
Task Recommendation in Spatial Crowdsourcing: A
Trade-off between Diversity and Coverage

Liwei Deng1, Yan Zhao2,B, Yue Cui3, Yuyang Xia1, Jin Chen1, Kai Zheng1,B

1University of Electronic Science and Technology of China, China 2Aalborg University, Denmark
3 The Hong Kong University of Science and Technology, Hong Kong SAR, China

{deng liwei, xiayuyang, chenjin}@std.uestc.edu.cn, yanz@cs.aau.dk, ycuias@cse.ust.hk, zhengkai@uestc.edu.cn

Abstract—The popularity of mobile devices has led to the
increased attention of Spatial Crowdsourcing (SC), a frame-
work that assigns location-sensitive tasks to mobile workers.
Task recommendation is crucial in helping workers discover
attractive tasks. Existing studies have focused on modeling
workers’ preferences from past task-performing patterns, but
their performance is sub-optimal due to the strong coupling of
sequentiality, spatiality, and temporality. Moreover, achieving the
highest preference-based utility of workers in most of the existing
task recommendation studies is inferior to the benefits of the
SC platform and the satisfaction of workers in a long range,
due to the lower task coverage rate and the poor diversity in
a worker’s recommended list. To address these problems, we
propose a Diversity-Coverage Balanced Task Recommendation
(DCBTaskRec) framework. Specifically, we first introduce a
decoupled worker preference learning model that adopts self-
attention networks as the backbone and decouples the mod-
eling of multiple factors in attention scores. Additionally, we
provide an optimal diveristy-aware approach to maximize the
recommendation diversity while keeping high preference-based
utility of workers to satisfy the multiple tastes of workers. From
the side of the SC platform, we also provide two approaches
(i.e., greedy coverage-aware approach and diversity-coverage
balanced approach) to achieve high coverage and provide a
trade-off between diversity and coverage, respectively. Extensive
experiments offer insight into the effectiveness of the proposed
framework.

Index Terms—Spatial Crowdsourcing, Diversity, Coverage,
Task Recommendation

I. INTRODUCTION

With the increased popularity of GPS-enable smart devices
and the accompanying deployment of sensing technologies,
Spatial Crowdsourcing (SC) has attracted great attention from
both academia and industry, where task requesters can issue
spatial tasks (e.g., taking a scenic photo or reporting a hot
spot) to the SC platform and a crowd of workers are recruited
to perform by physically moving to the specified locations.
Different task assignments may induce different behaviors of
workers. For example, a worker will be passive in completing
the assigned task when the task does not match the worker’s
preference, resulting in a degradation in the quality of the
task assignment. Thus, to achieve high-quality SC services,
an SC platform should model the workers’ preferences and
recommend a set of suitable tasks to workers. Compared
with mandatory task assignment, i.e., assigning a task to each

worker at a time and the worker is forced to perform, a task
recommendation system provides a list of available tasks, in
which the worker can select his/her most preferred one from
the recommended list.

Existing studies [1]–[5] on the task recommendation in SC
are proposed for different scenario applications. For example,
Alamer et al. design a privacy-preserving location matching
mechanism with the aims of secure task recommendation
and protecting location privacy for workers, in which the
preference modeling is ignored (i.e., a worker equally prefers
the tasks in their reachable task set) [2]. Li et al. propose a
preference-aware group task assignment framework to maxi-
mize the overall number of assigned tasks while giving priority
to the groups of workers that are more interested in the
tasks [5]. Zhao et al. propose an adaptive task recommendation
framework, focusing on the workers’ preference modeling in
both hometown and out-of-town areas and the fairness in
task recommendation phase [1]. In spite of the exploration
of different scenario applications, we still face three main
challenges to achieving effective task recommendations.

Challenge I: How to effectively model workers’ preference
for spatial tasks? Most SC studies focus on modeling work-
ers’ preference based on three key aspects: sequentiality [5],
spatiality [1], and temporality [6]. These aspects consider the
factors that influence human behavior patterns [7]–[9]. For
instance, MobTCast [10] concatenates the spatial and temporal
embedding with task embeddings. STiSAN [11] incorporates
sequential information and spatio-temporal intervals by adding
task embedding and attention scores, respectively. However,
we argue that such treatments may lead to inaccurate modeling
of workers’ preferences due to simple and arbitrary coupling
of the factors.

Challenge II: How to take diversity into consideration to
meet the multi-interests of workers? Traditional recommen-
dation methods focus solely on maximizing preference-based
utility of workers by suggesting their top k tasks of interest.
However, this approach often leads to the recommendation
of highly similar tasks, negatively impacting the overall user
experience due to the lack of consideration for task diversity.
For instance, consider a scenario where a worker’s preferences
lie in both taking pictures and writing food reviews, but his/her
current behavior predominantly involves taking pictures. In
such a case, a Spatial Crowdsourcing (SC) platform that �Corresponding author: Kai Zheng and Yan Zhao. Kai Zheng is with 
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maximizes the workers’ preference might generate a task list
exclusively comprised of various picture-taking tasks from
different locations. However, continuously completing a mul-
titude of similar tasks may quickly bore the worker, causing
the increase of worker churn. A healthy task recommendation
system should, therefore, account for task diversity, ensuring a
varied selection of task categories to cater to the multi-interests
of workers.

Challenge III: How to recommend tasks to workers to
achieve a trade-off between task coverage rate and diver-
sity? The primary objective of a Spatial Crowdsourcing (SC)
platform is to maximize benefits, achieved when workers
successfully complete tasks and the platform receives a portion
of the task reward. However, solely focusing on enhancing
worker satisfaction may jeopardize these benefits. To establish
a mutually beneficial relationship between the SC platform
and workers, it is essential to simultaneously consider the
trade-off between task coverage rate and diversity in task
recommendations.

Observing these unmet challenges, we propose an
SC framework, named Diversity-Coverage Balanced Task
Recommendation (DCBTaskRec), for effective task recom-
mendation. The framework takes into account multiple factors
influencing workers’ preferences, the diversity of tasks in
a worker’s recommended list, as well as the overall task
coverage rate in the entire recommended set. It consists
of two phases: a worker preference learning phases and a
task recommendation phase. In the first phase, we design
a Decoupled Spatial-Tempoal Self-Attention Network (DST-
SAN). Specifically, we first separately model the spatial and
temporal proximity among the historically performed tasks of
workers, in which the similarities of spatiality and temporality
are measured by a neural network and a periodic function,
respectively. Then, sequentiality and the current interest are
modeled through the similarity among the position and task
embeddings. Due to the different contributions of each com-
ponent, we adopt vanilla attention to adaptively integrate them
to obtain the final attention matrix.

