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Abstract—In the era of observability, massive amounts of time
series data have been collected to monitor the running status
of the target system, where anomaly detection serves to identify
observations that differ significantly from the remaining ones and
is of utmost importance to enable value extraction from such
data. While existing reconstruction-based methods have demon-
strated favorable detection capabilities in the absence of labeled
data, they still encounter issues of training bias on abnormal
times and distribution shifts within time series. To address these
issues, we propose a simple yet effective Temporal-Frequency
Masked AutoEncoder (TFMAE) to detect anomalies in time series
through a contrastive criterion. Specifically, TFMAE uses two
Transformer-based autoencoders that respectively incorporate
a window-based temporal masking strategy and an amplitude-
based frequency masking strategy to learn knowledge without
abnormal bias and reconstruct anomalies by the extracted normal
information. Moreover, the dual autoencoder undergoes training
through a contrastive objective function, which minimizes the
discrepancy of representations from temporal-frequency masked
autoencoders to highlight anomalies, as it helps alleviate the
negative impact of distribution shifts. Finally, to prevent over-
fitting, TFMAE adopts adversarial training during the training
phase. Extensive experiments conducted on seven datasets pro-
vide evidence that our model is able to surpass the state-of-the-art
in terms of anomaly detection accuracy.

Index Terms—time series anomaly detection, temporal-
frequency analysis, masked autoencoder

I. INTRODUCTION

Time series is a sequence of temporally ordered observa-
tions, and the analysis of it has swiftly become a focal task
in academic and industrial research, propelled by advances in
our capability of time series data collection and storage in the
context of sensor networks, cloud computing, and especially
the recent emerging concept of observability [1], [2]. Anomaly
detection is an indispensable task in time series analysis,
determining whether the data conforms to the normal data dis-
tribution, and the non-conforming parts are called anomalies.
Timely alerts for anomalies can empower system maintainers
to proactively conduct maintenance, enabling sustainability
and safety in real applications such as fraud detection [3],
intrusion detection [4], and energy management [5].
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However, providing accurate time series anomaly detection
is a non-trivial task because patterns of time series are intricate
and dynamic in various applications, which makes it hard
to seek a general manner for defining anomalies accurately.
Moreover, with the scarcity of labeled data, the progress of
supervised methods for time series anomaly detection is im-
peded. Unsupervised approaches can detect anomalies without
labeled data, which often relies on density-based methods
(leveraging discrepancies between neighbors) and clustering-
based methods (utilizing distances from cluster centers). As the
time series data scale grows larger and deep learning excels
in data analysis, recent endeavors turn to reconstructing time
series with intricate temporal correlations and multivariate
dependencies by using various deep learning models. These
models focus on the discrepancy between the reconstructed
and original time series. Innovations like OmniAno [6], Times-
Net [7], and TranAD [8] introduce the recurrent neural net-
work, convolution neural network, and Transformer network
into the time series anomaly detection, respectively.

Despite recent improvements, existing deep reconstruction-
based methods still face the following challenges.

Challenge I: Abnormal bias. Deep learning models heavily
rely on the learned knowledge from data during the training
phase, yet extracting information from time series proves more
challenging than language and image data due to its intricate
patterns [9], [10]. Therefore, learning a high-quality recon-
struction model becomes particularly hard, especially in the
presence of knowledge-agnostic abnormal bias. As depicted
in the left of Figure 1, TimesNet [7], a typical reconstruction
model, is able to well reconstruct normal series, yet overfits
abnormal observations, leading to performance degradation.
This phenomenon arises from the incorporation of misleading
abnormal bias, which can blend into normal patterns through
the commonly used temporal modeling. Unfortunately, many
existing reconstruction-based methods overlook this abnormal
bias, resulting in suboptimal performance.

Challenge II: Time series distribution shift. The distribu-
tion shift of time series introduces a crucial factor, wherein
patterns learned from training data may become unsuitable
or even incorrect for testing data, which results in erroneous
reconstructed time series. As shown in the right of Figure 1,
the curve of the cumulative score on the testing data goes up
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Fig. 1: Left: TimesNet [7] conducts anomaly detection on the
synthetic NIPS-TS-Global dataset. Right: Cumulative distribu-
tion function (CDF) of the anomaly scores on the real-world
SMAP validation and test sets for TimesNet.

faster than those on the validation data, which is attributed
to the distribution shift of time series and contributes to
poor generalization on the threshold. Despite there are two
types of existing techniques that can be incorporated into
reconstruction-based methods to mitigate distribution shifts:
normalization and decomposition. The static statistics-based
normalization [11], [12] and pre-defined parameters-based
decomposition [9], [13]–[15] exhibit limitations in general-
ization. Moreover, methods relying on learned statistics [16]
and parameters [17], [18] remain susceptible to the influence
of distribution shifts.

