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Abstract—As social animals, attending group activities is an
indispensable part in people’s daily social life, and it is an
important task for recommender systems to suggest satisfying
activities to a group of users. The major challenge in this task is
how to aggregate personal preferences of group members to infer
the decision of a group. Conventional group recommendation
methods applied a predefined strategy for preference aggregation.
However, these static strategies are too simple to model the real
and complex process of group decision-making, especially for
occasional groups which are formed ad-hoc. Moreover, group
members should have non-uniform influences or weights in a
group, and the weight of a user can be varied in different groups.
Therefore, an ideal group recommender system should be able
to accurately learn not only users’ personal preferences, but also
the preference aggregation strategy from data.
In this paper, we propose a novel group recommender sys-

tem, namely SIGR (short for “Social Influence-based Group
Recommender”), which takes an attention mechanism and a
bipartite graph embedding model BGEM as building blocks.
Specifically, we adopt an attention mechanism to learn each user’s
social influence and adapt their social influences to different
groups, and develop a novel deep social influence learning
framework to exploit and integrate users’ global and local
social network structure information to further improve the
estimation of users’ social influences. BGEM is extended to model
group-item interactions. In order to overcome the limitation and
sparsity of the interaction data generated by occasional groups,
we propose two model optimization approaches to seamlessly
integrate the user-item interaction data. We create two large-scale
benchmark datasets and conduct extensive experiments on them.

The experimental results show the superiority of our proposed
SIGR by comparing with state-of-the-art group recommender
models.

I. INTRODUCTION

As social animals, group activities are essential for people’s

social life. For example, families often watch TV programs

together at night; friends often dine out, watch movies, attend

parties and travel together. With the recent development and

prevalence of smart phones and social networking services

(e.g., Meetup and Facebook Events), it is becoming more

convenient and easier for people to get together to form a per-

sistent or occasional group. It is highly demanded to develop

group recommender systems to suggest relevant items/events

(e.g., dining out, movie watching and parties) for a group of

users, known as group recommendation.

The first group recommender system MusicFX [17] was

developed to recommend music to a group of gym users.

Since then, group recommendation has been seen in various

recommendation applications, such as tourism [18] and so-

cial events [16]. There are two types of groups: persistent

and occasional groups [22], [30]. Persistent groups refer to

relatively static groups with stable members and sufficient

group-item interaction records [7], [15], [25], [27], such as

interest-oriented groups in Meetup; while occasional groups

are formed ad-hoc and users may just constitute the groups

for the first time (i.e., cold-start groups) [4], [16], [36].

To make recommendations to persistent groups, each group

can be treated as a virtual user and the personalized recom-

mendation algorithms developed for individual users can be

straightforwardly employed since there are sufficient persis-

tent group-item interaction records. However, for occasional

groups, their historical interaction data is extremely sparse and

even unavailable. Thus, it is infeasible to directly learn the

preference representation of an occasional group, and we can

only learn the preferences of an occasional group by aggregat-

ing the personal preferences of its members. In this paper, we

focus on a more general scenario of group recommendation,

i.e., making recommendations to occasional groups, as the

recommendation techniques developed for occasional groups

can also be applied to persistent groups.

Group recommendation is much more challenging than

making recommendations to individual users, as different

group members may have different preferences. A good group

recommendation system should be able to not only accurately

learn users’ personal preferences, but also model how a

decision or consensus among group members is reached. Prior

studies [2], [28] on group recommendation systems have been

focused on exploring various heuristic aggregation strategies

(e.g., average, least misery and maximum pleasure) to find

a consensus among group members on an item. However,

all these heuristic and predefined aggregation strategies are

too simple to model the real and complex process of group

decision-making, leading to suboptimal group recommenda-

tion performance. Moreover, a user may exhibit different

influences and have different weights in different groups.

In this paper, we focus on the essential problem in group

recommendation – preference aggregation, that is how to

aggregate personal preferences of group members to decide a

group’s choice on items. Rather than exploring new heuristic



and predefined strategies, we first introduce the notion of

personal social influence to quantify and differentiate the

contributions of group members to a group decision, and

then propose to automatically learn the social influence-based

aggregation strategy from the group-item interaction data. The

key challenges are how to learn the social influence of each

user, and how to adapt their influences to different groups.

Inspired by the recent advancement of representation learning,

we propose to overcome the challenges by learning group

representation in the embedding space. To obtain an embed-

ding vector that represents the preferences of a group, we

aggregate the embedding of each group member in a learnable

way. Specifically, we introduce a latent variable to represent a

user’s global social influence that is independent from specific

groups, and then adopt the attention mechanism [3] to adapt

the global social influence to different groups, which is capable

of assigning different weights for a user in different groups

without adding additional parameters. In this way, we can

dynamically adjust the aggregation strategy for a group to

capture the complex group decision-making process.

As the number of group activities a user attends is rather

limited, it is difficult to accurately learn each user’s social

influence without over-fitting, let alone the users who have

never attended any group activity before. To alleviate the

data sparsity issue, we propose a novel deep social influence

learning framework based on stacked denoising auto-encoders

(SDAE) [29] to exploit and integrate the available user social

network information to improve the estimation of user social

influence in the form of regularization. Both global and local

network structure information are considered. Specifically, we

adopt various centrality measures (e.g., PageRank centrality,

degree centrality and eigenvector centrality) to capture the

global structure features, and apply the recent network embed-

ding approaches [8] such as DeepWalk [20] and node2vec [10]

to learn the local structure features of each user node by

preserving the neighborhood information of each node.

We employ the Bipartite Graph Embedding Model

(BGEM) [35] to learn the embedding of users and items in

a low-dimensional space from the group-item interaction data.

However, from the group-item interaction data, we can only

learn embedding of users who have attended at least one group

activity and items that interact with at least one group. Due to

the cold-start nature of occasional groups, they may contain

members who have never attended group activities before.

Besides, the number of group activities that a user attends is

also rather limited. To effectively overcome these limitations,

we propose to leverage the sufficient individuals’ activity data

(i.e., user-item interaction data) to improve the embedding

learning of both users and items. To seamlessly integrate user-

item interaction data with group-item interaction data in the

same embedding space, we propose two model optimization

approaches to implement our Social Influence-based Group

Recommender (SIGR): a two-stage optimization approach and

a joint optimization approach.

Specifically, the two-stage approach first learns embedding

of users and items from the user-item interaction data using

BGEM in the first stage, which is then utilized to initialize

the user/item embedding in the second stage. We will update

the user/item embedding and learn the user social influence

from both group-item interaction data and social network data

in the second stage. The joint approach simultaneously learns

the user/item embedding from both user-item interaction data

and group-item interaction data, and the user social influence

is also learned in this process. The key difference between

these two approaches is that there are two objective functions

to optimize in the two-stage approach, while there is only one

unified objective function in the joint approach.