In the task recommendation phase, our objective is to
maximize the diversity in the recommended list while main-
taining a high preference-based utility for workers. To achieve
this, we first propose an Optimal Diversity-Aware (ODA)
approach. It considers the preference score and the category
of a task when recommending to a worker. To enable a
high task coverage rate, we consider the degree of a task
(i.e., how many workers it can be recommended) and design
a Greedy Coverage-Aware (GCA) approach, in which the
tasks will be sequentially recommeneded according to the
minimum number of available workers. To strike a balance
between diversity in the worker’s recommendation list and the
task coverage rate, we further present a Diversity-Coverage
Balanced (DCB) approach, which is designed based on the
coarse-finetuning mechanism.

In general, our contributions can be summarized as follows:
• We propose a novel SANs-based workers’ preference

modeling method, i.e., DSTSAN, in which the spatio-

temporal information and sequentiality from the his-
torically performed tasks of workers can be uniformly
modeled via the self-attention mechanism.

• We propose three task recommendation strategies that
consider different task recommendation concerns, i.e.,
task coverage rate and task diversity.

• We conduct extensive experiments on two real datasets.
The experimental results demonstrate the effectiveness
and efficiency of the proposed solution.

II. PRELIMINARIES

We proceed to give the necessary preliminaries and then
define the problem addressed.

Definition 1 (Worker): A worker, denoted as w = (l, d), is
able to perform spatial tasks. A worker can be either online
or offline. A worker is online when the worker is ready to
accept tasks and offline when unavailable to perform tasks.
An online worker w is associated with a current location w.l
and a reachable distance w.d. The reachable range of worker
w is a circle with center w.l and radius w.d, within which w
can accept tasks.

Definition 2 (POI): A point of interest (POI), denoted by
p = (l, S), consists of a location p.l, and a set of tasks p.S that
are associated with the POI, i.e., the tasks in p.S are located
at p.l.

Definition 3 (Spatial Task): A spatial task, denoted by s =
(p, e, c, r), encompasses a POI s.p, a task expiration deadline
s.e, a category of the task s.c, a reward s.r that the worker
completing s will obtain.

A spatial task s is said to be finished only if a worker can
physically move to its location (i.e., s.p) before its expiration
time (i.e., s.e). Although the SC platform can recommend
multiple tasks, e.g., k, to a worker, a worker can only choose
one task to perform at a time according to the single-task
assignment mode. The state of a worker, i.e., online and
offline, will be switched to offline once a worker chooses a
task to perform.

Definition 4 (Reachable Task Set): Given an online worker
w and a set of tasks to be recommended in the vicinity of w,
a reachable task set for worker w, denoted as RS(w), satisfy
two conditions: ∀s ∈ RS(w), 1) worker w is able to arrive at
the location of task s before its expiration time, i.e., tnow +
t(w.l, s.l) < s.e; and 2) task s is located in the reachable range
of worker w, i.e., d(w.l, s.l) ≤ w.d, where tnow is the current
time, t(w.l, s.l) is the travel time from worker w’s location w.l
to tasks s’s location s.l, and d(w.l, s.l) is the travel distance
from location w.l to location s.l.

Definition 5 (k-Recommended-Task-Set): Given an online
worker w and the reachable task set RS(w), a recommended
task set with k tasks, denoted as RTSk(w), is a subset of
RS(w), where the tasks in RTSk(w) are ranked according
to workers’ preferences, and k can be specified by the SC
platform.

The utility of a worker from a recommended task set
RTSk(w) is proportional to the sum of preference scores of



workers. We follow AdaTaskRec [1] to define the preference-
based utility.

Definition 6 (Preference-based Utility): The preference-
based utility of worker w can be defined as the ranking metric,
Normalized Discounted Cumulative Gain (NDCG) [12], over
the recommended task set RTSk(w):

U(RTSk(w)) =
DCG(RTSk(w))

DCG(RTS∗
k(w)))

DCG(RTSk(w))) =
∑

s∈RTSk(w)

2cw(s) − 1

log2(rank(w, s|RTSk(w)) + 1)

(1)
where DCG(RTSk(w)) denotes the discounted cumulative
gain of worker w over RTS(w), RTS∗

k(w) is the expected
optimal recommended task set for w, i.e., the k tasks with
the highest preference scores of w, cw(s) is w’s preference
score for task s ∈ RTSs(w), and rank(w, s|RTSk(w)) is
the position that task s is placed at in the ranking task set
RTSk(w) for w.

It should be noted that recommending the k most interested
tasks will give the maximum possible utility according to
definition 6. However, due to the intrinsic shortcoming of
neural-based recommender systems (RSs), i.e., RSs usually
predict similar tasks compared to the workers’ performed
history [13], only maximizing utility may not satisfy the
workers’ multiple interests and thus damage the benefit of the
platform in a long range. Similar to previous studies [13], we
also use diversity in terms of task category to measure how the
recommended set support the multiple interests of workers.

Definition 7 (Diversity): Diversity measures the number of
distinct categories the recommendation set contains, which can
be formulated as follows:

Diversity(Su) = 1−
∑

i,j∈Su,i ̸=j sim(i, j)

|Su|(|Su| − 1)
(2)

, where Su presents a recommendation set to the user u, |Su|,
indicates the cardinality of Su, and sim(i, j) = 1 if i and
j belong to the same category (such as taking a photo and
reporting a hot pot), and 0 otherwise.

SC platform obtains the benefits only if a worker finishes
a task. Thus, to maximize the benefits, the platform needs to
recommend as many as possible tasks to workers to increase
the task completion rate. Due to the number of tasks to be
recommended to a worker being limited to k, the platform
should instead increase the task coverage rate [1].

Definition 8 (Coverage): Coverage indicates how many
distinct POIs are contained in the recommended sets, which
can be formulated as follows:

Coverage(R) =
|R|
|I| (3)

where R = ∪u∈USu, and I is the set of total tasks.
Diversity and Coverage are two different metrics to show

the different aspects of the recommended sets, i.e., the former
measure the results from the individual level, while the latter
from the global level. To achieve high diversity and coverage

simultaneously, we combine them to define new metrics,
namely DC, as follows:

DC(R) = λ Coverage(R)+ (1−λ)
1

|U |
∑
u∈U

Diversity(Su) (4)

where λ ∈ [0, 1] is a balance weight to control contributions
of different components. When λ is set to 0 (or 1), DC is
degenerated to Diversity (or Coverage).

