period is well covered, the
relative improvement surges.
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Table 3: Summary of multivariate long sequence time-series forecasting comparison results.

Dataset | ETTh1 | ETTh2

\ ETTm1 | Electricity

Method Metric‘ 24 48 168 336 48 168

336

48 96 288 168 336 720 960

MSE |0.650
MAE | 0.624

0.702
0.675

1.212 1.424
0.867 0.994

1.960
1.322

1.143
0.813

1.671
0.221

4.117

LSTMa 1674

3.434
1.549

3.963
1.788

0.621
0.629

1.392 1.339 1.740
0.939 0913 1.124

2.736
1.555

0.486
0.572

0.574 0.886 1.676
0.602 0.795 1.095

1.591
1.128

MSE |0.991
MAE | 0.754

1.313
0.906

1.824 2.117
1.138 1.280

2.415
1.520

1.531
1.613

1.871
1.735

4.660

Reformer 1.846

4.028
1.688

5.381
2.015

0.724
0.607

1.098 1.433 1.820
0.777 0.945 1.094

2.187
1.232

1.404
0.999

1.515 1.601 2.009
1.069 1.104 1.170

2.141
1.387

MSE |0.686
MAE |0.604

0.766
0.757

1.397
1.291

0.828
0.750

1.806
1.034

4.070
1.681

1.002 1.362

LogTrans 0.846 0.952

3.875
1.763

3.913
1.552

0.419 0.507 0.768 1.462

0.412 0.583 0.792 1.320

1.669
1.461

0.355
0.418

0.368 0.373 0.409
0.432 0.439 0.454

0.477
0.589

MSE |1.293
MAE |0.901

2.742
1.457

3.567
1.687

3.242
2.513

1.456
0.960

1.997 2.655

LSTNet 1.214 1.369

1.380

2.544 4.625
2.591

0.369
0.445

0.394 0.419 0.556
0.476 0.477 0.565

0.605

3.7091.170 1.215 1.542 2.076 2.941 0.599

MSE |0.620
MAE | 0.577

0.692
0.671

0.947 1.094
0.797 0.813

1.241]0.753

0.727

1.461
1.077

3.485

Informer- 1612

2.626
1.285

3.548 (0.306 0.465 0.681 1.162
0.371 0.470 0.612 0.879

1.231
1.103

0.334
0.399

0.353 0.381 0.391
0.420 0.439 0.438

0.492
0.550

MSE |0.577
MAE | 0.549

0.685
0.625

0.931 1.128
0.752 0.873

1.215
0.896

0.720
0.665

1.457
1.001

3.489

Informer 1515

2.723
1.340

3.467
1.473

0.323 0.494 0.678 1.056 1.192|0.344 0.368 0.381 0.406
0.369 0.503 0.614 0.786 0.926|0.393 0.424 0.431 0.443

0.460
0.548

MSE

MAE

| 2
2.143 ‘
HI ‘

0.426 0.498 0.653 0.690 0.714|0.266 0.379 0.572 0.567 0.635
0.390 0.423 0.509 0.527 0.563|0.304 0.374 0.481 0.500 0.530|0.720

1.395 1.668 0.423 0.526 0.655(0.328 0.212 0.247 0.469

0.821 0.387 0.444 0.439

0.518

| 4
1.917 ‘
‘ 0.471

‘1968 1.999 2.762 1.257

0.508|0.329 0.279 0.312

26%
29%

27%
32%

30%
32%

37%
39%

41%
37%

63%
54%

74%
63%

82%

MSE
Improve 68%

MAE

78%
61%

82%
64%

356%
95%

259%
75%

38%
37%

50%
44%

45%
45%

2%
16%

40%
34%

34%
28%

20%
0%

13%
14%

Table 4: Summary of univariate long sequence time-series
forecasting comparison results with MLP.