The main contributions of this paper are summarized below.

• To the best of our knowledge, we are the first to integrate

the attention mechanism with the bipartite graph embed-

ding technique for group recommendation. Specially, we

propose a novel group recommender model (SIGR) based

on these techniques to learn both user embedding and user

social influences from data in a unified way, enabling the

representation learning for occasional groups.

• We propose two model optimization approaches to lever-

age the user-item interaction data to overcome the limita-

tions and alleviate the sparsity of the group-item interac-

tion data, in which both novel positive sampling approach

and negative sampling strategy are developed to advance

the conventional stochastic gradient descent algorithm.

• To overcome the data sparsity and avoid the over-fitting

in the estimation of personal social influence, we develop

a novel deep social influence learning framework to

exploit and integrate both global and local social network

structure features to improve the group recommendation.

• We create two large-scale benchmark datasets for e-

valuating group recommendation systems, especially the

recommenders that are able to make recommendations to

occasional groups. Extensive experiments are conducted

to evaluate the performance of our proposed SIGR, and

the experimental results show its superiority by compar-

ing with the state-of-the-art techniques.
II. PRELIMINARIES

Generally speaking, our proposed SIGR model consists of

two components: 1) interaction learning with BGEM for both

group-item interaction data and user-item interaction data;

and 2) social influence-based group representation learning

that learns the group’s preferences based on the preference

aggregation of its members. We first present the notations

and then formulate the group recommendation problem in this

section. We then introduce the two key ingredients of our

proposed SIGR in Section III and VI respectively. Section V

discusses the model optimization approaches.

A. Notations and Problem Formulation

Following the convention, we use bold capital letters (e.g.,

X) to represent both matrices and graphs, and use squiggle

capital letters (e.g., X ) to denote sets. We use lowercase letters

with superscript~ (e.g., ~x) to denote vectors. All vectors are

in column forms if not clarified. We employ normal lowercase

letters (e.g., x) to denote scalars.
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Fig. 1: Illustration of the input data for the task of making

recommendations to occasional groups, including user-item

interactions, group-item interactions and user-user interactions.

We assume that there are a set of users U , a set of groups
G and a set of items V in the group recommender system.

The m-th group gm ∈ G consists of a set of users, and we

use Gm to denote this set of users. There are three kinds

of observed interaction data among U , G and V : user-item
interactions, group-item interactions and user-user interactions.

We use bipartite graphs GUV and GGV to represent user-

item interactions and group-item interactions respectively, and

use a general graph to denote user-user interactions (i.e., user

social network). Figure 1 illustrates the input data of our group

recommendation task. Then, given an occasional group gm,
our task is to recommend a ranked list of items that group gm
may be interested in, which is formally defined as follows.

Input: A set of users U , a set of groups G, a set of items

V , group-item interactions GGV , user-item interactions GUV

and user-user interactions GS .

Output: A personalized ranking function that maps an item

to a ranking score for a target occasional group fg : V −→ R.

III. INTERACTION REPRESENTATION AND LEARNING

In this section, we take user-item interaction data as an

example to show how to employ the BGEM model [35] to

learn the embedding of heterogenous interaction entities. We

choose BGEM to perform interaction learning because of its

success in bipartite graph embedding [35], and its superiority

has also been validated in our Experiment 1.

We use a bipartite graph to represent the interactions be-

tween users and items, i.e., GUV = (U ∪ V , EUV ), where

EUV is the set of edges between users and items. If user ui

interacts with item vj , there is an edge eij between them. If

the user’s rating information is available, the weight on the

edge eij is equal to ui’s normalized rating for item vj (i.e.,

wij is normalized in the range [0, 1]); otherwise, the weight

is set to be one. Given a user ui, we define the probability of

ui interacting with an item vj as follows:

p(vj |ui) =
exp(~ui · ~vj)

∑

vj′∈V
exp(~ui · ~vj′)

(1)

where ~ui is the embedding of user ui that represents her/his

preferences in the latent space, and ~vj is the embedding of

item vj .

Following the recent word and network embedding tech-

niques [19], BGEM tries to minimize the KL-divergence

between the estimated neighbor probability distribution of

each user p(·|ui) and the empirical distribution p̂(·|ui). The
empirical distribution is defined as p̂(vj |ui) = wij/di, where
wij is the weight on the edge eij and di is the outdegree of user
node ui, i.e., di =

∑
vj∈V wij . By omitting some constants,

we obtain the following objective function:

OUV = −
∑

eij∈EUV

wij log p(vj |ui). (2)

By minimizing the above objective function, we are able to

learn each user’s embedding ~ui and each item’s embedding ~vj
in a d-dimensional latent space.
However, directly optimizing the above objective function

is computationally expensive because it requires traversing the

entire set of items when computing the conditional probability

p(vj |ui). To overcome this issue, BGEM adopts the approach

of negative sampling technique proposed in [19], which sam-

ples multiple negative items to form corrupted examples (or

negative edges) according to some noise distribution for each

positive example (ui, vj). More precisely, it specifies the

following objective function for each positive example (ui, vj)
(i.e.,each observed edge eij):

log σ(~ui · ~vj) +
M
∑

k=1

Evk∼Pn(v)[log σ(−~ui · ~vk)], (3)

where σ(x) = 1/(1 + exp (−x)) is the sigmoid function.

The first term maximizes the probability of the observed pos-

itive example, and the second term minimizes the probability

of M corrupted examples drawn from a noise distribution

Pn(v). Evk∼Pn(v)[log σ(−~ui · ~vk)] is the expected value of

log σ(−~ui · ~vk). We set the noise distribution Pn(v) ∝ d0.75v ,

following [19], where dv is the out-degree of item node v.
The natural interpretation of an arbitrary missing interaction

is that the user does not know about the existence of the item

and thus there is no interaction. It is also possible that the user

does know about the item and chooses not to interact with it,

because she dislikes it. The more popular an item is, the more

probable it is that the user knows about the item, thus it is more

likely that a missing interaction expresses “dislike”. Therefore

we should sample items in proportion of their popularity.

We substitute log p(vj |ui) with Formula 3 in the objective

function OUV , and the objective can be reformulated as

follows:

OUV = −
∑

eij∈EUV

wij

(

log σ(~ui · ~vj)

+

M
∑

k=1

Evk∼Pn(v)[log σ(−~ui · ~vk)]
)

.

(4)

Thus, the task is equivalent to distinguish positive examples

(ui, vj) from the corresponding corrupted examples, using the

logistic regression method. A straightforward way to optimize

OUV is using the stochastic gradient descent (SGD). To

speed up the training process, we adopt the asynchronous

stochastic gradient descent algorithm (ASGD) [23] for model



optimization, which guarantees the scalability and efficiency

of our model in practice. In each step, the ASGD algorithm

samples a positive example (ui, vj) and M negative examples

(ui, vk) to update model parameters, and the gradients w.r.t.