Definition 9 (Spatial Task Recommendation): Given a set
of workers W and a set of tasks S, a spatial task rec-
ommendation, denoted by R, consists of a set of pairs
of a worker and a k-recommended-task-set for the worker:
(w1, RTSk(w1), ..., (w|W |, RTSk(w|W |)), where |W | denotes
the number of the worker set.

Problem Statement. Given a worker set W and a task set S,
the task recommendation problem in SC is to find an optimal
task recommendation Ropt that achieves the following goals:
1) primary optimization goal: maximize the task coverage
rate (cf. Equation 3) and diversity (cf. Equation 2), with a
limited k (k ≪ |S|) value; and 2) secondary optimization
goal: maximize the average worker preference-based utility
(cf. Equation 1).

Workers

Tasks

Data Source Worker Preference Learning

DSTSAN
Worker-

Task 
Preference

Task Recommendation

ODA
GCA
DCB

Results

Fig. 1. Framework Overview

III. METHODOLOGY

We present the overview of DCBTaskRec in Figure 1,
which consists of two phases, i.e., a worker preference learning
and a task recommendation. In the first phase, we design a De-
coupled Spatio-Temporal Self-Attention Network (DSTSAN)
that learns workers’ preferences based on the performed tasks
in terms of sequentiality and spatio-temporality, where each
task is associated with a POI. The learned preference model
is used in the second phase to make the recommendation
utility-aware. In the task recommendation phase, to maximize
the diversity of recommended task list for each worker, we
propose an optimal diversity-aware approach (i.e., ODA).
However, it achieves almost the lowest task coverage rate,
which does not fit the benefits of the SC platform. To enable
a high task coverage rate, a greedy coverage-aware (GCA)
approach is proposed. Based on this method, we propose a
diveristy-coverage balanced approach (i.e., DCB) based on
coarse-finetuning framework, to balance the task coverage rate
and diversity with slightly sacrificing the utility of workers. We
elaborate on each proposal as follows.

A. Worker Preference Learning

We design a model to learn the worker’s preference on tasks,
where the overview of DSTSAN is shown in Figure 2. It
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is an end-to-end model based on SANs, where we modify
the calculation of the attention matrix in the self-attention
mechanism through the decoupled modeling of tasks, sequen-
tiality, spatiality, and temporality. Then, we integrate these
attention matrices through a vanilla attention layer to fit the
different contributions of these properties. Finally, a read-
out layer is adopted to summarize the worker’s preference
from the historically performed tasks, integrating with the
embedding of the worker to calculate the preference scores
for the candidate tasks. We train the model by minimizing
the Bayesian Personalized Ranking (BPR) loss to the ground-
truth. Next, we first present the workflow of DSTSAN and
then elaborate on the details of each component.

1) Workflow of DSTSAN: The overall framework of DST-
SAN consists of multiple SAN blocks followed by a read-out
layer to summarize the worker preference from the performed
tasks. The i-th block of DSTSAN can be presented as follows:

Ei = DSAN(Ei, P,G, T )

Ei = FFN(Ei)
(5)

where DSAN presents the decoupled SAN, E, and P are
the embeddings of POI where the tasks in, and position
for the modeling of worker’s interests and sequentiality,
G = (g1, g2, ..., gn) and T = (t1, t2, ..., tn) present the GPS
locations of tasks (e.g., g1 = (slat1 , slon1 ), where slat1 and
slon1 stand for the latitude and longitude of location s1,) and
the performing time (e.g., the worker performs task i1 at
t1), FNN is a two-layer feedforward layer with GELU as
activation. N blocks are stacked in DSTSAN, where N = 2
in our experiments. Then, a read-out layer is followed to
extract the worker’s preference from the sequence of tasks.
Following the well-known sequential recommendation model,
SASRec [14], we use the most recent embedding of POI
(i.e., eNn , the embedding of en after N blocks) as the worker
embedding. Despite the embeddings from the performed tasks
that can present the workers’ preferences dynamically, the

long-term preference of workers is ignored. To fill this gap,
we integrate the embedding of worker identity (e.g., ewi )
and the embedding from the performed tasks through additive
operation (i.e., efwi

= ewi
+eNn ) to obtain the final embedding

of worker wi. To measure the preference score (i.e., yij) of
worker wi on the task in POI pj , the dot-product on their
latent embeddings is adopted (i.e., yij = efwi

T
Epj ). In the

model training phase, the widely-used BPR loss function is
used to measure the difference between the predictions and
the ground-truths.

2) Details of DSAN: In vanilla SANs, the position embed-
ding (e.g., P ) is early-integration with POI embeddings (e.g.,
E) through additive operation before inputting into SANs (e.g.,
E+P ). Thus, the attention value between the i-th POI and j-th
POI is calculated as ET

i Ej+PT
i Pj+ET

i Pj+PT
i Ej , where the

modeling of POI-to-position (i.e., ET
i Pj + PT

i Ej) may intro-
duce the noise due to the low correlations between position and
the content of POI [15]. Similarly, the POI-to-time and time-
to-space have a similar problem if we do the early-integration.
Thus, we decouple these things in the attention mechanism
to prevent the invalid correlation calculation among different
types of embedding. Specifically, four attention matrices are
computed in our attention layer, i.e., POI-to-POI, position-to-
position, space-to-space, and time-to-time. The calculation of
the first three matrices has the same formulation with different
parameters to be learned. The formulation of the POI-to-POI
attention matrix is as follows.

Ai = Softmax(QiK
T
i /
√
d)

Qi = EiW
q
i Ki = EiW

k
i

(6)

where d indicates the latent dimension, Ai ∈ Rn×n is the
attention matrix in terms of POI, W q

i and W k
i ∈ Rd×d

are the learnable parameters for query and key embeddings,
respectively. Similarly, we can obtain the attention matrices
in terms of position and space and denote them as Ap and
As, respectively. The time-to-time correlation is not modeled
in the same way due to the periodic patterns existing in the
workers’ behavior, which cannot be well modeled through the
computation in Equation 6. Following previous studies [16],
[17], we adopt a periodic function to obtain the attention
matrix At in terms of time.

At[i, j] =
1 + cos(2π∆Tij)

2
· e−α∆Tij (7)

where ∆Tij indicates the time interval between the performing
time of the i-th and j-th tasks, α is a temporal decay
rate, which controls how fast the weight decreases over time
∆Tij . Considering the different contributions of these attention
matrices, we leverage a vanilla attention layer to adaptively
integrate them. For the k-th task, the vanilla attention can be
formulated as follows.

