
Learning to Hash for Trajectory Similarity
Computation and Search

Liwei Deng1, Yan Zhao2,B, Jin Chen1, Shuncheng Liu1, Yuyang Xia1, Kai Zheng1,B

1University of Electronic Science and Technology of China, China 2Aalborg University, Denmark
{deng liwei, chenjin, liushuncheng, xiayuyang}@std.uestc.edu.cn, yanz@cs.aau.dk, zhengkai@uestc.edu.cn

Abstract—Searching for similar trajectories from a database is
an important way for extracting human-understandable knowl-
edge. However, due to the huge volume of trajectories and
high computation complexity of distance between trajectories,
it is difficult to search for exact results, which motivates the
research of approximating approaches. In this study, we propose
a learning to hash method for trajectory similarity computation
and search, called Traj2Hash, which consists of a two-channel
trajectory encoder and a hash layer to encode trajectories into
Euclidean and Hamming space, respectively. The embeddings of
trajectories obtained from the encoder are capable of preserving
the reverse symmetric property and more representative due to
the reverse augmentation and the lower-bound induced read-out
layer. Moreover, we design a decomposed grid representation in
the encoder to make the model lighter and better. In the model
training phase, we combine a weighted mean squared error loss
and a ranking-based hashing loss to enable the model similarity-
aware and representations self-structured, respectively, in which a
fast trajectory triplet generation method is leveraged to enrich the
training corpus. Extensive experiments conducted on real data
offer evidence of the effectiveness and efficiency of the proposed
model.

Index Terms—learning to hash, top-k similar trajectory search,
neural-based similarity computation

I. INTRODUCTION

The prevalence of location-acquisition technology results in
massive spatial trajectories containing a wealth of mobility
information, which benefits various applications, such as tra-
jectory clustering [1], location prediction [2]–[4], and anomaly
detection [5]. Searching similar trajectories for a given query
in a large trajectory database is an indispensable way to turn
the blunt information into knowledge [6]–[12],. For example,
Zheng et al. [13] discover gathering patterns among users via
searching similar trajectories in spatial-temporal dimensions,
which is helpful to reveal the users’ implicit social relations.
Jin et al. [14] aims to discover the identity relation via linking
the same object in different datasets based on the similarity of
their movement traces, which is potentially conducive to the
criminal investigation. In spite of the importance of similar
trajectory search, exact search on a database with massive
trajectories is time-consuming due to the huge volume of
trajectories and the quadratic computation complexity of dis-
tance functions, such as Dynamic Time Warping (DTW) [15],
the Frechet distance [16], Edit distance with Real Penalty
(ERP) [17]. To accelerate the similar trajectory search, a

DTW/Frechet DTW/Frechet=
T1

T2

T1r

T2r

T1

T2
DTW

(a) Reverse Symmetric Property (b) Lower Bound of DTW
Fig. 1. An Example

number of approximation approaches with tolerable search
errors are developed [18]–[24].

Existing approximation methods can be roughly divided
into two directions. The first direction aims to accelerate
the similarity computation, in which neural-based similarity
computation methods are representative, such as NeuTraj [22],
TrajGAT [24], TMN [25], and TrajSim2vec [23]. These meth-
ods employ deep metric learning to encode trajectories into
fix-length vectors and approximate trajectory distance via
Euclidean distance in latent space. With the representations
of trajectories in hand, the complexity of trajectory similarity
computation is reduced from O(n2) into O(d), where n is the
mean number of points in trajectories and d is the dimension
of the latent space. The second direction aims to reduce the
search space via pruning, in which locality sensitive hashing
(LSH) is the representative method, such as Fresh [18] and
tSTAT [21]. These methods encode trajectories into binary
codes and search similar trajectories through table-lookup and
hamming distance search. Ideally, the computation complexity
of these methods is only O(1) if all the trajectories to be
returned are in the same bucket.

Despite their acceptable efficiency and highly approximate
searching ratio, these methods still have the following issues.
First, all the neural-based similarity computation methods
devote to developing a general framework, which ignores the
inherent properties of each distance function. For example, as
shown in Figure 1(a), the similarity between T1 and T2 equals
the similarity between T r

1 and T r
1 under the measures DTW

or Frechet, where T r
1 is the reversed version of T1 (called

as reverse symmetric property in this work). However, this
property does not hold when the measure comes to the existing
neural-based methods since the vectors of T1 and T r

1 cannot be
guaranteed the same through the encoding of neural networks.
Moreover, the first points (or the last points) distance between
T1 and T2 is the lower bound of the DTW distance between
T1 and T2 as shown in Figure 1(b), which cannot be leveraged
in existing studies. These discrepancies between the ground-
truth distance function and the approximated algorithm hinder
the neural-based method to achieve the optimal. Second, the

 �Corresponding author: Kai Zheng and Yan Zhao. Kai Zheng is with
Shenzhen Institute for Advanced Study, University of Electronic Science and
Technology of China, Shenzhen, China

neural-based methods will calculate all the distances between
the query trajectory and the trajectories in the database, which
cannot be an efficient way when the latent vectors of trajecto-
ries in the database cannot persistently in the main memory.
Therefore, a data structure with compact representations to
organize the latent space for pruning is needed. In addition, the
LSH-based methods for different similarity measures require a
specific design to achieve provable collision probability, which
is difficult to generalize from one similarity measure to the
others. To the best of our knowledge, the existing LSH method
for trajectories only can be used when the Frechet distance or
Hausdorff distance is used to measure the distance between
trajectories.

To solve these problems above, we propose a learning
to hash framework, namely Traj2Hash, which inherits the
advantages of neural-based similarity computation methods
and LSH to support more accurate similarity computation (in
Euclidean space) or fast approximate top-k similar trajectory
search (in Hamming space). Specifically, Traj2Hash consists
of a trajectory encoder and a hash layer, in which the encoder
is used to approximate the similarity between two trajectories
and the hash layer is to map these trajectories into hamming
space for efficiently searching. For the trajectory encoder, we
devise a two-channel mechanism to process the original GPS
trajectories and the spatial-aware grid trajectories, respectively.
To efficiently model the grid trajectories, we develop a light-
weight grid representation encoder equipped with a fast pre-
training algorithm based on noise contrastive estimation. In
this module, the grid space is decomposed into two single
dimensions to reduce the space complexity from O(dN2

g) to
O(dNg), where Ng indicates the number of grids along with
latitude or longitude dimension. For the GPS trajectories, we
employ Transformer as the our base model and incorporate
the lower-bound information in the pooling operation to
obtain more informative trajectory embeddings. Considering
the reverse symmetric property in plenty of trajectory mea-
surements, we concatenate the embeddings of the original
trajectory and its reversed version (cf. Section III).

In the training phase, we follow the previous studies to
compute the pair-wised distance for a seed set of trajectories
and use the weighted mean squared error (WMSE) to match
the latent Euclidean space with the distance metric space [22].
However, scalability of the capacity of the seed set is con-
strained due to the expensive computation complexity to obtain
the ground-truth distance between trajectories. For example,
measuring the distance among 10K trajectories using Frechet
distance will cost more than 5 hours under the parallel run
with 20 multiprocessors on our server. We argue that limited
trajectories are difficult to regularize the Hamming space. To
deal with that, inspired by a common rule in these trajectory
distance measures that two trajectories locate in nearby region
will closer than they not, we propose a ranking-based hash
coding objective integrated with a fast triplets generation
method to circumvent the exact distance computation between
trajectories. Finally, these two objectives are linearly combined
to train Traj2Hash.

The main contributions of this paper are summarized as
follows:

• We propose a learning to hash method for trajectory
data to support fast similarity computation and top-k
similar search. To the best of our knowledge, Traj2Hash
is the first learning to hash method for trajectory data.
We propose a two-channel trajectory encoder, in which
a light-weight grid representation coupled with a fast
grids pre-training method is developed and a lower-
bound induced read-out layer is specifically designed for
DTW and the Frechet distance. In addition, the reverse
symmetric property is also preserved through our specific
model design.

• We conduct extensive experiments on two publicly
datasets, i.e., Porto and ChengDu, compared with six
representative baselines by searching similar trajectories
in Euclidean space and Hamming space. The results
demonstrate the superiority of Traj2Hash in terms of
efficiency and effectiveness.

II. RELATED WORKS

In this section, we survey the related studies on trajectory
similarity computation and learning to hash.