Method |Informer |HI |MLP |MLP + HI
Dataset ‘Metric‘MSE MAE‘MSE MAE ‘MSE MAE ‘MSE MAE
24 0.098 0.247|0.046 0.166 |0.046 0.165 [0.037 0.146
48 0.158 0.319{0.069 0.210 |0.064 0.193|0.104 0.265
ETTh1 168 0.183 0.346(0.116 0.271 |0.099 0.243|0.103 0.248
336 0.222 0.387(0.137 0.306 |0.170 0.335 |0.093 0.243
720 0.269 0.435|0.186 0.351(0.313 0.483 [0.307 0.482
24 0.093 0.240{0.095 0.231 |0.078 0.214 (0.074 0.207
48 0.155 0.314{0.150 0.300 |0.105 0.252 (0.104 0.249
ETTh2 168 0.232 0.389(0.257 0.409 |0.185 0.337 |0.164 0.316
336 0.263 0.417(0.318 0.465 |0.216 0.371 |0.194 0.351
720 0.277 0.431]0.449 0.549 |0.281 0.428|0.314 0.451
24 0.030 0.137{0.023 0.115 |0.020 0.110 |0.016 0.094
48 0.069 0.203{0.039 0.156 [0.029 0.128(0.030 0.132
ETTm1 96 0.194 0.372|0.046 0.167 |0.070 0.210 (0.069 0.208
288 0.401 0.554(0.081 0.229|0.091 0.238 |0.107 0.264
672 0.512 0.644(0.115 0.270 |0.199 0.372 |0.088 0.227
48 0.239 0.359(0.872 0.690 |0.266 0.370 |0.251 0.354
168 0.447 0.503(0.328 0.393 |0.275 0.372 |0.248 0.347
Electricity|336 0.489 0.528|0.415 0.463 |0.331 0.414 (0.300 0.382
720 0.540 0.571{1.178 0.836 |0.390 0.454 (0.363 0.453
960 0.582 0.608(1.302 0.894 |0.442 0.499|0.464 0.523

4.2 Benefit from Historical Inertia

Being of so much power, HI has the potential to serve as an effective
trick. We now discuss possible ways of implementation from the
perspectives of post-process and pre-process.

4.2.1 Hybrid Model. A model may benefit from combining the
basic model’s and HI’s results in a post-process fashion. For ex-
ample, the simplest implementation would be making a weighted
summation of the two prediction sequences as the proposed MLP +
HI does.

4.2.2  AutoML. The modeling capacity of complex architectures
is definitely valuable, but just in some cases the answer to the
question can be so simple that might not be answered well when it
is complicated by the model. It is desirable that a model’s structure
or complexity can be adaptable to the input, which is also known as
automated machine learning (AutoML) (e.g. Yao et al. 12). A simple

Table 5: Summary of multivariate long sequence time-series
forecasting comparison results with MLP.

Method |Informer |HI |MLP |[MLP + HI
Dataset ‘Metric‘MSE MAE‘MSE MAE ‘MSE MAE ‘MSE MAE
24 0.577 0.549|0.426 0.390 |0.312 0.361 |0.305 0.353
48 0.685 0.625|0.498 0.423 |0.353 0.386 (0.346 0.377
ETThi 168 0.931 0.752|0.653 0.509 |0.450 0.451 |0.453 0.444
336 1.128 0.873|0.690 0.527 |0.489 0.484(0.526 0.497
720 1.215 0.896(0.714 0.563 [0.533 0.526|0.581 0.552
24 0.720 0.665|0.266 0.304 |0.186 0.279 [0.184 0.277
48 1.457 1.001(0.379 0.374 {0.247 0.319|0.253 0.321
ETTh2 168 3.489 1.515[0.572 0.481 {0.370 0.411 |0.378 0.406
336 2.723 1.340(0.567 0.500 {0.410 0.443|0.471 0.479
720 3.467 1.473(0.635 0.530(0.797 0.648 |0.698 0.595
24 0.323 0.369(1.395 0.720 |0.227 0.298 |0.225 0.298
48 0.494 0.503|1.668 0.821 |0.298 0.345|0.300 0.350
ETTm1 96 0.678 0.614|0.423 0.387 |0.335 0.372 [0.331 0.369
288 1.056 0.786|0.526 0.444 |0.360 0.391 [0.361 0.389
672 1.192 0.926|0.655 0.508 |0.438 0.437(0.447 0.444
48 0.344 0.393|0.328 0.329 |0.183 0.272 |0.178 0.265
168 0.368 0.424|0.212 0.279 |0.173 0.275 |0.162 0.258
Electricity|336 0.381 0.431|0.247 0.312 |0.186 0.291 [0.176 0.277
720 0.406 0.443|0.469 0.439 |0.219 0.3210.223 0.322
960 0.460 0.548|0.518 0.471 |0.235 0.335|0.243 0.339

implementation could be when a specific dataset is given, the model
may first analyze its temporal patterns in a pre-processed way, and
then score whether the basic model, HI, or some median variants
should be used for prediction.

5 CONCLUSION

In this paper, we propose a baseline for LSTF, named HI. It directly
takes the most recent time steps in the input as output. Extensive
experiments in four public real-world datasets validate the strength
of HI across different prediction lengths. We hope HI could serve
as a basement and spark future LSTF research.
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