Af [k, :] =
∑

∗∈{i,p,s,t}

A∗[k, :]

w∗ = Softmax∗∈{i,p,s,t}(A∗[k, :]W
a + ba)

(8)



Algorithm 1: ODA approach
Input: Reachable task sets RS, all workers W , a specified

value k
Output: Task recommendation R

1 R← ∅;
2 for w in W do
3 kmin = min(len(RS(w)), k);
4 group tasks in RS(w) according to its category;
5 while len(R(w)) < kmin do
6 descendingly sort the groups according to the

maximal preference score in the category;
7 for all categories in RS(w) do
8 select the most interested task s in this group;
9 if len(R(w)) < kmin then

10 R(w)← R(w) ∪ (w, s);
11 end
12 end
13 RS(w)← RS(w)−R(w);
14 end
15 end
16 Return R;

where A∗[k, :] presents the k-th row of the matrix A∗, W a

and ba are the learnable parameters, w∗ is the weight of the
attention matrix A∗. Compared with STiSAN [11] that inte-
grates the spatio-temporal information by directly adding the
spatio-temporal interval matrix with the POI-to-POI attention
matrix, our method provides a more flexible and adaptive way
to model the different contributions of the multiple influences.

B. Task Recommendation

The typical task recommendation method is the TOPK
recommendation after obtaining of the workers’ preferences
on tasks, which recommends the k most interested tasks
to a worker from the worker’s available task set. However,
this strategy only focuses on maximizing the preference-
based utility of workers, which ignores the benefits of the
SC platform (i.e., the task coverage rate) and harms the
workers’ multi-interests in a long-range (i.e., diversity in the
recommended list). To deal with these, we propose three
task recommendation strategies, i.e., optimal diversity-aware
(ODA), greedy coverage-aware (GCA), and diversity-coverage
balanced (DCB) approaches, to meet the requirements of
different applications. We elaborate on each method in the
following parts.

1) ODA approach: We first focus on maximizing the di-
versity in the worker’s recommended list. From the definition
of diversity (cf. Equation 2), two facts can be found: 1) The
diversity of worker wi will not affect the diversity of wj ,
which means we can obtain the global optima if each worker
gets the maximal diversity on their recommended list; 2) More
even recommendation on different categories achieve the best
diversity. For instance, the SC platform aims to recommend
two tasks to a worker wi, where the available tasks set of wi

is (s1, s2, s3) and s1 and s2 share the same category while s3
is different. Recommending (s1, s2) to the worker achieves
the lowest diversity, i.e., diversity(wi) = 1 − 2

2×1 = 0,
otherwise (e.g., (s1, s3)), we can achieve the highest diversity,

Algorithm 2: GCA approach
Input: Reachable task sets RS, available worker sets AW ,

all tasks S, all workers W , a specified value k
Output: Task recommendation R

1 R← ∅;
2 while |S| is not empty do
3 ascendingly sort the tasks S according to the number of

available workers for each task;
4 select the task s with the minimum number of degree;
5 descendingly sort the workers in AW (s) according to

the preference score;
6 for w in AW (s) do
7 if len(R(w)) < kmin then
8 R(w)← R(w) ∪ (w, s); break;
9 end

10 AW ← AW − w;
11 end
12 S ← S − s;
13 eliminate the task s ∈ S whose available workers is

empty;
14 end
15 fill the recommended list of each worker to kmin with the

highest preference scores in RS;
16 Return R;

(e.g., diversity(wi) = 1 − 0
2 = 1). Based on these facts, we

propose an optimal approach with diversity as the first goal and
preference-based utility of worker as the second goal, namely
ODA, as shown in Algorithm 1, which takes the reachable task
sets RS for all workers, all workers W , and a k value as input.
After initialization (line 1), for each worker, we aggregate the
available tasks according to the task’s category (lines 2-4). If
the number of recommended tasks is less than kmin, where
kmin indicates the most number of recommendations of the
looped worker, we sort the groups according to the maximal
preference score in these groups (line 6). Then, we loop each
group and recommend the worker’s most interested task until
it reaches the exit condition (i.e., len(R(w)) = kmin) (line 7-
13).

2) GCA approach: Despite the ODA approach achieving
the optimal diversity, the task coverage rate will be extremely
affected (i.e., it performs the worst as TOPK) and far from the
satisfaction of the SC platform (cf. Section IV-B2). Here, we
propose a task-degree-reduction-greedy method, namely GCA,
to maximize the task coverage rate while achieving a high
utility for workers. The core idea of GCA is to recommend
the task with a minimum number of available workers since
it has the highest probability that cannot be recommended if
the number of recommended tasks of its available workers is
full. Algorithm 2 depicts the details of the proposed method,
which takes the reachable task sets RS, the available worker
sets AW , and a k value as input, where AW (s) records the
available workers for task s. Firstly, the recommended set R
is initialized (line 1). Then, while the task set S is not empty
(line 2), we sort the tasks in S according to the number of
available workers for each task (i.e., degree of tasks) and select
the task with the minimum degree (lines 3-4), in which we
select the task whose preference score is highest if there are



Algorithm 3: DCB-Finetuning
Input: Reachable task sets RS, task recommendation R

from the coarse phase, all workers W
Output: Task recommendation R

1 while R is not changed do
2 for w in W do
3 ImproveDiversity(RS,R,W );
4 end
5 end
6 Return R;

multiple tasks with the same minimum degree. After that, we
sort and loop the task available workers AW (s) according to
the preference scores (lines 5-6). If the recommended list of
the looped worker is full (i.e., len(R(w)) = kmin), we remove
this worker from the task available workers AW (lines 10).
Otherwise, the recommendation (w, s) is recorded into R.
At the end of the loop, we remove the task from all tasks
set S and eliminate the task whose available workers are
empty (lines 12-13). Finally, the worker whose number of
recommended tasks is less than kmin is filled by the tasks
with the highest preference scores in the reachable task set
RS (line 15).

3) DCB approach: The previously mentioned methods,
namely ODA and GCA, each excel in a specific aspect, either
diversity or task coverage rate (see Section IV-B2). However,
finding a way to simultaneously achieve both objectives to
satisfy the requirements of the SC platform and workers still
poses a challenging problem. To address this, we use DC (cf.
Equation 4) as our final decision metric and design a coarse-
finetuning framework, which achieves near optimal value in
terms of diversity and coverage with tolerable sacrifice on the
preference-based utility in our empirical studies. Specifically,
the DCB approach consists of two phases: coarse phase and
finetuning phase. In the coarse phase, we employ the GCA
algorithm. Subsequently, we propose a finetuning algorithm in
the finetuning phase, which maximizes DC with a specified
λ (e.g., λ = 0.5). From the definition of DC, we can obtain
a higher value of DC by improving diversity or coverage.
Since the GCA approach is used as the algorithm in the coarse
phase, we only focus on the improvement of diversity in the
finetuning phase.