Trajectory Similarity Computation. Trajectory similarity
computation aims to determine how similar two trajectories
are. Traditional trajectory measures, such as DTW and the
Frechet distance, usually follow the matching-and-aggregation
paradigm based on dynamic programming. Thus, they suffer
from quadratic computation complexity, which is intolerable
on huge volumes of trajectories to be compared. To accelerate
the computation, various approximation algorithms are pro-
posed, which can be roughly divided into two directions, i.e.,
traditional methods and neural-based methods, according to
the learnability. As a type of fast version of DTW, cDTW [26],
[27] is a representative method in the first direction, which
constrains the window width in the matching process. Despite
its effectiveness in some situations, it is short of general-
ization [28] and accuracy [22] in practice due to the hand-
crafted heuristics. To alleviate these problems, the methods in
the other direction adopt neural networks to approximate the
ground-truth distance, in which the trajectories are encoded
into Euclidean space through the metric learning technique.
Then, the computation of the original distance such as DTW
can be approximated through the Euclidean distance between
the encoded vectors. NeuTraj [22] demonstrates around 60×
faster than the original DTW while achieving an acceptable
approximation ratio on the Porto dataset. TrajSim2Vec [23]
designs an auxiliary loss to simulate the matching process
of the dynamic programming-based trajectory measures, such
as DTW and Frechet. Recently, TrajGAT [24] is proposed
to deal with long trajectories, in which the transformer with
PR-quadtree enhanced attention mechanism is used to extract
the long-term information. Although these methods perform
well in general, they suffer from two shortcomings. First, the
properties (e.g., the reverse symmetric property and the lower
bound of two trajectories) of each distance function are not

taken into account. In our experiments, we observe that with
the guidance of these properties, the model accuracy can be
improved. Second, the goal of accelerating the top-k similar
trajectory search is to speed up the computation of similarity
between trajectories while the searching space is not pruned,
which may be impractical in large databases.

Learning to Hash. The hash technique aims to encode
objects as integers or into Hamming space, where the objects
can be fastly searched through table-lookup. Different from
the hash for fast point search, locality sensitive hashing is
to support similar search [29]–[34], which designs a hash
function with provable collision probability to map the ob-
jects within distance r into the same bucket. For instance,
Fresh [18] encodes trajectories into integers through random
grids shift and multiply-shift hashing, and PM-LSH combines
E2LSH [31] and PM-Tree [35] to achieve query-aware hash-
ing for high-dimensional vectors. These methods are data-
independent when constructing the hash tables and thus may
be poor in efficiency and effectiveness for some datasets,
which inspires researchers to develop hash methods based on
the data distribution [36]–[41]. For example, HashNet [37]
encodes images with similar labels into nearby buckets in
Hamming space for fast image retrieval. HashGNN [40] learns
the hash coding of items for fast recommendation through
retrieval. Despite the numerous learning to hash methods that
have been proposed for many data types, such as images and
audio, learning to hash for trajectories is still unexplored.

III. PRELIMINARIES

We proceed to present the necessary preliminaries and then
define the problem addressed.

A. Basic Concepts

Definition 1 (GPS Trajectory): A GPS trajectory, denoted
as T , is a sequence of timestamped locations with the form
of ((l1, t1), (l2, t2), ..., (ln, tn)), where li (1 ≤ i ≤ n) stands
for a GPS point coupled with the longitude, e.g., loni, and
latitude, e.g., lati, at timestamp ti.

In this paper, we only consider the spatial trajectory. Thus,
the temporal information, e.g., ti, is ignored in the following.

Definition 2 (Grid Trajectory): A grid trajectory, denoted
as Tg , is a sequence of grids with the form of (g1, g2, ..., gn),
where gi (1 ≤ i ≤ n) presents the grid number. It is obtained
by partitioning the studied space into equal-size grids and
mapping the GPS points of T into the located grids.

Figure 2 shows an example of a GPS trajectory T (e.g.,
the sequence of blue rhombuses) and its corresponding grid
trajectory Tg (e.g., the sequence of red rectangles). It should
be noted that the grid trajectory Tg can be seen as a coarse
version of T , which is helpful in improving the modeling of
spatiality [42], [43] and quality of hashing.

Definition 3 (DTW and the Frechet distance): DTW and the
Frechet distance are functions based on dynamic programming

to measure how the closeness of two trajectories. Their state
transition equations can be described as follows:

Di,j = min(Di−1,j , Di,j−1, Di−1,j−1) + d(T i
1 , T

j
2)

Fi,j = max(min(Fi−1,j , Fi,j−1, Fi−1,j−1), d(T
i
1 , T

j
2))

(1)

where pi and qj present the i-th and j-th point for the two
input trajectories T1 and T2, d(,) is the Euclidean distance
between GPS points.

Lemma 1 (Lower-bound of DTW): The Euclidean distance
between the first points or the last points, e.g., d(T 0

1 , T
0
2) or

d(Tn
1 , T

n
2), of the input two trajectories T1 and T2, is the

lower-bound of DTW, i.e., d(T 0
1 , T

0
2) ≤ DTW (T1, T2), which

always holds for any two trajectories.
Proof. According to the definition of DTW, we can rewrite
it as DTW (T1, T2) =

∑max(n1,n2)
i=0 d(T i1

1 , T i2
2), where i1

and i2 are the indices to indicate the matching point pair
in T1 and T2, respectively, and i1 and i2 equal to 0 (n1

and n2) if i = 0 (i = max(n1, n2)). After expanding the
rewriten equation, we have DTW (T1, T2) ≥ d(T 0

1 , T
0
2) or

DTW (T1, T2) ≥ d(Tn1
1 , Tn2

2). We refer to [44], [45] for more
details.

Note that Lemma 1 also remains valid for the Frechet
distance since the first points always match the input two
trajectories in the Frechet distance. Although this lower-bound
seems loose for pruning, it provides a convenient way to
be a guide to summary more representative embedding of
trajectories (cf. Section V-D).

Definition 4 (Reverse Symmetric Property): A trajectory
distance function D satisfies reverse symmetric property if
D(T1, T2)=D(T r

1 , T
r
2) where T r

1 and T r
2 are the reversed

version of T1 and T2, e.g., if T=((l1, t1), (l2, t2), ..., (ln, tn)),
we can get Tr=((ln, tn), ..., (l2, t2), (l1, t1)).

Lemma 2: DTW, the Frechet distance, and the Hausdorff
distance satisfy the reverse symmetric property.

It should be noted that the encoded vectors from exist-
ing neural-based similarity computation methods do not in
compliance with this property. For example, assume fn is a
neural network that encode trajectories into vectors. T ∗ and
T ∗
r present a trajectory and its corresponding reversed version,

where hT∗
and hT∗

r are their encoded vectors through fn. The
Euclidean distance (i.e., E(., .)) is used to measure the distance
between vectors to approximate the trajectory measures (e.g.,
DTW and Frechet). For existing methods, E(hT 1

, hT 2

) is not
constrained to equal E(hT 1

r , hT 2
r), where hT∗

and hT∗
r are

usually different due to the different input of fn. Thus, a
discrepancy between the ground-truth and the approximated
one may hinder these approaches to be optimal. To tackle this
problem, we use Lemma 3 to demonstrate our solution.

Lemma 3: Using the concatenation of hT∗
and hT∗

r as the
final representation, i.e., hT∗

f =[hT∗
, hT∗

r], of trajectory T ∗ can
satisfy the reverse symmetric property (i.e., E(hT 1

f , hT 2

f) =

E(h
T 1
r

f , h
T 2
r

f)).
Proof.

E(hT1

f , hT2

f) = E([hT1

, hT1
r], [hT2

, hT2
r]) (2)

= E([hT1
r , hT1

], [hT2
r , hT2

]) (3)

= E(h
T1
r

f , h
T2
r

f) (4)

Equation 3 is based on that simultaneously exchange the
dimension of vectors will not change their Euclidean distance.
Equation 4 holds since the Since the reverse version of T 1

r is
T 1, and h

T 1
r

f = [hT 1
r , hT 1

] according to the definition of hT∗

f .
Lemma 3 shows that if we augment the original trajectory

with its reversed version and concatenate the output of the neu-
ral network, we can preserve the reverse symmetric property
existed in the to-be-approximated measures. It should be noted
that there are other operations, such as element-wise sum 1,
that can also help the neural-based approximation approaches
to meet the reverse symmetric property. We only consider the
concatenation operation in this work.

B. Problem Statement

Given a trajectory database containing N trajectories and
a distance function f(., .) (e.g., DTW, the Frechet distance,
or the Hausdorff distance), our problem is to learn a data-
dependent and distance-aware hash function to support ap-
proximate top-k similar trajectory search, which can be di-
vided into two goals: (1) learning an approximate similarity
function g(., .) to convert trajectories into Euclidean space
such that computing g(., .) is efficient while the difference
|f(., .)−g(., .)| is minimized; and (2) learning a hash function
to structure the latent vectors in Hamming space for efficient
search space reduction.

IV. METHODOLOGY

In this section, we first give an overview of the framework
and then provide specifics on each component in the frame-
work.