~ui, ~vj and ~vk are calculated as follows:

∂OUV

∂~ui

= wij

(

M
∑

k=1

Evk∼Pn(v)[σ(~ui · ~vk)~vk ]− σ(−~ui · ~vj)~vj
)

, (5)

∂OUV

∂~vj
= −wijσ(−~ui · ~vj)~ui, (6)

∂OUV

∂~vk
= wijσ(~ui · ~vk)~ui. (7)

IV. GROUP REPRESENTATION LEARNING

Similarly, the interactions between groups and items can

also be represented by a bipartite graph GGV = (G∪V , EGV )
where G is a set of groups and EGV is a collection of edges

between groups and items. If group gm interacts with item

vj , there will be an edge emj between them. As the rating

information of an occasional group is rarely available, we

simply set the weight on the edge emj to be one. Given a

group gm, we define the probability of gm interacting with an

item vj as follows:

p(vj |gm) =
exp(~gm · ~vj)

∑

vj′∈V exp(~gm · ~vj′)
, (8)

where ~gm is the embedding of group gm in the latent space.

Following the interaction learning presented in Section III,

we try to minimize the KL-divergence between the estimated

neighbor probability distribution of each group p(·|gm) and the
empirical distribution p̂(·|gm). By omitting some constants, we
get the following objective function:

OGV = −
∑

emj∈EGV

wmj log p(vj |gm). (9)

By adopting the negative sampling technique, the above ob-

jective function is reformulated as follows:

OGV =−
∑

emj∈EGV

wmj

(

log σ(~gm · ~vj)

+
M
∑

k=1

Evk∼Pn(v)[log σ(−~gm · ~vk)]
)

.

(10)

However, we are not able to directly learn the embedding

of an occasional group ~gm from the group-item interaction

data due to the cold-start nature of occasional groups. In

contrast to persistent groups, an occasional group is defined as

a number of persons who do something occasionally together,

like having a dinner, watching a movie, attending a party and

visiting a POI [5]. Its members have a common aim only in a

particular moment. There are many contexts where a group of

persons is not established for some shared long-term interests,

but might be occasionally interested in getting together for a

common aim, e.g., people attending events together or travel-

ing together. As occasional groups are typically short-lived by

definition and many new occasional groups are being created,

they often have little or no historical interaction data. The

group-item interaction matrix is much sparser than user-item

matrix (referring to relevant statistics of two real-life datasets

in Table I). The problem of cold-start groups arises naturally,

and the classic group recommendation techniques [7], [15] that

assume groups have ample historical interaction records would

significantly underperform in this scenario.

To address the cold-start problem, we propose to learn

a group’s embedding by aggregating the embedding of its

members. Specifically, given an occasional group gm, its

embedding is represented as follows:

~gm =
∑

ui∈Gm

λim~ui, (11)

where Gm represents the set of users who constitute group gm.
As group members have different social statuses, expertise,

reputation, personality and other social factors [1], [11], they

are not equal and have different social influences in the

group’s decisions and choices. Thus, we use λim to denote

ui’s social influence/weight in group gm, and it also reflects

how much ui contributes to the group’s decision-making. A

user can exhibit different social influences in different groups

that consist of different members. An important aspect of

group activities is the need to reach consensus. In non-virtual

environments, consensus results from negotiation among group

members, especially those group members with low social

influences are often willing to modify their initial individual

opinions and compromise to satisfy the preferences of the

influential members. Sometimes, a group’s preferences reflect

the preferences of a few influential members (e.g., group

leaders or opinion leaders) rather than the common preferences

of most group members.

A. Attention-based Social Influence Learning

How to learn the social influence λim of each member ui

in each group gm from the group-item interaction data? As

occasional groups have few historical interactions on items, it

is impossible to directly learn the group-aware personal social

influence λim. In light of this, we introduce a non-negative

latent variable γi to represent the global social influence of

user ui, which is independent from specific groups. Then,

the group-aware personal social influence λim is computed

as follows, inspired by the attention mechanism [3].

λim =
exp(γi)

∑

uj∈Gm
exp(γj)

. (12)

where exp(γi) reflects the relative importance to influence a

group decision. Thus, we only need to learn a global personal

social influence γi for each user ui rater than a large number

of group-aware personal social influence λim from the group-

item interaction data.

However, the group-item interaction data is extremely sparse

and the number of group activities a user attends is also rather

limited, hence even learning global social influence may also

suffer from over-fitting problems. Specifically, if a user ui has

attended only very few group activities, his/her estimated glob-

al social influence may not be reliable or accurate. Moreover,

for users who have never participated in any group, we cannot



learn their social influences from the group-item interaction

data. Inspired by [11], [16], we exploit and integrate the user

social network information that may provide strong signals

about users’ global social influences. Specifically, we explore

and exploit both global and local network structure informa-

tion. We adopt various centrality measures (e.g., PageRank

centrality, degree centrality, closeness centrality, betweenness

centrality and eigenvector centrality) to capture the global

structure features, and apply the recent network embedding

approaches such as DeepWalk [20] and node2vec [10] to

obtain the local structure features of each user node by

preserving the neighborhood information of each node.

How to integrate the social network features into the social

influence learning? We use ~xi to denote the social network

feature vector of user ui, and also introduce a context vector

~ω as a feature selector to assign different weights to different

social network features. Then, we take dot product between

the social network feature vector ~xi and the context vector ~ω
as the Gaussian prior for the personal global social influence

variable, i.e., γi ∼ N (~xi · ~ω + b, ρ2S), where b is a global

bias term. Rather than simply defining the personal global

social influence γi being equal to the weighted sum of the

social network features, we assume that γi follows a normal
distribution with the mean ~xi · ~ω + b, to learn a more robust

personal global social influence, since personal global social

influences may also be affected by other unknown factors.

As we introduce a Gaussian prior for the personal social

influence parameter γi, a corresponding regularization term

should be added to our objective function, and our new

objective function is defined as follows.

OSGV = OGV +RS, (13)

where RS = 1
2ρ2

S

∑
ui∈U (γi − (~xi · ~ω+ b))2, and the variance

ρ2S actually plays the role of controlling the weight of the

regularization term in the new objective function. Note that all

global social network feature values are normalized into the

same range [0, 1], and the local social network features (i.e.,

user node embedding) are normalized into the range [−1, 1].
Note that by integrating the social network features, we are

able to learn the global social influences of users who have

never attended any group activity before, which effectively

overcomes the limitation of the group-item interaction data.