We first provide a quantitative metric of replacing a task
in the recommended list in terms of the diversity in DC,
which can be used to quickly filter out groups of tasks that are
impossible to make an improvement of DC, and then give an
example of the computation of δd. Suppose Nw(c1) is a func-
tion that returns the number of recommended tasks of worker
w with category c1, kmin (i.e., kmin = min(len(RS(w)), k))
is the maximal number of tasks can be recommended for
w, |W | is the number of workers. Replacing a task whose
category is c1 in R with a task whose category is c2, the
variation of DC in terms of diversity δd is as follows:

δd = 2(1− λ)(Nw(c1)−Nw(c2)− 1)/(kmin(kmin − 1)|W |) (9)

Here, we provide a running example as follows, to demon-

Algorithm 4: ImproveDiversity
Input: Reachable task sets RS, task recommendation R

from the coarse phase, all workers W
Output: Task recommendation R

1 δc = λ/|S|;
2 for c1, c2 in all categories of RS(w) do
3 if Nw(c1)−Nw(c2) < 2 then
4 continue;
5 end
6 group the tasks in RS(w) with category c1 into Ds and

NDs, where Ds records the tasks that will cause the
decrease of Coverage if it is removed from R;

7 NDs ← NDs ∩R(w); Ds ← Ds ∩R(w);
8 if NDs is not empty then
9 select a task s1 in NDs with the lowest preference

score;
10 end
11 else
12 calculate δd using Equation 9;
13 if δd > δc then
14 select a task s1 in Ns with the lowest preference

score;
15 end
16 end
17 select an unrecommended c2 category task s2 with the

highest preference score;
18 R← R− s1 + s2;
19 end
20 Return R;

strate the consistency between computing the variation of DC
score from scratch and using above equation after replacing a
task recommendation.

Example 1: Let (s1, s2, s3, s4, s5) is the available tasks of
worker w, in which the categories of (s1, s2), (s3, s4), and
(s5) are c1, c2, and c3, respectively. The number of workers
|W | and λ are 10 and 0. Replacing a task recommendation
R(w) = (s1, s2, s3) with R′(w) = (s1, s3, s5), where Nw(c1),
Nw(c3), and kmin are 2, 0, and 3, the variation of DC in
terms of diversity δd is 2 ∗ (2 − 0 − 1)/(3 ∗ 2 ∗ 10) =
1/30. This variation can also be obtained through the exact
computation the difference between Diversity(R(w)) and
Diversity(R′(w)), where Diversity(R(w)) = 1 − 2

3∗2 = 2
3

and Diversity(R′(w)) = 1 − 0
3 = 1. The induced variation

of DC in terms of diversity is (1− λ)(1− 2/3)/|W |, which
equals to (1− 0)1/3/10 = 1/30.

The core idea of the DCB approach is to iterate all the
workers and find the possible replacements to improve DC in
terms of the diversity of each worker. Algorithm 3 shows the
finetuning process, which takes reachable task set RS, task
recommendation R from the coarse phase, and all workers
W as inputs. It iterates the workers W and calls the sub-
procedure ImproveDiversity until the task recommendation
R keeps unchanged. In ImproveDiversity, the variation
of DC in terms of coverage δc is first computed, which
presents the decrease of DC by replacing a task that is
recommended once (line 1). Then, we loop all the categories
in RS(w) (line 2). If the difference in terms of number
of recommendation between the two selected categories less



TABLE I
STATISTICS (AFTER PREPROCESSING)

Dataset #Users #POIs #Category #Check-ins Sparsity
NYC 1084 5136 286 146855 0.9736%
TKY 2294 7874 314 445277 0.9753%

than 2 (i.e., Nw(c1) − Nw(c2) < 2), we can assert that
replacing any task between these categories, DC in terms of
diversity will not be improved according to Equation 9 (i.e.,
(Nw(c1)−Nw(c2)− 1) ≤ 0 always holds). Thus, we directly
jump these category pairs (line 5). Next, we try to replace
a task from category c1 with a task from category c2. We
separate the category c1 tasks in RS(w) into two groups, NDs

and Ds, where NDs records the tasks that are removed from
this recommended list will not decrease the task coverage rate
and Ds records the rests (line 6). We guarantee that the tasks
to be replaced out in NDs and Ds are in the recommended
list R(w) (line 7). We select a task in NDs with the lowest
preference score to replace out if NDs is not empty (lines 8-
10). Otherwise, we compare the variation of DC in terms
of coverage and diversity (i.e., δc and δd). If the gain from
the improvement of diversity is greater than the decrease of
coverage, we select a task in Ds with the lowest preference
to replace out (lines 11-16). Finally, an unrecommended task
s2 whose category is c2 with the highest preference score is
selected, and the task recommendation R is updated (lines 17-
18).

IV. EXPERIMENTS

We evaluate the performance of the worker preference learn-
ing and the task recommendation on real data. We conduct
the experiments on Intel(R) Xeon(R) CPU E5-2650 v4 @
2.20GHz with 128 RB RAM and a GeForce GTX 1080 GPU.

A. Experimental Setup

Due to the lack of benchmark for task recommendation
algorithms in SC, we use two real check-in datasets from
Foursquare, i.e., New York City (NYC) and Tokyo (TKY),
to simulate the task recommendation scenario, where NYC
and TKY are collected from 12 April 2012 to 16 February
2013 [18]. To ensure the data quality, we filter out the POIs
that are visited less than 10 times and the users whose check-
ins are less than 10 times. After that, we chronologically
sort users’ all the check-ins. The first 60% check-ins of each
user are split into multiple length-equally (e.g., 20) sequences,
which are chosen as training sets. The following 20% and the
left are used for validation and testing, respectively. Table I
shows the statistics of the two datasets after preprocessing used
in our experiments.

For the task recommendation experiments, tasks are gen-
erated randomly on POIs, which means that each POI may
have several tasks. The speed of workers in both datasets
is set to 5km/h. Since the number of users in both datasets
is insufficient, we generate workers based on the long-term
check-in POIs. Specifically, we take each sub-sequence to
simulate the travel record of a worker. For example, suppose
(p0, p1, p2) is a sequence of check-ins. We can generate four

workers from it (i.e., (p0), (p0, p1), and (p0, p1, p2)) which
enables us to have enough workers to study the scalability
of the proposed methods. For simplicity and without loss of
generality, we assume that the processing time of a task is 0,
which means that a worker will proceed to the location of the
next task immediately upon finishing the current one [1], [19].
Moreover, we run the task recommendation methods over 10
rounds and report the average results. In each round, a worker
selects a task randomly from the recommended task list.