A. Overview of Traj2Hash

The framework of Traj2Hash is shown in Figure 2. It takes
the trajectory triplets generated by the fast triplet generation
technique (see Section IV-F) and a set seeds of trajectories
as input and consists of five key components, trajectory aug-
mentation, light-weight grid representation encoder, attention-
based trajectory encoder, hash layer, and optimization. In the
trajectory augmentation, the input GPS trajectory is converted
into a grid trajectory, and then the reversed versions of them
are both generated. Next, the grid trajectory and the GPS
trajectory are put into the light-weight grid representation com-
ponent and the attention-based trajectory encoder, respectively,
to summarize trajectory information. After that, the latent
vectors of the grid and GPS trajectories in Euclidean space
are delivered into the hash layer to generate the representation
of the trajectory. The hash layer combines the representation
of the trajectory and its reversed version and then maps them
into Hamming space. In the model optimization, Traj2Hash
combines the metric learning technique and the hash ranking
objective. For the metric learning part, we follow NeuTraj [22]

1Actually, the element-wise sum should not be considered when approxi-
mating DTW, Frechet, and Hausdorff since it may occur a unexpected prop-

erty, i.e., E(hT1

f , hT2

f) = E(hT1

f , h
T2
r

f) = E(h
T1
r

f , hT2

f) = E(h
T1
r

f , h
T2
r

f).

to randomly sample a set of trajectories τ as seeds and
computes a symmetric N×N distance matrix D as supervision
to enforce similarity of the vectors in Euclidean space to ap-
proximate the similarity function. The hash ranking objective
equipped with fast triplets generation method is leveraged to
structure the vectors in Hamming space, in which plenty of
trajectory triplets (e.g., (T , T p, Tn)) are generated and the
objective function is to force the positive trajectory (e.g., T p)
in Hamming space more similar to the anchor trajectory, e.g.,
T , than the negative one (e.g., Tn).

B. Trajectory Augmentation

As shown in Figure 2, we firstly augment the GPS trajectory
T with grid trajectory Tg , in which the studied space is divided
into equal-size grids, and the GPS points in the trajectory
are converted into grid identities. The grid trajectory can be
regarded as the first hashing for a GPS trajectory, i.e., two
trajectories with the same grid sequence indicate the strong
similarity between them, which also provides complementary
information for the spatiality of the GPS trajectory. From
Lemma 2, we can see that the distance function to be ap-
proximated satisfy the reverse symmetric property. However,
existing neural-based methods for similarity computation do
not hold. The conflict between them will degenerate the
effectiveness of the approximation. Inspired by Lemma 3, we
augment T and Tg with their reversed version Tr and Tgr and
parallelly encode these four augmentations into the following
components.

C. Light-Weight Grid Representation Encoder

It is obvious that the larger the grid size, the coarse extent
the grid trajectory has. The extremely coarse grids will be
useless and even harm the performance of modeling spatiality.
Thus, the grid size is usually set to relatively small, e.g.,
50m×50m [22]. However, such small grid size will result
in a huge number of grids, e.g., the Porto dataset is split
into around 1.2M (i.e., 1100×1100) grids in NeuTraj [22].
Allocating each grid an independent embedding consume lots
of memory and is difficult to be trained with limited training
samples. To solve this problem, we propose a decomposed grid
representation method. Specifically, instead of allocating each
grid an independent embedding, we present each grid with
its coordinate and induce the embedding of the grid from the
combination of the embeddings of the coordinate. Suppose
the coordinate of gi is (xi, yi). The embedding of gi can be
obtained as follows:

egi = com(exi , eyi) (5)

where exi
, eyi

, and egi are the embeddings of xi, yi and gi,
respectively. The com is a combination function. In this paper,
we employ the sum operation to aggregate the embeddings of
xi and yi. With this decomposition representation, the param-
eters to be learned are the embeddings of the coordinates, i.e.,
embeddings of x and y rather than g. For example, suppose the
studied space is split into 1100 × 1100 grids. We only need
to learn 2 × 1100 coordinate embeddings rather than 1.2M

Fast Triplets Generation

H
ash R

anking Loss
W

eighted M
SE Loss

Seeds

Attention-based Trajectory Encoder

Attention

MLP
×

...

LB-based Read-Out

m

Trajectory Augmentation

𝑇
X Embedding

Y Embedding

Light-Weight Grid Representation Encoder

S Embedding

MLP

Pooling

𝑇!

Hash Layer

MLP

Tanh/Sign

ℎ" ℎ"!
𝑇#

𝑔"

𝑔#

𝑔$

Database

+

O
ptim

ization

Trajectory Triplets

Fig. 2. The proposed framework.

embeddings (i.e., each grid has its independent embedding to
be learned). In addition, the spatial proximity among grids can
be naturally modeled with the decomposed grid representation
to some extent. For instance, the embeddings of two neighbor
grids (3, 5) and (3, 6) are similar even without training due to
the sharing of the same coordinate embedding (i.e., x3).

Moreover, to model the spatial relation among grids and
relieve the training burden of Traj2Hash, noise contrastive
estimation (NCE) is leveraged to pre-train the embedding
of grids. In particular, we define the grids within r radius
as the neighbor of gi, i.e., N (gi), and the others as noise
data, denoted as O(gi). The training objective of grids can be
described as follows:

Lg =

Ng×Ng∑
i

Np∑
g
p
i ∈N (gi)

Nn∑
gni ∈O(gi)

−eT
gieg

p
i
+ eT

giegni
(6)

where egi ∈ Rd×1 is the embedding of gi according to Equa-
tion 5, Np and Nn indicate the number of sampled neighbors
and noises, in which the noise data is uniformly sampled from
O(gi) and the neighbor grids can be fastly sampled due to the
decomposed representation of gi as follows:

gpi = (xi + xs, yi + ys) (7)

where xs and ys are uniformly sampled from [1, r]. After
the pre-training procedure, the grid embeddings are frozen,
which means that they are not updated in the later optimization
component since the spatial information may be poisoned after
updating.

Next, to obtain the representation of a grid trajectory ef-
ficiently, we devise a light-weight grid aggregation method.
Specifically, we first adopt the positional encoding [46] to
integrate the sequential information.

si(2k) = sin(i/100002k/d)

si(2k + 1) = cos(i/100002k/d)
(8)

where si presents the embedding of the i-th position in a se-
quence, and k indicates the k-th dimension of the latent vector.
Then, the representation of i-th term in grid trajectory with
positional encoding is obtained through the sum operation,

i.e., ẽgi = egi + si. After that, the representation of the grid
trajectory can be described as follows:

hgi = MLPg(ẽgi)

hg = Pooling([hg1 , · · · , hgn])
(9)

where MLPg is a two-layer full-connected network with
ReLU as activation and Pooling is to aggregate all the
embeddings in the grid trajectory. In this paper, we adopt
Mean as the pooling operation due to its simplification and
the preservation of the scale of embeddings.

D. Attention-based Trajectory Encoder

Although the information from the grid trajectory can well
distinguish the distant trajectories and the closed ones, the
details of the trajectory are dismissed, which impedes the
model to achieve a highly accurate approximation to the
ground-truth distance. To deal with this, an attention-based
trajectory encoder is developed to model the fine-grained
information from the GPS trajectory. Specifically, we extract
the location feature from two-dimensional GPS space, e.g.,
li = (lati, loni), as follows:

eli = MLPe(Normalize(lati , loni)) (10)

where eli represents the features of li, Normalize is to normal-
ize the features via mean and standard variance, i.e., gaussian
normalization, and MLPe is one-layer full-connected network.
Similar to the light-weight grid representation encoder, we
add the location features with the positional encoding, i.e.,
eli = eli + pi, due to the agnostic of sequentiality of the
following blocks.

Then, we leverage m stacked blocks of Attention-MLP
with residual connection to model the complex sequential
information based on the location features. In summary, the
k-th layer block is as follows:

ek
l1 , · · · , e

k
ln = MLPk (Attnk ([ek−1

l1
, · · · , ek−1

ln
])) (11)

where e0li equals to eli in Equation 10, MLPk is a two-layer
full-connected network with ReLU as activation, and Attnk

T1
T1r

T2 T2r
E Er

Fig. 3. An example of attention-based trajectory encoder with reversed
augmentation

is the self-attention [46]. The details of this equation can be
presented in Equation 12.

ek−1
li

= ek−1
li

+

n∑
j

wij(Wve
k−1
lj

)

wij = softmax j ((Wqe
k−1
li

)T (Wke
k−1
lj

))

ek
li = MLPk (ek−1

li
) + ek−1

li

(12)

where Wq , Wk, and Wv ∈ Rd×d are the to-be-learned
parameters for map the query, key, value embeddings, re-
spectively. We also use the multi-head strategy to improve
the ability of expression following the previous studies [24],
[46]. After throughout the stacked blocks, a read-out layer
should be employed to summarize the sequence information.
For example, BERT [47] inserts a CLS token at the beginning
and uses its embedding after the stacked blocks as the sentence
embedding. TrajGAT [24] uses mean pooling to aggregate
the embeddings at all positions. However, these methods are
not the best way to model trajectories for different distance
functions, such as DTW and the Frechet distance, since the
characteristics of distance functions are ignored. According to
Lemma 1, we have known that the distance between the first
points (or the last points) of the trajectories is the lower bound
of the distance between these trajectories under the DTW and
Frechet distance. Thus, we propose a simple but effective read-
out layer, i.e., directly using the embedding of the first point
as the embedding of the input trajectory.

hl = em
l1 (13)

where hl is the embedding of input GPS trajectory, and eml1
is the embedding of the first GPS point after m blocks. We
provide a brief illustration of an attention-based trajectory
encoder with reversed augmentation in Figure 3, where the
grey lines present the weighted aggregations in the attention
layer, and the red dash circles are the lower-bound induced
read-out operation. In a nutshell, the trajectory embedding
induced from GPS representation is obtained by treating
the first point as an anchor to aggregate information from
other points. Besides, due to the reversed augmentation, the
predicted distance between T1 and T2 comes from two parts
(i.e., E and Er), which means that the lower bounds from
both sides (i.e., the first and the last points) are simultaneously
considered in the approximation process.