B. Deep Social Influence Learning

However, the above linear approach for exploiting social

network features ignores the correlation among social network

features and also fails to capture the non-linear and complex

inherent structure of social network features. It is crucial to

account for the interactions between features, especially in

a non-linear way. Inspired by the success of deep neural

networks in learning non-linear feature interactions, we in-

vestigate how to apply an unsupervised deep learning model

called stacked denoising auto-encoders (SDAE) to obtain a

latent social network feature vector ~hi from the raw/origial

feature vector ~xi. SDAE [29] is a feedback neural network

for learning the representation of the corrupted input data
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Fig. 2: Deep Social Influence Learning from Social Network

Features.

by learning to predict the clean itself in the output. Before

presenting the model detail, we first introduce the notations

used in SDAE. We use L to denote the number of network

layers, and use matrix Xl to represent the output of layer l in
SDAE. Note that we use the last layer’s outputXL to represent

the original social network features of all users, where the i-
th row is the original social network feature vector of user i
(i.e., ~xi). Similarly, we use matrix X0 to represent the noise-

corrupted matrix (randomly masking some entries of XL by

marking them zero). Wl and bl are weight parameter matrix

and bias parameter vector, respectively, for layer l.
Figure 2 illustrates a 4-layer SDAE. As shown in this figure,

the first L/2 layers of the network (from X0 to X2) usually

act as an encoder part, which maps the corrupted input X0 to

a latent compact representation X2, and the last L/2 layers

(from X2 to X4) usually act as the decoder part, which

recovers the original input X4 from the latent representation

X2. Given that both the original input XL and the corrupted

input X0 are observed, we present the generative process of

each layer l in SDAE as follows:

1) For weight parameter Wl, draw Wl ∼ N (0, ρ2W I).
2) For bias parameter, draw bl ∼ N (0, ρ2bI).
3) For the output of each layer, draw

Xl ∼ N (σ(Xl−1Wl + bl), ρ
2
XI).

We take the output of the L/2-th layer as the latent represen-
tation of social network features, i.e., ~hi is equal to the i-th
row of XL

2
. For each user i, his/her global social influence γi

is generated as: γi ∼ N (~hi · ~ω + b, ρ2S).
By integrating SDAE model into our group representation

learning framework, we get the following joint objective

function:
OSGV = OGV +OSDAE +RS , (14)

where OSDAE is defined as follows.

OSDAE =
1

2

∑

l

(
‖σ(Xl−1Wl + bl) − Xl‖

2
2

ρ2
X

+
‖Wl‖

2
2

ρ2
W

+
‖bl‖

2
2

ρ2
b

). (15)

V. MODEL OPTIMIZATION

By optimizing the above objective function OSGV in Equa-

tion (14), we are only able to obtain the embedding of users



who have attended at least one group activity and embedding

of items that interact with at least one group. However,

due to the cold-start nature of occasional groups, they may

contain members who have never attended any group activity

before. Besides, the group-item interaction matrix is very

sparse, thus the embedding of both users and items learned

by optimizing OSGV is not accurate or reliable. To effectively

overcome the limitations and sparsity issue of the group-

item interaction data, we propose to leverage the sufficient

user-item interaction data. Technically, we develop two model

optimization approaches to integrate OUV with OSGV : Two-

stage Training and Joint Training.

Two-stage Training. We first optimize the objective func-

tion OUV to obtain the embedding of users and items (~ui

and ~vj) in the first stage. In the second stage, these learned

embedding are taken as the initial values of the embedding of

users and items in OSGV , and then they will be also fine-tuned

and updated during the process of optimizing the objective

OSGV . Specifically, we adopt the SGD algorithm to optimize

OSGV . In each gradient step, we randomly sample a positive

example (gm, vj) andM negative examples (gm, vk) to update
model parameters. The gradients w.r.t the model parameters

Wl, bl, γi and ~ω, are updated as follows:

∂OSGV

∂Wl

=
∂OSDAE

∂Wl

,
∂OSGV

∂bl

=
∂OSDAE

∂bl

, (16)

∂OSGV

∂γi
=

∂OGV

∂~gm

∂~gm

∂γi
+

RS

γi
, (17)

∂OSGV

∂~ω
=

∂RS

∂~ω
= −

1

ρ2
S

∑

uj∈Gm

(

γj − (~hj · ~ω + b)
)

~hj , (18)

where the detailed gradient computation formulas for Wl and

bl in SDAE model can be found in [37]. ∂OGV

∂~gm
, ∂~gm

∂γi
and RS

γi

are computed, as follows.

∂OGV

∂~gm
= wmj

(

M
∑

k=1

Evk∼Pn(v)[σ(~gm · ~vk)~vk] − σ(−~gm · ~vj)~vj
)

, (19)

∂~gm

∂γi
= exp(γi)

~ui

∑

uj∈Gm
exp(γj )−

∑

uj∈Gm
exp(γj)~uj

(
∑

uj∈Gm
exp(γj))2

, (20)

∂RS

∂γi
=

1

ρ2
S

(γi − (~hi · ~ω + b)). (21)

And the gradients w.r.t. ~ui, ~vj and ~vk are updated as follows.

∂OSGV

∂~ui

=
∂OGV

∂~ui

=wmjλim

(

M
∑

k=1

Evk∼Pn(v)[σ(~gm · ~vk)~vk ]

− σ(−~gm · ~vj)~vj
)

,

(22)

∂OSGV

∂~vj
=

∂OGV

∂~vj
= −wmjσ(−~gm · ~vj)~gm, (23)

∂OSGV

∂~vj
=

∂OUV

∂~vk
= wmjσ(~gm · ~vk)~gm. (24)

Joint Training. By combining objectives OUV and OSGV ,

the joint objective function can be simply defined as follows:

OGUV = OSGV +OUV . (25)

To optimize the above joint objective function, we cannot s-

traightforwardly use the Stochastic Gradient Descent algorithm

Algorithm 1: Joint Training Algorithm

Input: GUV , GGV , number of positive samples N , number of
negative samples per positive sample M ;

Output: The parameter set Θ = {~ui, ~vj , γi, ~ω,Wl,bl}

1 iter ← 0;
2 while iter ≤ N do

3 Flip a coin c according to a bernoulli( 1
1+η

);
4 if c = 1 then
5 Randomly draw a positive edge eij ∈ EGV ;
6 Sample M negative edges for eij ;
7 Update the associated model parameters w.r.t.

Equations (16, 17, 18, 22, 23, 24);
8 end
9 else
10 Randomly draw a positive edge eij ∈ EUV ;
11 Sample M negative edges for eij ;
12 Update the associated model parameters w.r.t.