B. Experimental Results

1) Performance of Worker Preference Learning: In this
experiment, we evaluate the performance of the worker pref-
erence learning phase.

Evaluation Methods. We compare the proposed method
with seven representative competitors and two variants of ours.

• GRU4Rec [20]: employ GRU to model the sequential
information in user’s check-ins.

• STAMP [21]: captures users’ general interests of the
current session and current interests of the last click.

• SRGNN [22]: models the complex item transition rela-
tions through the constructed session graph and generates
the user embedding through the attentive technique.

• NARM [23]: employs RNNs with an attention mecha-
nism to capture the users’ main purpose and sequential
behavior.

• SASRec [14]: stacks multiple self-attention modules fol-
lowed by fully-connected layers to model the long-term
sequential information and relationship among POIs.

• Flashback [17]: leverages RNNs with spatial and tempo-
ral similarity matrix to model the users’ spatio-temporal
behavior.

• STiSAN [11]: incorporates spatio-temporal interval into
the self-attention technique to precisely enhance se-
quence representations to reflect spatio-temporal proxim-
ity among checked POIs.

• DSTSAN-E: a variant of the proposed model, which fuses
positional embeddings before inputting into self-attention.

• DSTSAN-ST: a variant of the proposed model, which
eliminates the spatio-temporal similarity in self-attention.

Metrics. We adopt two widely-used metrics, Hit Rate (HIT),
and Normalized Discounted Cumulative Gain (NDCG) [12], to
evaluate how well the target POIs in the test set are ranked. We
report three metrics at k = 5 and k = 10 in our experiments.
The larger the reported values are, the better the performance
the model achieves.

Parameter Settings. For all the models to be evaluated,
the hidden size and batch size are fixed at 64 and 2048,
respectively. For the proposed model and the variants, we set
the number of layers and the number of heads in attention
to 2 and 4, respectively. We adopt Adam optimizer and
L2 regularization with weight 1e-5 to train all the learning
models. For the baselines, we follow their original settings
to conduct experiments. Specifically, for Flashback, we set
their spatial factor λt and the temporal factor λt to 1000 and
0.1, respectively. For the attention-based competitors, such as



TABLE II
OVERALL PERFORMANCE

Method Dataset NYC Forsquare-TKY
Metrics HIT@1 HIT@5 HIT@10 NDCG@5 NDCG@10 HIT@1 HIT@5 HIT@10 NDCG@5 NDCG@10

GRU4Rec 0.1136 0.3055 0.4045 0.2137 0.2457 0.1070 0.2745 0.3690 0.1931 0.2237
STAMP 0.1465 0.3880 0.4850 0.2715 0.3029 0.1202 0.3181 0.4130 0.2227 0.2534
SRGNN 0.1525 0.3866 0.5048 0.2747 0.3097 0.1216 0.3633 0.4557 0.2423 0.2622
NARM 0.1554 0.4106 0.5198 0.2888 0.3243 0.1287 0.3401 0.4339 0.2387 0.2598
SASRec 0.1549 0.4304 0.5342 0.3042 0.3379 0.1307 0.3679 0.4708 0.2547 0.2881

Flashback 0.1644 0.4376 0.5472 0.3073 0.3428 0.1258 0.3323 0.4387 0.2382 0.2471
STiSAN 0.1743 0.4481 0.5557 0.3102 0.3492 0.1312 0.3876 0.4932 0.2589 0.2933

DSTSAN-E 0.1705 0.4473 0.5543 0.3157 0.3505 0.1319 0.3955 0.5037 0.2646 0.3056
DSTSAN-ST 0.1749 0.4392 0.5492 0.3086 0.3444 0.1292 0.3994 0.5205 0.2694 0.3097

DSTSAN 0.1810 0.4633 0.5749 0.3286 0.3648 0.1370 0.4077 0.5291 0.2757 0.3141

TABLE III
EXPERIMENT PARAMETERS

Parameter Value
Number of tasks, |S| 2K, 4K, 6K, 8K, 10K

Number of workers, |W | 1K, 2K, 3K, 4K, 5K
Number of POIs, |P | 1K, 2K, 3K, 4K, 5K

Expiration time of tasks (h), e 0.5, 1.0, 1.5, 2.0, 2.5
Reachable distance of workers (km), d 1, 2, 3, 4, 5

Number of recommended tasks, k 4, 6, 8, 10, 12, 14

SASRec and STiSAN, we set the number of layers and heads
in line with ours for fair comparison.

Accuracy. We compare the worker preference learning
models on both datasets, i.e., NYC and TKY, and report the
HIT and NDCG values in Table II. Note that we test all base-
lines for 10 rounds, and take the average value as their final
performance. The best performance by an existing method is
underlined, and the overall best performance is marked in bold.
For both datasets, DSTSAN achieves the highest HIT@N,
which outperforms the best among the baseline methods by up
to 0.5749 and 0.5291 in NYC and TKY, respectively. In terms
of NCDG, DSTSAN performs the best among all methods,
followed by its variants (DSTSAN-E in NYC and DSTSAN-
ST in TKY) and other methods in both datasets. Moreover,
DSTSAN always achieves better accuracy than its two variants
regardless of metrics and datasets, which demonstrates the
superiority of the decoupled positional embedding and spatio-
temporal proximity in the attention matrix.

2) Performance of Task Recommendation: Next we evalu-
ate the performance of task recommendation in spatial crowd-
soucing.

Evaluation Methods. We study the following methods.
• TOPK: The traditional TOPK method, recommends each

worker k most interested tasks (i.e., k tasks with the
highest preference scores) from reachable tasks of the
worker.

• RewardTOPK [1]: It gives priority to the ignored tasks
in previous task recommendation iterations.

• GCA, ODA and DCB: The proposed methods.
Metrics. Four main metrics are compared for the above

algorithms, i.e., Task Coverage Rate (TCR), Average Diversity
(AD), Average Preferenced-based Utility (APU), and CPU
time for finding task recommendation, in which TCR is the
ratio between the number of recommended tasks and the total
number of tasks, AD is the average diversity of workers, and

APU is the average preference-based utility of workers. A
larger TCR, AD, or APU implies better task recommendation.
The formal definition of AD and APU are as follows.

AD =

∑
w∈W (Diversityw)

|W |

APU =

∑
w∈W (RTSk(w))

|W |

(10)

Parameter Settings. Table III shows our experimental set-
tings, where the default values of all parameters are underlined.