E. Hash Layer

Different from the previous studies, we aim to encode the
trajectories into Euclidean space and Hamming space to struc-
ture them for an efficiently searching process. Thus, a hash

layer is created upon the grid and GPS trajectory encoders.
Firstly, the representations of T from the two encoders are
concatenated and pass a fusing layer as follows:

h = MLP f ([hl , hg]) (14)

Then, we encode the reversed version of T , i.e., Tr, in
the same way and obtain hr. After that, we project and
concatenate the two embeddings in the metric space where the
loss function works, which aims to comply with the reverse
symmetric property of the trajectory distance function as stated
in Lemma 3.

hT
f = [Wph,Wphr] (15)

where Wp ∈ R d
2×d is the parameter of the projector, the

bias term is ignored for simplicity, and hT
f is the final

representation of trajectory T . To hash hT
f , we use a sign

function to achieve this.

zT = sign(hT
f) (16)

where sign(x)= 1 if x > 1, otherwise sign(x) = −1 .

F. Optimization

To make the model have the ability to be aware of the trajec-
tory distance and binarize the representations simultaneously,
we combine a WMSE [22], [24] and a ranking-based hashing
objective to train the model parameters. In the WMSE part,
given the distance matrix D containing the pair-wise distances
of trajectories in τ , we follow NeuTraj to transform D into a
similarity matrix S, i.e., Sij = exp(−θ∗Dij)/max(exp(−θ∗
D)), and use S as supervision signal, in which θ is a tunable
hyper-parameter to smooth the similarity distribution. Then,
the objective function of WMSE can be defined as follows:

Ls =

N∑
i

M∑
j

rj · (g(Ti, Tj)− f(Ti, Tj))
2 (17)

where g(Ti, Tj) = exp(−Euclidean(hTi

f , h
Tj

f)), M is the
number of samples for each trajectory, rj is the sample weight
computed according to the ranking order of the sample [22].
Despite the effectiveness of WMSE in approximating the
distance function [22], [24] in Euclidean distance, it may not
be suitable to operate the latent vector in Hamming space since
the binary process will cause the undistinguishable represen-
tations and instability in training. To solve this problem, we
adopt a ranking-based hashing objective working in Hamming
space to maximize the distance between the similar and the
noisy ones.

Lr =

N∑
i

M/2∑
j

[H(zTi ,zT
p
j)−H(zTi ,zTn

j) + α]+ (18)

where we group the M samples into M/2 pairs, in which T p
j is

more similar to Ti than Tn
j according to the similarity matrix

S, [x]+ = 0 if x ≤ 0, otherwise [x]+ = x, α is a threshold that
indicates the extend of the margin between the similar and the
dissimilar pairs, and H(·, ·) is the Hamming distance. Note
that there is a nice relationship between Hamming distance

and inner product, where H(zTi , zTn
j) = 1

2 (dh − zTizTp
j).

The above objective can be rewritten as:

Lr =
1

2

N∑
i

M/2∑
j

[−zTizT
p
j + zTizTn

j + α]+ (19)

Until now, the model cannot be trained due to the gradient
untraceable of sign function in Equation 16. To circumvent
this, we follow HashNet [37] to relax the hard sign function
to tanh(β∗) in the training phase, in which β, a scaling
parameter, is initialized to 1 and increased after each training
iteration.

Moreover, we argue that the limited number of trajectories
in the seed set cannot structure the Hamming space well
(cf. Section V-D). To deal with this, a straight way is to
enlarge the seed set. However, it is time-consuming due to
the quadratic computation complexity of the distance function.
Fortunately, the ranking-based hashing objective does not
require precise distance between trajectories. Therefore, a fast
triplet generation method with less effort is adopted to enrich
the training corpus to strengthen the regularization on the
Hamming space. Specifically, given a corpus of trajectories
τu, we convert the GPS trajectories into grid trajectories with
relatively large grid sizes, such as 500m×500m used in this
paper. Then, we organize the GPS trajectories as the same
cluster if they share the same grid trajectory. As shown in the
left part of Figure 2, the two trajectories colored blue and red
will be organized in the same cluster. Based on the clusters,
the triplets, e.g., (Ta, Tp, Tn), can be generated, in which Ta

and Tp are sampled from the same cluster and Tn is randomly
sampled from the rest. The idea behind it is that the trajectories
within the same cluster are actually bounded by the grid size.
For example, in the Frechet distance, the distance between
the trajectories within the same cluster will not exceed the
grid size. We denote the generated triplets as τt. The ranking
objective on τt can be discribed as follows:

Lt =
∑

(Ta,Tp,Tn)∈τt

[−zTazTp + zTizTn + α]+ (20)

The overall objective is the combination of the three objectives
above with a balanced weight γ as follows:

L = Ls + γ ∗ (Lr + Lt) (21)

We train all the parameters in an end-to-end way through the
back-propagation algorithm to minimize L and employ the
Adam optimizer for the update of parameters.

V. EXPERIMENTS

A. Experimental Settings

1) Datasets: We evaluate the performance on two publicly
available datasets: ChengDu2 and Porto3. The first dataset is
from DiDi Inc, which consists of around 1.2 million taxi
trajectories located in ChengDu, China. The second dataset
is collected from 2013 to 2014 in Porto, Portugal, which

2https://gaia.didichuxing.com
3http://www.geolink.pt/ecmlpkdd2015-challenge

contains over 1.7 million trajectories. We follow NeuTraj [22]
to preprocess the original data. Specifically, we discretize
the area into 50m × 50m grid cells. Then, we remove the
trajectories with less than 10 records. After preprocessing, we
obtain around 1 and 1.5 million trajectories in ChengDu and
Porto, respectively.

2) Experimental Protocal: To evaluate the performance of
Traj2Hash, we conduct experiments on top-k similarity search
tasks under different trajectory measurements, i.e., the Frechet
distance, the Hausdorff distance, and DTW. The ground-truth
of this task is the exact of top-k similar trajectories. Due
to the high computational costs of trajectory measurements,
it is impractical to generate all the labels for both datasets.
Following previous studies [22]–[24], we randomly sample
10K trajectories to compute the similarity, in which 20% of
them are used as seeds in Equation 17 and 80% are used
for validation. Except that, 200K trajectories are randomly
sampled as the corpus to generate the triplets. To obtain
reliable evaluation results, we construct a large test set, in
which 10K and 100K trajectories are randomly sampled from
the rest as query and database, respectively.

3) Baselines: Since our model can obtain dense vectors in
Euclidean space (e.g., hT

f) and hash codes in hamming space
(e.g., zT) at the same time, we will separately evaluate the
performance of the two representations. For the studies of
the performance of searching in Euclidean space, we com-
pare Traj2Hash with six neural-based similarity computation
methods as follows.

• t2vec [42]: is a sequential auto-encoder, and adopts novel
embedding techniques to capture spatial information and
improve the robustness of embeddings.

• CL-TSim [43]: adopts recurrent neural network to encode
trajectories into vectors and adopts contrastive learning
equipped with two trajectory augmentations to train.

• NeuTraj [22]: is a metric learning approach, in which a
novel spatial attention memory module and a distance-
weighted ranking loss are proposed.

• NT-No-SAM [22]: is an ablation version of NeuTraj by
removing the spatial attention memory module.

• Transformer [46]: alternately stacks dot-product attention
and feed-forward layer to perform sequence encoding,
which shows strong competitiveness in approximating
trajectory distance [24].

• TrajGAT [24]: is designed for long trajectory similar-
ity computation, which represents trajectory as a graph
through PR quadtree and develops GraphTransformer to
convert the graph into vectors.

Besides, for the studies of the performance of searching
in Hamming space, we leverage the proposed ranking-based
hashing objective (c.f. Equation 18) with a extra trainable
linear layer to convert the dense vectors from baselines above
into hash codes. After that, the top-k trajectories are returned
according to the hamming distance to the query trajectory. In
addition, the following baseline will be added when searching
in hamming space.

• Fresh [18]: is a locality sensitive hash for curves, which
firstly maps the trajectories into randomly shifted grids
and adopts multiply-shift hashing to convert a sequence
of grids into an integer.

4) Evaluation Metrics: For evaluation of the performance
of top-k similarity search, we employ three metrics as in
[22]–[24], i.e., HR@10, HR@50, and R10@50. The HR@k
presents the hitting ratio, which is the overlap between re-
turned top-k results and ground-truth. The R10@50 is the top-
50 recall for top-10 ground-truth, which indicates the extent
that the returned top-50 trajectories cover top-10 ground-
truth. The larger the three metrics are, the stronger the model
performs.