Equations (5, 6, 7);
13 end
14 iter=iter+1;
15 end

(SGD), because OSGV and OUV in Equation 25 have different

training instances: group-item pairs vs. user-item pairs. To

address this issue, one possible solution is to first merge all

edges in edge sets EUV and EGV into a big edge set, and then

randomly sample a positive edge from the merged edge set

in each gradient step, just as done in [31], [35]. However,

the group-item interaction graph is much sparser than the

user-item interaction graph, i.e., the number of edges in EGV

is much smaller than the number of edges in EUV . If we

uniformly draw a positive edge from the merged edge set to

perform stochastic gradient descent, most of sampled positive

edges would be user-item edges, and there would not be

enough group-item interaction edges for accurately estimating

personal global social influences γi, feature weight vector ~ω
and other parameters in SDAE. To overcome the challenge of

data skewness, we propose a novel joint training procedure

in Algorithm 1. Instead of merging all edges into a big edge

set, we will first draw or choose a bipartite graph with the

sampling probabilities 1
1+η

and η
1+η

for the group-item graph

and user-item graph respectively, and then randomly draw a

positive edge andM negative edges from the sampled bipartite

graph to update the gradients. By doing so, the joint objective

function is actually changed to the following equation:

OGUV = OSGV + ηOUV , (26)

where η is a non-negative hyper-parameter that is used to

control the weight or contribution of the objective OUV .

Time Complexity Analysis. The time complexity for each

stochastic gradient step in Algorithm 1 is O(d ·M) = O(d),
where M is often small (less than 10) in large-scale dataset-

s [35] and thus can be ignorable; d is the embedding dimension
and typically smaller than 100. We assume that our model

needs N samples (i.e., N stochastic gradient steps) to reach

convergence, thus its overall time complexity is O(d ·N). In
practice, the required number of stochastic gradient steps N
is typically proportional to the number of edges [35].



A. Negative Sampling of Items

How to sample M negative items to form M negative

edges (i.e., corrupted examples) for each positive edge (i.e.,

each observed edge)? For a positive user-item edge (ui, vj)
on GUV , we employ the widely adopted degree-based noise

distribution Pn(vk) ∝ d0.75vk
[19], where dvk is the out-degree

of item node vk on the user-item graph. However, this classic

negative sampling method does not apply to the occasional

group-item interaction graph GGV , because the group-item

graph is extremely sparse and the variance of its node degrees

is not so obvious. In this case, the degree-based negative sam-

pling strategy may degrade to the uniform negative sampling.

Most negative examples generated in this way are “too easy”

and will contribute little to learning an effective discriminator,

because they are obviously false. To generate more difficult

and informative negative examples for each positive edge

(gm, vj) on GGV , we propose a novel group-aware negative

sampling technique by leveraging the user-item interaction

graph. Specifically, given a group gm, the noise distribution

is changed to be group-aware, i.e., P gm
n (vk) ∝ (dgmvk + γ)0.75,

where dgmvk represents the popularity of item vk among its

members, which can be easily derived from the user-item

interaction graph GUV as follows dgmvk =
∑

uj∈Gm
wjk; γ

is a smoothing constant parameter which assigns a small

probability to items that have no interactions with its group

members. Thus, the generated negative items in this way will

be more popular among the group’s members, and they are

more informative and helpful to learn discriminative group-

aware social influences λjm, which finally leads to effective

learning of global social influences γj , feature weight vector
~ω and SDAE component.

B. Group Recommendation using SIGR

Once we have learned the model parameters Θ =
{~ui, ~vj , γi, ~ω,Wl,bl} in SIGR, given an occasional group

gm, we first compute the group-aware social influence λim

of each member in this group according to Equation (12),

then we can obtain the group’s embedding ~gm according to

Equation (11). Finally, a ranking score for each item vj can

be computed according to the dot product of ~gm and ~vj , i.e.,
fg(gm, vj) = ~gm · ~vj , and then the top-n items with highest

ranking scores will be recommended to group gm.

VI. EXPERIMENT SETUP

In this section, we introduce the experimental settings,

including research questions to answer, datasets, evaluation

protocols and comparison methods.

A. Research Questions

We conduct extensive experiments on two large-scale

benchmark datasets to answer the following research questions

and validate our technical contributions.

RQ1: How does the bipartite graph embedding model BGEM

perform in modeling interactions? Can it provide more accu-

rate personalized recommendation for individual users?

RQ2: How does our proposed group recommender model

TABLE I: Basic statistics of the two datasets

Yelp Douban-Event

# Users 34,504 70,743
# Groups 24,103 110,597
# Items 22,611 60,028

Avg. group size 4.45 4.82
Avg. #interactions for a group 1.12 1.48
Avg. #interactions for a user 13.98 48.38
Avg. #friends for a user 20.77 86.08

SIGR perform as compared with state-of-the-art group rec-

ommenders and various predefined aggregation strategies?

RQ3: Can we improve the group recommendation by lever-

aging the social network structure information to improve

the estimation of personal social influences? If yes, which

approach is better at integrating the social network structure

features, the linear modeling approach or our proposed SDAE-

based deep social influence learning framework?

RQ4: Can we improve the group recommendation by integrat-

ing the user-item interaction data? If yes, how do our proposed

two model optimization approaches perform on heterogenous

interaction data? Furthermore, for the joint optimization ap-

proach, which negative sampling strategy is more suitable for

the group-item interaction data?

RQ5: How do the hyper-parameters (e.g., η and M ) affect the

performance of SIGR?

B. Datasets

As existing publicly available group recommendation

datasets such as CAMRa20111 and Movielens-Group [36]

consist of either a smaller number of persistent groups or

randomly generated groups and they do not contain the user

social network information, they are not suitable to evaluate

our solution SIGR. This is why we need to create two large-

scale benchmark group recommendation datasets based on

the Yelp Challenge dataset2 and Douban-Event dataset [35].

Douban Event is the largest online event-based social network

in China that helps people publish and participate in social

events. For each user, we acquired her event attendance list

and social friend list. For each event, its time and venue

were also collected. Yelp allows users to share their check-

ins about local businesses (e.g., restaurants) and create social

connections with other users. Each check-in or review contains

a user, a timestamp and a business, indicating the user visited

the business at that time. In our Yelp dataset, we only focus on

the restaurants located in the Los Angeles area, where there

are 34,504 users and 22,611 restaurants.

As both Yelp and Douban-Event do not contain explicit

group information, we extract implicit group activities as

follows: we assume if a set of users who are connected on

the social network visit the same restaurant at the same time

or attend the same event, they are the members of a group and

the corresponding activities are group activities. The statistical

information of the two datasets is shown in Table 1. From the

table, we can see that group-item interaction data is much

1http://2011.camrachallenge.com/2011
2https://www.yelp.com/dataset/challenge



sparser than the user-item interaction data. For example, in

the Douban-Event dataset, a group has only 1.48 interaction

records on average, but a user has 48.38 interaction records.