Effect of |S|. We first study the effect of the number of tasks
|S| on both datasets. From Figures 3(a) and 4(a), we can see
that the GCA and DCB approaches always achieve a higher
task coverage rate compared with TOPK by up to around 25%
and 35%, respectively, and the ODA approach is comparable
with TOPK in most cases, which shows the superiority of
our methods in terms of TCR. Besides, the superiority of
the GCA and DCB approaches is more prominent when
the number of tasks increases, i.e., the performance gaps
of our methods and TOPK are increasing with |S| grows.
Moreover, the TCR of all methods decline with increasing
|S|, but the TCR of the GCA and DCB approaches is rather
stable with a slight increase of CPU time in Figures 3(d) and
4(d), which demonstrates their good scalability. Figure 3(b)
and 4(b) show the average diversity of workers, in which
the ODA approach always achieves the best. Besides, the
DCB approach is comparable with it, which shows that we
can slightly sacrifice the performance of average diversity to
largely improve the task coverage rate to satisfy the multiple
tastes of workers. When it comes to the APU of workers in
Figure 3(c) and Figure 4(c), since TOPK recommends the k
most interested tasks for each worker, it achieves the highest
APU (i.e., optimal APU) followed by the GCA, ODA, and
DCB approaches in most cases on both datasets. For efficiency,
TOPK is the fastest due to its simplest strategy of task
recommendation, while the other four methods are comparable
and cost slightly more than TOPK, which demonstrates the
efficiency of the proposed methods. RewardTOPK can achieve
consistently improvement in terms of diversity compared with
TOPK. However, its TCR cannot preserve the consistency, i.e.,
TCR of RewardTOPK is usually outperforms than it of TOPK
in TKY dataset while the situation is reversed in NYC dataset,
which is also shown in the later experimental results. This
finding shows that the robustness should be concerned when
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Fig. 3. Effect of |S| on NYC
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Fig. 5. Effect of |W | on NYC

applying it into practice. Comparing with RewardTOPK, our
proposals is more robustness in terms of TCR and diversity
as shown in Figure 3 and 4.

Effect of |W |. Next, we study the effect of |W |, the number
of workers to be recommended. As shown in Figures 5(a)
and 6(a), our proposed approaches, i.e., GCA, and DCB,
can always achieve higher TCR than the traditional Top-k and
RewardTOPK method, which can improve the TCR by up to
around 30% and 40%, respectively. In Figure 5(b) and 6(b),
with the increases of |W |, the AD of Controllable gradually
increases until near the theoretical optimum (i.e., AD of the
ODA approach) which shows that the DCB approach is good at
simultaneously satisfying the benefit of platform (i.e., TCR)
and workers (i.e., AD). The APU of TOPK is the highest,
but it cannot achieve a good task coverage rate and average
diversity of workers as shown in Figures 5(c) and 6(c). For
efficiency, TOPK still runs faster than the proposed methods
in Figures 5(d) and 6(d), but the running time of others is
also acceptable.

Effect of |P |. Figures 7 and 8 show the effect of the
number of POIs, |P |, on the performance of all methods.
When the number of POIs increases, the TCR of all methods

is stable, as shown in Figures 7(a) and 8(a). The GCA and
DCB approaches can obtain higher task coverage rate than
the other three methods while sacrificing some diversity and
utility of workers, as shown in the later two subfigures. In
addition, we can see an upward trend of AD and APU for all
methods due to the generation of diversified tasks on different
POIs. Figures 7(d) and 8(d) show that the running time of
these methods is randomly affected by the varies of POIs,
which may come from the random generation strategy of tasks,
i.e., a task is randomly generated from one of POIs at each
timestamp.

Effect of e. Next, we study the effect of expiration time (e)
on the recommendation performance. Figures 9(a) and 10(a)
show that RewardTOPK and TOPK approach perform the
worst compared with others and show a downward trend with
increasing e, especially in the TKY dataset. For the inferior
performance of RewardTOPK on TCR, we speculate that the
reason is as follows: the default setting has 3K workers and
6K tasks, which cause there are too many tasks that cannot
be done. With the time goes on, the left tasks in previous
iterations will have extreme large chance to be recommended
to the workers due to the reward mechanism. Thus, the TCR of
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Fig. 6. Effect of |W | on TKY
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Fig. 8. Effect of |P | on TKY

RewardTOPK will be unusually worse than it of TOPK, which
also demonstrates that our proposed method is more robust
than RewardTOPK in terms of TCR. When e gets larger, the
AD of ODA and DCB show an upward trend as shown in
Figures 9(b) and 10(b) since each worker may have more
reachable tasks with more relaxed valid time. The CPU time
of all methods increases with increasing expiration time e in
Figures 9(d) and 10(d) due to the implicit increase of the
number of tasks after several rounds of task recommendation.

Effect of d. We study the effect of reachable distance d
of workers. Figures 11(a) and 12(a) show that the TCR of
GCA and DCB increases gradually with increasing d, which
is because the larger d is, the more tasks can be reachable
and recommended for workers. TOPK, RewardTOPK and
the ODA approach without the design of considering task
coverage achieve their best at around 3 in NYC and 2 in TKY,
respectively, and then deteriorate fast after further increasing
of d. From Figures 11(b) and 12(b), we can observe that
the DCB approach can always achieve the near-optimal AD
with negligible gaps. Besides, the DCB approach performs the
worst in APU metric, which is the cost for achieving excellent

TCR and AD. Moreover, Figures 11(d) and 12(d) show an
ascending trend due to the similar reason of increasing e, i.e., a
larger d means more reachable tasks to access and processing
more tasks will cost more CPU time.

Effect of k. We also study the effect of the number of
recommendations k in Figures 13 and 14. We can see that the
DCB approach always achieves near-optimal TCR and AD,
e.g., around 98% in TCR and 99% when k = 4. Besides, we
also notice that APU is much affected when varying k for the
GCA and DCB approaches, which shows that achieving high
TCR should sacrifice much APU when the k is small.