5) Parameter Settings: In the grids pre-training phase, the
number of sampled neighbors and noise is set to 1. The
neighbor range r is set to 5. We use standard gradient
descent with Adam optimizer to update the grid embedding.
In Traj2Hash, the number of blocks m and the number of
heads in the attention-based trajectory encoder are set to 2
and 4, respectively. We set the default value of the latent
dimension d and dh to 64. In the training objective, the value
of α and γ are separately searched from [0, 25] and [0, 12]
on the validation set, where the default value of them are set
to 5 and 6, respectively. The sample size M and the training
batch size for WMSE objective are set to 10 and 20, which
is aligned in all the evaluation models for fair comparison.
The training batch size on generated triplets corpus is set
to 500. We set the maximal training epoch to 100 and use
the model parameters with the highest HR@10 on validation
set for testing. The learning rate of Traj2Hash is set to 1e-
3. For the fast triplets generation algorithm, we set the size
of grid at 500m×500m, which totally generates 700K and
6M triplets on Porto and ChengDu datasets, respectively. In
Fresh, the resolution is set to 1 kilometer. The number of LSH
repetitions and of LSH concatenations are set to 4 and 1, in
which each hash function maps the trajectories into a 16 bits
integer for aligning the length of hash codes. For the neural-
based approximation approaches, we set the latent dimension
with ours for fair comparison. For t2vec and CL-TSim, we
set the distorting and dropping rate are [0, 0.2, 0.4, 0.6]. For
Transformer and TrajGAT, we keep the same number of head
and number of layers with ours.

6) Evaluation Platform: Our method is implemented in
Python and Pytorch, and trained using a GeForce GTX 1080
Ti GPU. The platform runs the Ubuntu 16.04 operating system
with 48-cores Intel(R) CPU E5-2650 v4 @ 2.20GHz 256GB
RAM.

B. Performance Comparison on Euclidean Space

Table I shows the performance of different methods on
Euclidean space. From the results on both datasets, we can
observe that Traj2Hash significantly outperforms the base-
lines on all metrics. Taking the Frechet distance on Porto
as an example. Compared with the best-performing baseline,
i.e., NeuTraj, Traj2Hash gains about 11% performance im-
provements on HR@10 and about 7% on R10@50. Most

surprisedly, the improvement of Traj2Hash under the non-
metric distance DTW on Porto is about 13% on HR@10,
which demonstrates the universality of Traj2Hash for different
situations. Although most of the baselines employ deep neural
networks to approximate the ground-truths, Traj2Hash has
three advantages to achieve the best performance. First, the
properties of different distances are considered such as reverse
symmetric property and the lower-bound of DTW, and the
Frechet distance, which relieve the burden in model training.
Second, the grid representations are profitable to enrich the
spatiality information. For example, these representations can
be used to easily distinguish the far-away samples. Lastly, the
ranking-based objective with external triplets helps the model
to regularize the metric space, in which the similarity between
trajectories is well ranked.

Except that, we also have the following observations: 1)
The general trajectory encoding methods, i.e., t2vec and CL-
TSim, perform the worst since these methods are distance-
agnostic. Actually, the goal of these methods is to define a
brand new distance that is robust to the noise in trajectory
rather than approximate the existing distances. 2) Transformer-
based models, i.e., Transformer and TrajGAT, are better at
approximating the Hausdorff distance rather than the others,
which may be illustrated that the global read-out, i.e., CLS in
Transformer and MeanPooling in TrajGAT, is a good choice
for the sets matching distance. 3) On the contrary, the variants
of NeuTraj are better at approximating the Frechet distance and
DTW, in which stacked RNN are used to encode trajectories
and the last hidden state is read-outed. We conjecture the
different preferences of these methods come from the different
ways of read-out, in which the last hidden state read-out in
NeuTraj implicitly achieves the lower-bound reduced read-out
for DTW and the Frechet distance (c.f. Equation 1) while
limits the representative ability in approximating the Hausdorff
distance. We will further study the effect of the read-out layer
in the later section.

C. Performance Comparison on Hamming Space

We compare the performance of different methods on Ham-
ming space in Table II. From the results, we observe that
all the neural-based methods have a large performance drop
comparing the searching in Euclidean space due to the infor-
mation loss caused by the binarization of dense vectors, among
which Traj2Hash achieves the least decreases since 1) the
light-weight grid representation with pre-trained decomposed
embeddings provide the spatial similarity between trajectories.
Actually, the grid trajectory can be seen as a hash sequence of
the corresponding GPS trajectories while the grid trajectory
encoding can be seen as a re-hash process to preserve the
ranking of Hamming distance between hash codes; 2) the well
approximating to the ground distance achieved through model-
ing the properties of different distance functions in Euclidean
space also benefits the similarity modeling in Hamming space;
3) the fast triplets generation produce enriches the training
data for the ranking-based objective, which is necessary to
well structure the trajectories in Hamming space.

TABLE I
PERFORMANCE COMPARISON FOR DIFFERENT METHODS IN EUCLIDEAN SPACE ON FRECHET, HAUSDORFF, AND DTW DISTANCES.

Dataset Method Frechet Hausdorff DTW
HR@10 HR@50 R10@50 HR@10 HR@50 R10@50 HR@10 HR@50 R10@50

Porto

t2vec 0.2761 0.3606 0.5218 0.2684 0.3279 0.5437 0.2762 0.3355 0.5492
CL-TSim 0.3107 0.3370 0.5764 0.2801 0.2860 0.5289 0.2961 0.3909 0.5848
NT-No-SAM 0.4982 0.5820 0.8124 0.3502 0.4241 0.7357 0.4619 0.5025 0.7584
NeuTraj 0.5053 0.5953 0.8157 0.3834 0.4460 0.7410 0.4711 0.5329 0.7885
Transformer 0.4290 0.5238 0.7392 0.4389 0.5098 0.7761 0.3576 0.4424 0.6887
TrajGAT 0.4737 0.5699 0.7905 0.4594 0.5174 0.7839 0.4535 0.5178 0.7649
Traj2Hash 0.5652 0.6162 0.8755 0.4640 0.5307 0.8021 0.5327 0.5822 0.8565

ChengDu

t2vec 0.3329 0.4254 0.5709 0.3453 0.3790 0.5428 0.3256 0.3572 0.5781
CL-TSim 0.3513 0.3844 0.5980 0.3011 0.3258 0.5892 0.3401 0.3576 0.6292
NT-No-SAM 0.6903 0.7509 0.9403 0.5393 0.6498 0.8350 0.5229 0.5815 0.8836
NeuTraj 0.6936 0.7551 0.9421 0.5802 0.6593 0.8511 0.5391 0.5990 0.8905
Transformer 0.6455 0.6997 0.9303 0.6593 0.7212 0.9279 0.5519 0.5803 0.7649
TrajGAT 0.6832 0.7345 0.9337 0.6764 0.7395 0.9385 0.6288 0.6937 0.9350
Traj2Hash 0.7297 0.7818 0.9572 0.6838 0.7415 0.9591 0.6796 0.7278 0.9507

TABLE II
PERFORMANCE COMPARISON FOR DIFFERENT METHODS IN HAMMING SPACE ON FRECHET, HAUSDORFF, AND DTW DISTANCES.

Dataset Method Frechet Hausdorff DTW
HR@10 HR@50 R10@50 HR@10 HR@50 R10@50 HR@10 HR@50 R10@50

Porto

t2vec 0.0236 0.0357 0.0488 0.0129 0.0254 0.0355 0.0186 0.0214 0.0383
CL-TSim 0.0138 0.0165 0.0240 0.0147 0.0158 0.0247 0.0232 0.0243 0.0409
NT-No-SAM 0.0479 0.0956 0.1201 0.0345 0.0710 0.0821 0.0235 0.0572 0.0728
NeuTraj 0.0525 0.1128 0.1378 0.0270 0.0622 0.0768 0.0278 0.0613 0.0799
Transformer 0.0412 0.0811 0.1000 0.0680 0.1467 0.1838 0.0174 0.0390 0.0482
TrajGAT 0.0457 0.0921 0.1175 0.0794 0.1543 0.2037 0.0201 0.0567 0.0833
Fresh 0.1322 0.1382 0.2784 0.1092 0.1234 0.2418 0.1303 0.1371 0.2726
Traj2Hash 0.3072 0.3966 0.6117 0.2204 0.2994 0.4677 0.2931 0.3881 0.5948

ChengDu

t2vec 0.0319 0.0443 0.0625 0.0094 0.0147 0.0295 0.0257 0.0530 0.0684
CL-TSim 0.0346 0.0491 0.0683 0.0101 0.0134 0.0273 0.0359 0.0597 0.0763
NT-No-SAM 0.0426 0.1088 0.1220 0.0189 0.0442 0.0548 0.0858 0.1439 0.1894
NeuTraj 0.0417 0.0941 0.1079 0.0241 0.0557 0.0634 0.0945 0.1635 0.2151
Transformer 0.0706 0.1387 0.1695 0.0991 0.2047 0.2520 0.0049 0.0164 0.0175
TrajGAT 0.0874 0.1543 0.1730 0.1020 0.2111 0.2683 0.0132 0.0248 0.0533
Fresh 0.2694 0.2955 0.5483 0.2330 0.2339 0.4608 0.2715 0.2952 0.5454
Traj2Hash 0.3743 0.4733 0.6945 0.2596 0.3499 0.5102 0.4065 0.4964 0.7324

Moreover, we observe that 1) Compared with the neural-
based baselines, the traditional method, i.e., Fresh, performs
the best in most cases. This is because the performance
of hashing of neural-based methods relies heavily on the
size of training data. With only the seed set of trajectories,
the learned hash codes in Hamming space cannot be well
organized, such as the dissimilar trajectories are wrongly fitted
into the same bucket. 2) The similar trend of neural-based
baselines is also observed, i.e., Transformer-based methods
prefer approximating Hausdorff distance while the variants
of NeuTraj perform better in DTW and the Frechet distance.
3) Traj2Hash achieves superior performance among all the
competitors. On the Porto dataset, Traj2Hash gains around two
times performance improvement compared with Fresh. For ex-
ample, Traj2Hash improves HR@50 of Frechet from 0.1382 to
0.3966. On the other dataset, Traj2Hash also outperforms the
best-performing baseline with a large margin, such as HR@10
of DTW from 0.2715 to 0.4065. These observations indicate
the effectiveness of Traj2Hash in approximately retrieving k
most similar trajectories via Hamming distance.