C. Evaluation Methodology

To evaluate the performance of group recommendation

systems, we first rank all group-item interaction records ac-

cording to their timestamps in each dataset, and then use the

80-th percentile as the cut-off point so that the group-item

interactions before this point will be used for training, and the

rest are for testing. In the training dataset, we choose the last

10% records as the validation data to tune the model hyper-

parameters such as η and M . According to the above dividing

strategies, we split the group-item interaction records in each

dataset D into the training set Dtraining and the test set Dtest.

We employ the widely adopted metric Hits ratio [9], [14],

[35] to measure the recommendation accuracy. Specifically,

for each group-item interaction (g, v) in the test set Dtest:

(1) We compute a ranking score for item v as well as other

items that group g has never interacted with.

(2) We form a top-n recommendation list by picking n items

with the highest ranking scores. If the ground-truth item v
appears in the top-n recommendation list, we have a hit.

Otherwise, we have a miss.

The metric Hits ratio is defined as follows:

Hits@n =
#hit@n

|Dtest|
, (27)

where #hit@n denotes the number of hits in the test set, and

|Dtest| is the total number of test cases in the test set. A good

group recommender model should achieve higher Hits@n.
Besides Hits ratio, we also adopt the commonly used metric

Mean Reciprocal Rank (MRR) to measure the recommenda-

tion accuracy, and it is defined as follows:

MRR =
1

|Dtest|

∑

(g,v)∈Dtest

1

rank(v)
. (28)

MRR is an average of the reciprocal rank of the ground-truth

item v among all items except those which group g has also

interacted with, and a good recommender model should have

a bigger MRR value.

Similarly, we also apply the above evaluation procedure to

the personalized recommendation for individual users.

D. Comparison Methods

To answer the five research questions, we design the fol-

lowing five experiments with different comparison methods.

Experiment 1 To answer RQ1, we compare BGEM with

the following four strong baseline models that learn personal

preferences from the user-item interaction data for making

recommendations to individual users.

User-based CF: This is a standard user-based collaborative

filtering method, which has also been used for group recom-

mendation by integrating predefined aggregation strategies.

BPR [24]: This method adopts a pairwise ranking loss function

to optimize the matrix factorization model, which is tailored

to learn from implicit feedback. It is a highly competitive

baseline for top-n recommendation.

eALS [13]: This is a state-of-the-art weighed matrix factoriza-

tion method for implicit feedback data. It treats all unobserved

interactions as negative instances and weighting them non-

uniformly by the item popularity.

NCF [12]: Neural Collaborative Filtering (NCF) is a state-

of-the-art collaborative filtering model that uses a neural

architecture to model the interactions between users and items.

Experiment 2 To answer RQ2, we compare our SIGR with

the following two state-of-the-art group recommender models.

AGREE [7]: Attentive Group Recommendation system adopts

NCF to model the group-item interaction data and also uses

a standard attention network to learn the weight of each

user in the group decision-making. However, this solution

does not consider the data sparsity issue of the group-item

interaction data in learning user weights, and thus is inca-

pable of leveraging the social network structure information.

PIT [16]: Personal Impact Topic model (PIT) is a topic model

developed for group recommendation based on the assumption

that influential users will become the representatives of a

group to make item selections. However, PIT only performs

interaction learning on the group-item interaction data and

cannot seamlessly integrate the user-item interaction data.

Although COM [36] is also a state-of-the-art group recom-

mender model, we do not compare with it as AGREE has

shown superior performance over COM on all their dataset-

s [7]. To validate the effect of learning the aggregation strategy

from data, we compare with another line of methods that apply

a predefined aggregation strategy. For these methods, we first

run BGEM to learn individuals’ preferences, and then apply

the aggregation strategy to get the group’s preferences.

BGEM+avg: It adopts the simplest aggregation strategy [4]

that averages the preferences of group members as the group

preferences, and it assumes that each member contributes

equally to the group’s decision.

BGEM+lm: It applies the least misery strategy [2] in which

the least satisfied member determines the final group decision,

just like the well-known cask principle.

BGEM+mp: It employs the maximum pleasure strategy [4]

that tries to maximize the satisfaction of group members.

Experiment 3 To answer RQ3, we design three different

versions of our SIGR: SIGR-N, SIGR-L and SIGR-D. SIGR-

N does not consider the social network structure information.

SIGR-L and SIGR-D exploit and integrate the social network

structure features by utilizing the linear modeling approach

and SDAE-based deep learning approach, respectively. The

node2vec [10] is employed to learn the local network structure

features (i.e., user node embedding in the social network).

Experiment 4 To answer RQ4, we compare three model

optimization approaches: Simple Training (ST), Two-stage

Training (TST) and Joint Training (JT). ST optimizes our

SIGR model only on the group-item interaction data, while

TST and JT integrate the user-item interaction data. For the

joint training approach, we further compare two different neg-

ative sampling strategies: the classic degree-based sampling

yan
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Fig. 3: Personalized Recommendation Performance.

strategy and our proposed group-aware sampling strategy.

Thus, we implement two versions of JT: JT-C and JT-G.

Experiment 5 To answer RQ5, we investigate how the

performance of our SIGR varies w.r.t. different key hyper-

parameter setup, including η that controls the contribution of

the user-item interaction data during the model optimization,

the variance 1/ρ2S that controls the weight of the regularization

term in Equation (13), the number of iterations N and the

number of negative samples M . For the hyper-parameters in

the SDAE component, we follow their optimal setup in [37].

For other hyper-parameters, we perform cross-validation and

use the grid search algorithm to obtain the optimal hyper-

parameter setup on the validation dataset (e.g., the dimension

of embedding space d = 50).

VII. EXPERIMENTAL RESULTS

In this section, we present the results of our designed 5

experiments above.

A. Performance on Personalized Recommendation (RQ1)

This experiment studies BGEM’s capability of modeling

and predicting interactions, and the comparison results on

the task of top-n recommendation for individual users (i.e.,

user-item interaction prediction) are shown in Fig. 3. All

differences between BGEM and others are statistically sig-

nificant (p < 0.01). We only show the performance where

n is set to 1, 5, 10, 15, 20, as a greater value of n is

usually ignored in the recommendation application. From the

results, we can observe that BGEM significantly outperforms

other state-of-the-art recommender models, which justifies our

choice of BGEM as the foundation of our proposed SIGR

model. Another observation is that all recommender models

achieve higher recommendation accuracy on Douban-Event

dataset, because the user-item interaction data on Yelp dataset

is sparser. However, the superiority of BGEM is more obvious

in the Yelp dataset, showing BGEM is able to better overcome

the data sparsity by representing user-item interactions in the

form of bipartite graph and extending the negative sampling

technique for model optimization. BGEM beats the most

advanced NCF model, because NCF is too complex with much

more parameters to learn, which easily leads to overfitting in

the sparse interaction data setting.