Summary of our empirical study. First, decoupled model-
ing of the multiple factors, such as sequentiality, spatiality, and
temporality, can help the model to capture the preference of
workers more accurately. Second, for task recommendation,
there is no approach whose performance can dominate the
others on all metrics. The GCA approach, the ODA approach,
and TOPK always perform the highest TCR, AD, and APU ,
respectively, compared with others. Third, the DCB approach
is a method for balancing the performance of TCR and AD,
which can obtain around 98% of the optimal AD and near-
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Fig. 9. Effect of e on NYC
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Fig. 10. Effect of e on TKY

1 2 3 4 5
Reachable Distance (KM)

0.75

0.80

0.85

0.90

0.95

1.00

TC
R

(a) Task Coverage Rate
1 2 3 4 5

Reachable Distance (KM)

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

Di
ve

rs
ity

(b) Average Diversity
1 2 3 4 5

Reachable Distance (KM)

0.88

0.90

0.92

0.94

0.96

0.98

1.00

AP
U

(c) Average Preference-based Utility
1 2 3 4 5

Reachable Distance (KM)

7.5
10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5

CP
U 

Ti
m

e 
(s

)

(d) CPU Time (s)

TOPK RewardTOPK ODA GCA DCB

Fig. 11. Effect of d on NYC

optimal TCR with sacrificing slight APU . Our proposed
methods can be applied to different applications according to
their requirements.

V. RELATED WORKS

Spatial Crowdsourcing (SC) engages individuals (i.e., work-
ers) to collect and process social, environmental, and other
information with spatio-temporal features [2], reducing the
production cost and making the data collection efficient and
smart, where workers perform spatial tasks that involve trav-
eling to specified locations [19], [24]–[45]. According to the
way of task assignment to workers, SC can be classified
into Server Assigned Tasks (SAT) mode and Worker Selected
Tasks (WST) mode [1], [46]. SAT is the most widely-adopted
assumption in current studies [19], [27], [30], [47]–[53], in
which the server (i.e., the SC platform) takes charge of
the task assignment. For example, Zhao et al. propose a
preference-aware task assignment method that maximizes the
total number of task assignments [6]. Lai et al. design a
prediction model to forecast the loyalty of workers and a
loyalty-aware Kuhn-Munkras (KM) algorithm to maximize the
overall rewards of workers [30]. Tong et al. focus on the global

online micro-task allocation problem in SC and propose a two-
phase-based framework to maximize the total utility under a
set of constraints [50]. Cheng et al. propose three effective
approximation approaches, including greedy, sampling, and
divide-and-conquer algorithms, to assign workers to spatial
tasks such that the completion reliability and the spatial
or temporal diversities of spatial tasks are maximized [47].
However, the flexibility of workers in this mode is limited
(i.e., the SC server assigns tasks to workers compulsively
without the consideration of the workers’ willingness), which
cannot stimulate the enthusiasm of the workers and thus affect
the quality of the task result [1]. Therefore, we adopt the
WST mode in this work, in which an online worker can
select any tasks in their vicinity. However, the huge volume
of tasks in a worker’s vicinity brings challenges in terms of
efficiency, i.e., a worker may cost much time to select the
most suitable task to perform. To alleviate this problem, task
recommendation plays a vital role in SC under the WST mode,
which can help the worker quickly filter the tasks that are far
from his satisfaction. For example, Chen et al. [54] propose
a multi-agent task recommendation framework considering
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stochastic spatio-temporal uncertainty. The task recommen-
dation shares many common grounds with existing studies
about POI recommender systems [11], [55], which models
the workers’ preference in terms of spatio-temporality and
sequentiality. For instance, MobTCast [10] models the spatio-
temporal behaviors of users through early-integration with POI
embeddings. STiSAN [11] integrates the interval of space and
time into SANs through the additive operation. However, such
naive treatment may introduce noise [15] that achieves the sub-
optimal performance in the modeling of preference accuracy.
Besides, the task recommendation in SC usually considers the
utility of workers [54], the task coverage rate, or the fairness
of recommended tasks [1], which ignores the multiple interests
of workers. To deal with that, in this work, the diversity in the
recommended list of workers is taken into consideration.

VI. CONCLUSION

We propose a framework for task recommendation in spatial
crowdsourcing, DCBTaskRec, which consists of two main
phases, i.e., the workers’ preference learning and the task
recommendation. In the first phase, we propose a SANs-
based model, DSTSAN, which decouples the sequentiality,

spatiality, temporality, and dynamic interests of workers in
the self-attention layer and adaptively aggregates them through
a vanilla attention layer to model the different contributions
of multiple aspects on the workers’ preference. For task rec-
ommendation, we design three approaches, i.e., ODA, GCA,
and DCB, to meet the needs of different applications, i.e.,
maximizing the diversity in worker’s recommended list, max-
imizing task coverage rate, and achieving a trade-off between
coverage and diversity. An empirical study with real data
offers evidence that the framework is capable of advancing
the state of the art in terms of preference learning accuracy,
diversity in workers’ recommended list, and task coverage rate
of recommended tasks with limited k.
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[7] M. C. González, C. A. Hidalgo, and A. L. Barabasi, “Understanding
individual human mobility patterns,” Nature, vol. 453, pp. 779–782,
2008.

[8] Y. Zhao, S. Shang, Y. Wang, B. Zheng, Q. V. H. Nguyen, and K. Zheng,
“Rest: A reference-based framework for spatio-temporal trajectory com-
pression,” KDD, 2018.

[9] K. Zheng, Y. Zhao, D. Lian, B. Zheng, G. Liu, and X. Zhou, “Reference-
based framework for spatio-temporal trajectory compression and query
processing,” TKDE, vol. 32, pp. 2227–2240, 2020.

[10] H. Xue, F. D. Salim, Y. Ren, and N. Oliver, “Mobtcast: Leveraging
auxiliary trajectory forecasting for human mobility prediction,” in NIPS,
2021.

[11] E. Wang, Y. Jiang, Y. Xu, L. Wang, and Y. Yang, “Spatial-temporal
interval aware sequential poi recommendation,” ICDE, pp. 2086–2098,
2022.

[12] M. Weimer, A. Karatzoglou, Q. V. Le, and A. Smola, “Cofi rank -
maximum margin matrix factorization for collaborative ranking,” in
NIPS, 2007.

[13] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen, “Improving
recommendation lists through topic diversification,” in WWW, 2005.

[14] W.-C. Kang and J. McAuley, “Self-attentive sequential recommenda-
tion,” ICDM, pp. 197–206, 2018.

[15] X. Fan, Z. Liu, J. Lian, W. X. Zhao, X. Xie, and J.-R. Wen, “Lighter
and better: Low-rank decomposed self-attention networks for next-item
recommendation,” SIGIR, 2021.

[16] X. Rao, L. Chen, Y. Liu, S. Shang, B. Yao, and P. Han, “Graph-flashback
network for next location recommendation,” KDD, 2022.

[17] D. Yang, B. Fankhauser, P. Rosso, and P. Cudré-Mauroux, “Location
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