D. Ablation Study
To deeply understand the effect of each component, we

sequentially ablate the main components in Traj2Hash, i.e.,

-Grids, -RevAug, and -Triplets, and evaluate the top-k similar
search in Euclidean space and Hamming space, respectively.

• -Grids: removes the light-weight grid representation en-
coder from Traj2Hash. Only the GPS trajectory encoder
is used to encode trajectory.

• -RevAug: removes the reverse augmentation from
Traj2Hash, which means this variant does not hold the
reverse symmetric property.

• -Triplets: removes the fast triplets generation from
Traj2Hash, i.e., Lt in Equation 21 is eliminated. The
model is simplified into Transformer with lower-bound
read-out.

It should be noted that the ablated component in the former
variant is also eliminated in the latter, e.g., in -RevAug,
the light-weight grid representation encoder is eliminated.
Table III shows the performance of each variant. We first
look at the results evaluated in Euclidean space. We can
observe that 1) Compared with Traj2Hash, the performance of
-Grids decreases, especially on the Porto dataset, e.g., HR@10
decreases from 0.5652 to 0.5466 under the Frechet distance,
which demonstrates the effectiveness of the light-weight grid
representation encoder; 2) By preserving the reverse symmet-
ric property, -Grids achieves remarkable performance improve-

TABLE III
ABLATION STUDIES ON BOTH DATASETS

Dataset Metrics Porto ChengDu
Traj2Hash -Grids -RevAug -Triplets Traj2Hash -Grids -RevAug -Triplets

Frechet

Euclidean
HR@10 0.5652 0.5466 0.5018 0.4699 0.7297 0.7231 0.6749 0.6508
HR@50 0.6162 0.6087 0.5692 0.5644 0.7818 0.7782 0.7280 0.7084
R10@50 0.8755 0.8331 0.7980 0.7798 0.9572 0.9476 0.9364 0.9161

Hamming
HR@10 0.3072 0.3011 0.2970 0.0349 0.3743 0.3604 0.3528 0.0374
HR@50 0.3966 0.3841 0.3805 0.0748 0.4733 0.4694 0.4515 0.0890
R10@50 0.6117 0.6043 0.5886 0.0866 0.6945 0.6892 0.6613 0.1040

DTW

Euclidean
HR@10 0.5327 0.4967 0.4714 0.3646 0.6796 0.6542 0.6224 0.6043
HR@50 0.5822 0.5470 0.5401 0.4520 0.7278 0.7138 0.6759 0.6572
R10@50 0.8565 0.8051 0.7923 0.7017 0.9507 0.9272 0.9194 0.9102

Hamming
HR@10 0.2931 0.2717 0.2555 0.0176 0.4065 0.3783 0.3760 0.0216
HR@50 0.3881 0.3763 0.3491 0.0498 0.4964 0.4737 0.4733 0.0537
R10@50 0.5948 0.5675 0.5220 0.0827 0.7324 0.6975 0.6933 0.0816

Frechet Hausdorff DTW0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

HR
@

10

ChengDu
Mean
CLS
LowerBound

Frechet Hausdorff DTW0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

HR
@

10

Porto
Mean
CLS
LowerBound

Frechet Hausdorff DTW0.4

0.5

0.6

0.7

0.8

0.9

HR
@

50

ChengDu
Mean
CLS
LowerBound

Frechet Hausdorff DTW0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

HR
@

50

Porto
Mean
CLS
LowerBound

Fig. 4. The effect of different read-out layers.

ments compared with -RevAug. For example, on ChengDu
dataset under the Frechet distance, -Grids gains around 7%
improvements. 3) The importance of the generated triplets with
ranking-based hashing objective is verified by comparing the
results of -RevAug and -Triplets. For example, on the Porto
dataset under the Frechet distance, -RevAug outperforms -
Triplets with a large margin; 4) Traj2Hash achieves the best
performance compared with all the variants, which demon-
strates the effectiveness of the proposed techniques.

Then, looking at the results evaluated in Hamming space,
we have similar observations in Euclidean space except for
the importance of the fast triplets generation. We can see a
sharp decrease from -RevAug to -Triplets on both datasets,
which demonstrates that the limited seed set of trajectories is
not enough to structure the vectors in Hamming space and the
proposed fast triplets generation with ranking-based hashing
objective provides abundant supervised signals to help the
model to learn the expressive hash codes.

Moreover, we also conduct an extra experiment on both
datasets to verify the effectiveness of the proposed lower-
bound read-out layer. Specifically, we use the Transformer as
the network backbone to encode the GPS trajectory and denote
three variants, i.e., Mean , CLS , and LowerBound , according
to the type of read-out layer, in which other techniques
in this paper are eliminated such as the light-weight grid
representation encoder, the reverse augmentation, and the fast
triplets generation. Figure 4 shows the performance of three
variants searching in Euclidean space. We can observe that 1)
Compared with Mean and CLS , the proposed lower-bound
read-out layer, i.e., LowerBound , achieves the best on both
datasets under DTW and the Frechet distance. It is expected
that the proposed read-out layer provide more discriminative
information to approximate the ground-truth distances; 2)

Mean outperforms the others under the Hausdorff distance,
which may be because that the sequential information is not
considered in the Hausdorff distance and the mean operator is
better at fitting this situation. 3) CLS is not recommended to
be used in this problem since its performance varies a lot under
different distances and is always dominated by LowerBound .

In addition, we further study the effect of the grid represen-
tation by comparing the proposed decomposed representation
with direct training on grid id using a widely-used network
embedding method Node2vec [48], in which the walk length,
number of walks, window size, return parameter, and in-out
parameter are set to 80, 10, 10, 1, and 1, respectively. We re-
port HR10 and R10@50 on Porto as shown in Figure 7. From
the results, we can observe that the decomposed representation
with the proposed pre-training method achieves the best,
which may demonstrate that although Node2vec has a higher
degree of freedom since each grid has its own representation,
decomposed representation has a stronger ability in modeling
spatial information. Besides, -Grids perform the worst, which
empirically proves the effectiveness of the proposed light-
weight grid representation again. Moreover, we also notice
a large improvement in pre-training efficiency4, i.e., the de-
composed representation only costs around 80 seconds while
Node2vec costs more than 2 hours in training 1100×1100 grid
space since Node2vec needs to sample a series of random
walks starting from each grid, which is so time-consuming
when the cardinal of grid space becomes large.

E. Efficiency Study

We study the searching efficiency on both datasets with
DTW and the Frechet distance. Specifically, we denote

4This is not formally presented due to the space limitation.

20K 40K 60K 80K 100K
The number of trajectories in database

0.005

0.010

0.015

0.020

0.025
Ti

m
e

Co
st

 (s
)

Frechet on ChengDu
Euclidean-BF
Hamming-BF
Hamming-Hybrid

20K 40K 60K 80K 100K
The number of trajectories in database

0.005

0.010

0.015

0.020

0.025

Ti
m

e
Co

st
 (s

)

DTW on ChengDu
Euclidean-BF
Hamming-BF
Hamming-Hybrid

20K 40K 60K 80K 100K
The number of trajectories in database

0.005

0.010

0.015

0.020

0.025

Ti
m

e
Co

st
 (s

)

Frechet on Porto
Euclidean-BF
Hamming-BF
Hamming-Hybrid

20K 40K 60K 80K 100K
The number of trajectories in database

0.005

0.010

0.015

0.020

0.025

0.030

Ti
m

e
Co

st
 (s

)

DTW on Porto
Euclidean-BF
Hamming-BF
Hamming-Hybrid

Fig. 5. Time cost of different searching stratagies with the various number of trajectories in database.