B. Overall Group Recommendation Performance (RQ2)

Fig. 4 shows the results of Experiment 2 on Yelp and

Douban-Event datasets. We have the following observations.

(1) Our proposed SIGR achieves the best performance on
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Fig. 4: Group Recommendation Performance.

the two datasets for group recommendation, significantly out-

performing other state-of-the-art group recommender models

(all the p-values between our SIGR and each comparison

method are much smaller than 0.01, which indicates that the

improvements are statistically significant). This validates the

effectiveness of our SIGR solution, especially our proposed

novel techniques to exploit and integrate the user-item in-

teraction data and the social network data to overcome the

sparsity issue of the group-item interaction data in learning

user embedding and personal social influence respectively.

AGREE cannot leverage the social network structure informa-

tion and PIT is incapable of integrating user-item interaction

data. (2) SIGR, AGREE and PIT consistently outperform

BGEM+avg, BGEM+mp and BGEM+ml, showing the advan-

tage of automatically learning the aggregation strategy from

data over the predefined aggregation strategies. (3) There is no

obvious winner among the predefined aggregation strategies.

An aggregation strategy might work well in some datasets but

perform poorly in others due to the unique characteristics of

the datasets. For example, the average aggregation strategy

(BGEM+avg) achieves the best performance among the three

predefined aggregation strategies on Yelp dataset, while the

most pleasure aggregation strategy (BGEM+mp) outperforms

the other two on Douban-Event dataset.

C. Importance of Exploiting Social Network Features (RQ3)

Fig. 5 shows the results of Experiment 3 on Yelp and

Douban-Event datasets. The following observations are made

from the results. (1) Both SIGR-L and SIGR-D significant-

ly and consistently outperform SIGR-N on both Yelp and

Douban-Event datasets, showing the importance of leverag-

ing the social network structure information to improve the

group recommendation. As the interaction data generated

by occasional groups is extremely sparse, it is infeasible to

accurately estimate personal social influences purely from the

group-item interaction data. Moreover, for users who have not

attended any group activities before (i.e., cold-start users), it
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Fig. 5: Effect of Leveraging Social Network Structure

Features.

is impossible to infer their social influences. Integrating the

social network data can effectively overcome these limitations

of the group-item interaction data, as social network structure

features strongly indicate user social influences. (2) SIGR-

D achieves higher recommendation accuracy than SIG-L,

which validates the effect of capturing and modelling non-

linear interactions among social network features in estimating

personal global social influences.
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Fig. 6: Visualization for the sampled 10 groups w.r.t.

attention weights and normalized PageRanks of group

members, where x-axis represents the member-ID in a

group and the y-axis represents the group-ID. Note that

all original group IDs and user IDs have been transformed

into relative IDs. The larger a value is, the darker color

its corresponding cell has.

As we exploit and integrate both global and local social

network structure features, we also evaluate the importance

of each type of network structure features as well as each

specific global feature. Due to the space limitation, we do not

report the detailed experimental results but our findings. We

find that global network structure features are more effective

than local network structure features for improving the group

recommendation by facilitating more accurate estimation of

personal social influences. Besides, among all global network

features, the PageRank feature is the most important one. We

randomly select 10 groups for case studies and each group

consists of 15 members. The heat map shown in Fig. 6 visu-

alizes the correlation between the learned attention weight λim

of each group member and her/his PageRank. For example, as

shown in Fig. 6 (a), users 3 and 10 have the largest attention

weights (i.e., the largest social influences) in group 6, which

are indicated by their darkest cells. As shown in Fig. 6 (b),

these two users also have the highest PageRanks in group 6.

D. Importance of User-Item Interaction Data (RQ4)

Fig. 7 shows the results of Experiment 4. We make three

observations from the results. (1) All TST, JT-C and JT-G
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Fig. 7: Comparison of Different Model Optimization Ap-

proaches.

significantly outperform ST on both Yelp and Douban-Event

datasets, showing the importance and necessity of leveraging

the user-item interaction data for training our SIGR model.

(2) JT-C and JT-G perform better than TST, which shows the

advantage of our proposed joint model optimization approach

over the two-stage optimization approach. This is because

the embedding spaces separately learned from the user-item

interaction data and group-item interaction data may not be

compatible. Besides, the experimental results also indicate

that our proposed joint model optimization approach can

effectively perform model optimization on heterogenous in-

teraction data (e.g., the mixture of both user-item and group-

item interaction data) and address the issue of data skewness.

(3) JT-G achieves better performance than JT-C, showing that

our proposed group-aware negative sampling strategy is more

suitable for the sparse group-item interaction graph than the

classic degree-based negative sampling strategy.

E. Impact of Tuning Hyper-parameters (RQ5)

Tables II–V show the results of Experiment 5. Due to the

space limitation, we only show the experimental results on

Yelp dataset, and similar results are also achieved on Douban-

Event dataset. The hyper-parameters η and 1/ρ2S play similar

roles in our SIGR model, and they control the importance or

contributions of the user-item interaction data and the social

network data, respectively. 1/ρ2S is essentially a regularization

weight. When η and 1/ρ2S become extremely small, the effects

of the user-item interaction data and the social network data

will become ignorable. To study their impacts, we test the

performance of SIGR model by varying the values of η and

1/ρ2S from 0.1 to 1.0 and from 0.001 to 1.0 respectively, and

the results are presented in Tables II and III. From the results,

we observe that the recommendation accuracy of SIGR first

increases with the increasing η and 1/ρ2S , and then begins

to decrease. Our SIGR achieves its best performances with

η = 0.5 and 1/ρ2S = 0.05.
We also investigate the converging performance of our

SIGR model with increasing the number of iterations N
(i.e., the number of stochastic gradient steps) and the number

of negative samples (M ) drawn for each positive sample.

Table IV presents the performance of our SIGR model w.r.t.

the number of iterations. When N is larger than 5 millions,

our model converges quickly and its performance becomes

very stable. Table V shows the performance of SIGR w.r.t. the

number of negative examples M . From the table, we observe

that when the number of negative examples is larger than 6, the



performance becomes very stable. Therefore, for each positive

example, we do not need to sample many negative examples

and just need to sample a few, which ensures the training

efficiency of our SIGR model.

VIII. RELATED WORK

There are two lines of research on group recommenda-

tion based on the group types [22]. Groups with stable

members and rich historical interactions are often referred

as persistent groups (also called established groups) while

groups formed by users ad-hoc are dubbed as occasional

groups. As a persistent group can be treated as a virtual

user, conventional personalized recommendation techniques

can be straightforwardly adopted for making recommendation

to persistent groups [15]. In this paper, we focus on making

recommendations to occasional groups.