10 20 30 40 50
The number of returned k

0.005

0.010

0.015

0.020

0.025

Ti
m

e
Co

st
 (s

)

Frechet on ChengDu

Euclidean-BF
Hamming-BF
Hamming-Hybrid

10 20 30 40 50
The number of returned k

0.005

0.010

0.015

0.020

0.025
Ti

m
e

Co
st

 (s
)

DTW on ChengDu

Euclidean-BF
Hamming-BF
Hamming-Hybrid

10 20 30 40 50
The number of returned k

0.005

0.010

0.015

0.020

0.025

Ti
m

e
Co

st
 (s

)

Frechet on Porto

Euclidean-BF
Hamming-BF
Hamming-Hybrid

10 20 30 40 50
The number of returned k

0.005

0.010

0.015

0.020

0.025

0.030

Ti
m

e
Co

st
 (s

)

DTW on Porto

Euclidean-BF
Hamming-BF
Hamming-Hybrid

Fig. 6. Time cost of different searching stratagies with the various number of returned k

Frechet Hausdorff DTW0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

HR
@

10

Porto
-Grids
node2vec
ours

Frechet Hausdorff DTW0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

R1
0@

50

Porto
-Grids
node2vec
ours

Fig. 7. The effect of different grids representation

three searching strategies: Euclidean-BF, Hamming-BF, and
Hamming-Hybrid, in which Euclidean-BF and Hamming-BF
compute the distance between the query and all the candidates
in Euclidean space and Hamming space and then sort all
the results to return k trajectories with minimal distance, and
Hamming-Hybrid searches the trajectories through Hamming
distance within 2 radii if the number of returned trajectories
exceeds k, otherwise brute-forcibly searches the trajectories
as Hamming-BF. It should be noted that we do not conduct
pure table-lookup searching in Hamming space since we notice
that there are lots of empty buckets in this space and the pure
neighbor expansion is inefficient to search k trajectories5.

Figure 5 shows the time cost of the three strategies with
different database sizes. Specifically, we randomly sample
five subsets with sizes 20K, 40K, 60K, 80K, and 100K,
respectively. Then we perform a top-50 similarity search with
10K query trajectories and report the average time cost for pro-
cessing one query. From this figure, we can see that Hamming-
BF always costs less time than Euclidean-BF due to the

5Suppose we have 100K trajectories in database, which will cause 100K
non-empty buckets at most while the Hamming space with 64 dimensions will
have 264 buckets. Thus, lots of buckets are empty. Considering a trajectory
that is far away from the others, searching its neighbors in Hamming space
will unnecessarily scan plenty of empty buckets, which is inefficient even than
computing the Euclidean distance and then returning the k nearest trajectories.

fast distance calculation and the sorting process in Hamming
space. Besides, Hamming-Hybrid consistently outperforms the
others, which is because searching in Hamming space within
2 radii can be implemented via table-lookup. The computation
complexity via table-lookup is constant, which can save the
time costs of distance computation and sorting between query
and database. In addition, we can observe that the time costs
of the three searching strategies increase as the database size
varies from 20K to 100K, in which Hamming-Hybrid increases
slower than the others. The reasons behind this are two folds.
First, for the query trajectories whose number of neighbor
trajectories within radius 2 is increased to exceed 50, the time
cost will be reduced via table-lookup. Second, for the other
queries that do always have not 50 neighbors within radius 2,
the time cost will be added due to the expansion of the search
space. The slower time cost increase can be interpreted as the
latter factor dominates the time costs but the former factor
makes it not increase too much. Moreover, Hamming-Hybrid
is more prominent when the database size increases.

Except that, we also show the time cost of the three
strategies with different returned k in Figure 6. Specifically, we
fix the database size as 100K and vary the returned k from 10
to 50 with 10K query trajectories. The reported results are the
average time cost for processing one query. From the results,
we can observe that Hamming-Hybrid can achieve around 3x
speedup compared with Euclidean-BF, such as searching 10
similar trajectories on Porto dataset under the Frechet distance,
which shows the efficiency of encoding trajectories into hash
vectors. Besides, the time costs of two brute-force strategies,
i.e., Euclidean-BF and Hamming-BF, are rather stable than
those of the Hamming-Hybrid strategy. This is because when
k is relatively small such as 10, most queries searching through
Hamming-Hybrid can be done via table-lookup, while as the
increases of k the Hamming-Hybrid strategy will gradually
degenerate into Hamming-BF.

0 5 10 15 20
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

HR
@

10
DTW on ChengDu

Euclidean
Hamming

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

HR
@

10

DTW on Porto

Euclidean
Hamming

0 5 10 15 20
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

HR
@

10

Frechet on ChengDu

Euclidean
Hamming

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

HR
@

10

Frechet on Porto

Euclidean
Hamming

Fig. 8. The performance changes with α.

0 2 4 6 8 10 12

0.1
0.2
0.3
0.4
0.5
0.6
0.7

HR
@

10

DTW on ChengDu

Euclidean
Hamming

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5
HR

@
10

DTW on Porto

Euclidean
Hamming

0 2 4 6 8 10 12
0.1
0.2
0.3
0.4
0.5
0.6
0.7

HR
@

10

Frechet on ChengDu

Euclidean
Hamming

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

HR
@

10

Frechet on Porto

Euclidean
Hamming

Fig. 9. The performance changes with γ.

F. Parameter Analysis

In this subsection, we evaluate the effect of main hyper-
parameters in Traj2Hash, such as α (cf. Equation 20) and γ
(cf. Equation 21). We set the other hyper-parameters as default
and report the HR@10 on both datasets.

1) The effect of the margin α: We first study the effect of
the margin α in the ranking-based hashing objective. Figure 8
shows the results in different spaces with the varies of α from
0 to 25. From this figure, we can see that under DTW, the
performance increases at the beginning and then maintains for
a while before slightly decreasing in both spaces. Under the
Frechet distance, the performance does not change too much
when searching in Euclidean space. Compared with HR@10
of searching in Euclidean space, the performance in Hamming
space is heavily affected by α. We conjecture that when α
is relatively small, the hash codes learned by the model are
intensive due to the weak strength to expel the dissimilar pairs,
which causes hardly distinguishable hash vectors for similar
trajectories. When α varies from 0 to 5, the performance in
Hamming space gradually increases and achieves around the
best. With the further increasing α, there are no gains or
harmful in terms of the searching accuracy.

2) The effect of the balanced weight γ: We proceed to
demonstrate the effect of the balanced weight γ in Equa-
tion 21. Figure 9 shows the results in different spaces with
the changes of γ, in which γ is unevenly tuned from 0 to
12. From this figure, we can observe that when Traj2Hash
is to approximate DTW, the searching performance in Eu-
clidean space increases firstly and then tend to be gentle.
Whereas for the Frechet distance, the curve of performance
is stable and gradually decreases. However, we can see a
performance decreases in ablation study after removing the
generated triplets (from -RevAug to -Triplets), which may be
concluded that the architecture of Traj2Hash can be trained
easier in Euclidean space with limited training samples. When

searching in Hamming space, the performance varies a lot as
γ increases from 0 to 12. Specifically, when γ equals 0, the
performance is extremely poor, which shows that the limited
seed set of trajectories is hardly to well regularize the vectors
in Hamming space. Then, as γ increases, the performance gets
better and then reaches the best, in which for DTW and the
Frechet distance, the best γ is around 6 and 1, respectively.

VI. CONCLUSION

In this paper, we propose the first learning to hash algo-
rithm, Traj2Hash, to encode trajectories into Euclidean space
and Hamming space simultaneously for accurate similarity
computation and efficient top-k similar search. Specifically,
we preserve the reverse symmetric property and obtain the
informative embeddings through reverse augmentation and
the lower-bound induced read-out layer, respectively. We also
propose a decomposed grid representation to improve training
efficiency and reduce memory consumption. In the model
training phase, we combine a weighted mean squared error
loss and a ranking-based hashing loss to enable the model
similarity-aware and representations well self-structured, in
which a fast triplets generation is adopted to deal with the
limitation of seed set of trajectories in regularizing vectors
in Hamming space. Experiments conducted on two real-
world datasets demonstrate that Traj2Hash can approximate
different trajectory distances while achieving high efficiency
in searching process compared with state-of-the-art baselines.

VII. ACKNOWLEDGEMENT

This work is partially supported by NSFC (No. 61972069,
61836007 and 61832017), Shenzhen Municipal Science
and Technology R&D Funding Basic Research Program
(JCYJ20210324133607021), and Municipal Government of
Quzhou under Grant (No. 2022D037, 2023D044), and Key
Laboratory of Data Intelligence and Cognitive Computing,
Longhua District, Shenzhen.

REFERENCES

[1] D. Yao, C. Zhang, Z. Zhu, J. Huang, and J. Bi, “Trajectory clustering
via deep representation learning,” IJCNN, pp. 3880–3887, 2017.

[2] Y. Xu, J. Xu, J. Zhao, K. Zheng, A. Liu, L. Zhao, and X. Zhou, “Metaptp:
An adaptive meta-optimized model for personalized spatial trajectory
prediction,” SIGKDD, 2022.

[3] Y. Liu, X. Ao, L. Dong, C. Zhang, J. Wang, and Q. He, “Spatiotempo-
ral activity modeling via hierarchical cross-modal embedding,” ICDE,
vol. 34, pp. 462–474, 2020.

[4] D. Yang, B. Fankhauser, P. Rosso, and P. Cudré-Mauroux, “Location
prediction over sparse user mobility traces using rnns: Flashback in
hidden states!” in IJCAI, 2020.

[5] R. Laxhammar and G. Falkman, “Online learning and sequential
anomaly detection in trajectories,” TPAMI, vol. 36, pp. 1158–1173, 2014.

[6] M. Chen, Y. Zhao, Y. Liu, X. Yu, and K. Zheng, “Modeling spatial
trajectories with attribute representation learning,” TKDE, 2020.

[7] Y. Zhao, S. Shang, Y. Wang, B. Zheng, Q. V. H. Nguyen, and K. Zheng,
“Rest: A reference-based framework for spatio-temporal trajectory com-
pression,” in SIGKDD, 2018, pp. 2797–2806.

[8] K. Zheng, Y. Zhao, D. Lian, B. Zheng, G. Liu, and X. Zhou, “Reference-
based framework for spatio-temporal trajectory compression and query
processing,” TKDE, vol. 32, no. 11, pp. 12 227–2240, 2020.

[9] Z. Fang, Y. Du, X. Zhu, D. Hu, L. Chen, Y. Gao, and C. S. Jensen,
“Spatio-temporal trajectory similarity learning in road networks,” in
SIGKDD. ACM, 2022, pp. 347–356.

[10] L. Chen, Y. Gao, Z. Fang, X. Miao, C. S. Jensen, and C. Guo, “Real-time
distributed co-movement pattern detection on streaming trajectories,”
Proc. VLDB Endow., vol. 12, no. 10, pp. 1208–1220, 2019.

[11] C. Luo, Q. Liu, Y. Gao, L. Chen, Z. Wei, and C. Ge, “TASK: an efficient
framework for instant error-tolerant spatial keyword queries on road
networks,” Proc. VLDB Endow., vol. 16, no. 10, pp. 2418–2430, 2023.

[12] J. Zhao, Y. Gao, G. Chen, and R. Chen, “Towards efficient framework
for time-aware spatial keyword queries on road networks,” ACM Trans.
Inf. Syst., vol. 36, no. 3, pp. 24:1–24:48, 2018.

[13] K. Zheng, Y. Zheng, N. J. Yuan, and S. Shang, “On discovery of
gathering patterns from trajectories,” ICDE, pp. 242–253, 2013.

[14] F. Jin, W. Hua, T. Zhou, J. Xu, M. Francia, M. E. Orlowska, and X. Zhou,
“Trajectory-based spatiotemporal entity linking,” IEEE Transactions on
Knowledge and Data Engineering, vol. 34, pp. 4499–4513, 2020.

[15] B.-K. Yi, H. V. Jagadish, and C. Faloutsos, “Efficient retrieval of similar
time sequences under time warping,” ICDE, pp. 201–208, 1998.

[16] H. Alt and M. Godau, “Computing the fréchet distance between two
polygonal curves,” Int. J. Comput. Geom. Appl., vol. 5, pp. 75–91, 1995.

[17] L. Chen and R. T. Ng, “On the marriage of lp-norms and edit distance,”
in VLDB, 2004.

[18] M. Ceccarello, A. Driemel, and F. Silvestri, “Fresh: Fréchet similarity
with hashing,” arXiv: Computational Geometry, 2018.

[19] A. Driemel and F. Silvestri, “Locality-sensitive hashing of curves,” in
International Symposium on Computational Geometry, 2017.

[20] S. Zhang, J. Huang, R. Xiao, X. Du, P. Gong, and X. Lin, “Toward
more efficient locality-sensitive hashing via constructing novel hash
function cluster,” Concurrency and Computation: Practice and Expe-
rience, vol. 33, 2021.

[21] S. Kanda, K. Takeuchi, K. Fujii, and Y. Tabei, “Succinct trit-array trie
for scalable trajectory similarity search,” SIGSPATIAL, 2020.

[22] D. Yao, G. Cong, C. Zhang, and J. Bi, “Computing trajectory similarity
in linear time: A generic seed-guided neural metric learning approach,”
ICDE, pp. 1358–1369, 2019.

[23] H. Zhang, X. Zhang, Q. Jiang, B. Zheng, Z. Sun, W. Sun, and C. Wang,
“Trajectory similarity learning with auxiliary supervision and optimal
matching,” in IJCAI, 2020.

[24] D. Yao, H. Hu, L. Du, G. Cong, S. Han, and J. Bi, “Trajgat: A graph-
based long-term dependency modeling approach for trajectory similarity
computation,” SIGKDD, 2022.

[25] P. Yang, H. Wang, D. Lian, Y. Zhang, L. Qin, and W. Zhang, “Tmn:
Trajectory matching networks for predicting similarity,” ICDE, pp.
1700–1713, 2022.

[26] C. W. Tan, M. Herrmann, and G. I. Webb, “Ultra fast warping window
optimization for dynamic time warping,” 2021 IEEE International
Conference on Data Mining (ICDM), pp. 589–598, 2021.

[27] C. W. Tan, M. Herrmann, G. Forestier, G. I. Webb, and F. Petitjean,
“Efficient search of the best warping window for dynamic time warping,”
in SDM, 2018.

[28] H. A. Dau, D. F. Silva, F. Petitjean, G. Forestier, A. Bagnall, A. A.
Mueen, and E. J. Keogh, “Optimizing dynamic time warping’s window
width for time series data mining applications,” Data Mining and
Knowledge Discovery, vol. 32, pp. 1074–1120, 2018.

[29] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in VLDB, 1999.

[30] B. Zheng, X. Zhao, L. Weng, N. Q. V. Hung, H. Liu, and C. S. Jensen,
“PM-LSH: A fast and accurate LSH framework for high-dimensional
approximate NN search,” Proc. VLDB Endow., vol. 13, no. 5, pp. 643–
655, 2020.

[31] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in SCG ’04, 2004.

[32] Q. Lv, W. K. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe
lsh: Efficient indexing for high-dimensional similarity search,” in VLDB,
2007.

[33] Y. Tian, X. Zhao, and X. Zhou, “Db-lsh: Locality-sensitive hashing with
query-based dynamic bucketing,” ICDE, pp. 2250–2262, 2022.

[34] J. Gan, J. Feng, Q. Fang, and W. Ng, “Locality-sensitive hashing scheme
based on dynamic collision counting,” SIGMOD, 2012.

[35] T. Skopal, J. Pokorný, and V. Snásel, “Nearest neighbours search using
the pm-tree,” in International Conference on Database Systems for
Advanced Applications, 2005.

[36] Q. Li, Z. Sun, R. He, and T. Tan, “Deep supervised discrete hashing,”
NIPS, vol. 30, 2017.

[37] Z. Cao, M. Long, J. Wang, and P. S. Yu, “Hashnet: Deep learning to
hash by continuation,” ICCV, pp. 5609–5618, 2017.

[38] K. Zhao, H. Lu, and J. Mei, “Locality preserving hashing,” in AAAI,
C. E. Brodley and P. Stone, Eds. AAAI Press, 2014, pp. 2874–2881.

[39] F. Zhao, Y. Huang, L. Wang, and T. Tan, “Deep semantic ranking based
hashing for multi-label image retrieval,” in CVPR. IEEE Computer
Society, 2015, pp. 1556–1564.

[40] Q. Tan, N. Liu, X. Zhao, H. Yang, J. Zhou, and X. Hu, “Learning to
hash with graph neural networks for recommender systems,” in WWW,
2020, pp. 1988–1998.

[41] C.-C. M. Yeh, M. Gu, Y. luan Zheng, H. Chen, J. Ebrahimi, Z. Zhuang,
J. Wang, L. Wang, and W. Zhang, “Embedding compression with hash-
ing for efficient representation learning in large-scale graph,” SIGKDD,
2022.

[42] X. Li, K. Zhao, G. Cong, C. S. Jensen, and W. Wei, “Deep representation
learning for trajectory similarity computation,” ICDE, pp. 617–628,
2018.

[43] L. Deng, Y. Zhao, Z. Fu, H. Sun, S. Liu, and K. Zheng, “Efficient
trajectory similarity computation with contrastive learning,” CIKM,
2022.

[44] S.-W. Kim, S. Park, and W. W. Chu, “An index-based approach for
similarity search supporting time warping in large sequence databases,”
ICDE, pp. 607–614, 2001.

[45] T. Rakthanmanon, B. J. L. Campana, A. A. Mueen, G. E. A. P. A.
Batista, M. B. Westover, Q. Zhu, J. Zakaria, and E. J. Keogh, “Searching
and mining trillions of time series subsequences under dynamic time
warping,” SIGKDD, vol. 2012, pp. 262 – 270, 2012.

[46] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017,
pp. 5998–6008.

[47] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of
deep bidirectional transformers for language understanding,” in NAACL,
J. Burstein, C. Doran, and T. Solorio, Eds., 2019, pp. 4171–4186.

[48] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” SIGKDD, 2016.