Making recommendations to occasional groups is much

more challenging due to the lack of sufficient group-item

interactions. Existing studies on occasional group recom-

mendations focus on aggregation approaches that aggregate

individual preferences or recommendation results of the group

members as the group preferences or group recommendations.

All these aggregation-based group recommendation approach-

es can be divided into two categories: late aggregation and

early aggregation.

The late aggregation-based approaches [2], [28], [30] first

generate the recommendation results or lists for each group

member, and then aggregate these individual recommendation

results to produce the group recommendations. A variety of

aggregation strategies [2], [4], [22], [26], [28] have been

proposed, such as average satisfaction, least misery and max-

imum pleasure, and most of them come from the social

choice theory [6]. For example, average satisfaction assigns

equal importance to each group member and assumes that

each group member contributes equally to the group decision-

making. However, these aggregation strategies are heuristic

and manually predefined rather than data-driven or learned

from data. [21] does a systematic evaluation of all existing

predefined aggregation strategies. Their conclusion is that the

best-performing aggregation strategy does not exist and their

performances depend on the datasets. In other words, there

does not exist a predefined fixed aggregation strategy which

can perform best on all datasets.

In contrast, the early aggregation-based approaches, such

as [7], [32], [36], first aggregate either explicit or implicit

user profiles into a group profile or representation, and then

produce the group recommendations based on the group profile

or representation. The explicit user profiles refer to users’

interaction records on items, and the implicit user profiles

refer to the latent representations of users’ preferences, such

as user embedding. A line of this type of work is based

on probabilistic generative models or more precisely topic

models [16], [33], [34], [36], which model groups by capturing

both personal preferences of group members and their impacts

in the group. The basic assumption of these models is that

users should be treated differently and the notion of influence

TABLE II: Impact of Parameter η.

η Hits@1 Hits@5 Hits@10 Hits@15 Hits@20 MRR

0.1 0.0462 0.1183 0.1671 0.1985 0.2224 0.0902
0.2 0.0473 0.1251 0.1828 0.2211 0.2575 0.0927
0.3 0.0481 0.1328 0.1934 0.2344 0.2601 0.0953
0.4 0.0487 0.1404 0.1969 0.2365 0.2688 0.1005
0.5 0.0496 0.1521 0.2227 0.2744 0.3080 0.1082

0.8 0.0471 0.1388 0.1931 0.2554 0.2922 0.0976
1.0 0.0460 0.1324 0.1977 0.2377 0.2700 0.0967

TABLE III: Impact of Parameter 1/ρ2S .

1/ρ2
S

Hits@1 Hits@5 Hits@10 Hits@15 Hits@20 MRR

0.001 0.0424 0.1247 0.1755 0.2183 0.2472 0.0887
0.01 0.0473 0.1299 0.1844 0.2280 0.2594 0.0967
0.05 0.0496 0.1521 0.2227 0.2744 0.3080 0.1082

0.1 0.0461 0.1312 0.1894 0.2288 0.2643 0.0956
0.5 0.0438 0.1243 0.1812 0.2256 0.2619 0.0893
1.0 0.0425 0.1150 0.1764 0.2135 0.2446 0.0877

TABLE IV: Impact of Parameter N (the number of iterations).

N Hits@1 Hits@5 Hits@10 Hits@15 Hits@20 MRR

1m 0.0448 0.1312 0.1949 0.2429 0.2716 0.0951
2m 0.0468 0.1408 0.2115 0.2595 0.2846 0.0956
3m 0.0472 0.1465 0.2167 0.2716 0.2896 0.0967
5m 0.0496 0.1521 0.2227 0.2744 0.3080 0.1082
7m 0.0496 0.1521 0.2227 0.2745 0.3081 0.1082
9m 0.0496 0.1522 0.2228 0.2745 0.3081 0.1083

TABLE V: Impact of Parameter M (the number of negative

edges sampled for per positive edge).

M Hits@1 Hits@5 Hits@10 Hits@15 Hits@20 MRR

2 0.0471 0.1493 0.2143 0.2680 0.3063 0.1073
4 0.0489 0.1517 0.2199 0.2736 0.3004 0.1079
6 0.0496 0.1521 0.2227 0.2744 0.3080 0.1082

8 0.0496 0.1521 0.2227 0.2744 0.3081 0.1082
10 0.0496 0.1523 0.2229 0.2746 0.3082 0.1083

is introduced to quantify the contribution of each group

member to the group decision making and implement the data-

driven aggregation. Although these models share the similar

intuitions with our proposed SIGR model, they do not consider

the sparsity issue of the group-item interaction data. Moreover,

our SIGR model is technically different from them such as PIT

and COM. Compared with our proposed SIGR that takes the

bipartite graph embedding model BGEM as the foundation,

these topic model-based group recommender models have

limited modeling and expressive abilities, since they constrain

the key parameters (e.g., users’ personal preferences) to be

a probability distribution. Moreover, these models are not as

flexible as our SIGR, and they are incapable of seamlessly

integrating the user-item interaction data to improve the esti-

mation of users’ personal preferences.

More recently, [7] developed an Attentive Group Recom-

mendation system (AGREE) by combining a standard attention

network with the neural collaborative filtering method (NCF).

Compared with our SIGR, AGREE has two serious drawbacks.

First, it does not consider the data sparsity issue of the

group-item interaction data in learning user weights. Second,

its good performance heavily depends on the direct learning

of group preference embedding from the group’s interaction

data and thus cannot make good recommendations for cold-

start groups without any interaction record. Our work falls



into the category of early aggregation-based approaches and

focuses on overcoming the data sparsity issue and limitations

of the group-item interaction data in learning both users’

personal preferences and their social influences. Several novel

techniques are proposed to seamless integrate both user-item

interaction data and user social network features to address

these challenges.

IX. CONCLUSIONS

In this paper, we focused on the problem of making rec-

ommendations to occasional groups. We proposed a novel

Social Influence-based Group Recommender (SIGR) with the

powerful BGEM and the attention mechanism as building

blocks, which is able to learn both user embedding and user

social influences from data in a unified way. To overcome

the sparsity and limitations of the group-item interaction data,

we developed a novel SDAE-based deep learning component

to exploit and integrate both global and local social network

structure features to improve the estimation of user social

influences, and proposed two model optimization approaches

to leverage the user-item interaction data to improve the

learning of user embedding. To evaluate the performance

of group recommender systems in making recommendations

to occasional groups, we created two large-scale benchmark

datasets and conducted extensive experiments on them. The

experimental results validated the superiority of our solutions

by comparing with the state-of-the-art techniques.
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