This work aims to address the above challenges by design-
ing a pioneering model, called Temporal-Frequency Masked
AutoEncoder (TFMAE), which is trained through an ad-
versarial contrastive objective function. For abnormal bias,
recognizing the importance of purifying time series, we imple-
ment a window-based temporal masking strategy to eliminate
potential observation anomalies (e.g., global and contextual
observation anomalies) with a large coefficient of variation,
and an amplitude-based frequency masking strategy to elim-
inate potential pattern anomalies (e.g., trend and seasonal
anomalies) with a small amplitude. These strategies are ben-
eficial for learning without abnormal bias and reconstructing
anomalies with the learned normal knowledge. To tackle the
distribution shift issue, we initially devise two Transformer-
based autoencoders to generate distinct representations of our
temporal and frequency masking-based time series. Then a
novel contrastive objective function is introduced to minimize
the discrepancy between these representations. Finally, the
contrastive discrepancy replaces the conventional reconstruc-
tion error for anomaly detection, as the discrepancy between
anomalies and their corresponding normal-recovered views
exceeds that of normal representations. Breaking free from
the reconstruction paradigm, the contrastive criterion leverages
the fact that the similarity of different views is distribution-
agnostic [19]. Besides, to avoid over-fitting in minimizing dis-
crepancy, adversarial training is integrated into our TFMAE.

Our contributions can be summarized as follows:

• To eliminate potential abnormal observations and patterns
before modeling, we present a window-based tempo-
ral masking strategy and an amplitude-based frequency

masking strategy. Therefore, autoencoders with purified
inputs are not misled by observation and pattern anoma-
lies, i.e., TFMAE is an abnormal bias-resistant model.

• To the best of our knowledge, this work is the first study
that replaces the reconstruction error with the temporal
and frequency masking-based contrastive criterion for
time series anomaly detection, which is a distribution shift
unaffected model.

• We conduct extensive experiments on seven public real
time series datasets, and the results offer insight into the
effectiveness and efficiency of TFMAE.

Section II surveys the related work. The problem statement
and the system overview are introduced in Section III. We then
present TFMAE in Section IV, followed by the experimental
results in Section V. Section VI concludes this paper.

II. RELATED WORK

A. Time Series Anomaly Detection

Numerous studies have been conducted on time series
anomaly detection. Based on the manners of detecting anoma-
lies, we can divide the methods into five types: density-based
methods, clustering-based methods, label-based methods, re-
construction-based methods, and contrastive-based methods.

Density-based methods mainly focus on the discrepancy
between observations and their neighbors. The density-based
local outlier factor (LOF) [20] and connectivity-based con-
nectivity outlier factor (COF) [21] are two typical traditional
density-based methods. As deep representational learning
gained traction, advanced models such as DAGMM [22] and
MPPCACD [23] learn low-dimensional representations of time
series and utilize the Gaussian Mixture Model to derive their
density, which achieves highly accurate detection results.

Clustering-based methods leverage distances between ob-
servations and the cluster center to discern anomalies. Tak-
ing clustering into consideration, classic techniques such as
support vector data description (SVDD) [24] and one-class
support vector machine (OC-SVM) [25] search the hyper-
sphere and hyperplane in the kernel space. Subsequently,
DSVDD [26] and THOC [27] are proposed to seek clusters in
the deep latent and hierarchical space for anomaly detection.

Label-based methods engage in supervised classification
during the training phase. Microsoft [28] pioneered the use of
human-generated labels to train a CNN model for anomaly de-
tection. Extending this approach, RobustTAD [29] introduces
the assignment of label and value weights to labels and crucial
points to improve detection performance.

Reconstruction-based methods have been a cornerstone of
research, particularly in the absence of labeled training data.
These models are trained in an unsupervised manner, detecting
anomalies by discerning discrepancies between original and
reconstructed time series. In the earlier years, reconstruc-
tion relied on statistical methods like ARIMA [30]. The
advent of deep learning gave rise to methods such as Omni-
Ano [6], HIFI [31], Interfusion [32], TFAD [13], VQRAE [33],
RDAE [34], and TimesNet [7]. They reconstruct time series
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Fig. 2: Overall architecture of the proposed TFMAE. The left part contains temporal-frequency masks, the middle part is
transformer-based autoencoders, and the right part shows objective functions. DKL means the Kullback–Leibler divergence.

from the current input. Furthermore, adversarial training has
been incorporated into reconstruction-based methods for ro-
bust detection. Examples include BeatGAN [35], USAD [36],
DAEMON [37], [38], SA-GAN [39], and TranAD [8].

Contrastive learning-based methods are designed to de-
tect anomalies through discrepancies between representations
derived from various aspects of the same input. TimeAu-
toAD [40] and CTAD [41] construct negative samples by
injecting noise, and judge anomalies according to the original-
negative discrepancy. AnoTran [42] minimizes distances be-
tween prior and association representations to mitigate dis-
tribution shifts in anomaly detection. Conversely, DCdetec-
tor [43] minimizes distances between different patch size-
based association representations to avoid prior knowledge.
Notably, previous approaches focus solely on temporal aspects,
neglecting the crucial role of frequency features in detecting
abnormal patterns.

B. Masked Autoencoder

Building on the success of masked language modeling,
exemplified by BERT, the masked autoencoder (MAE) [44]
has emerged as a potent self-supervised vision learner for
image representations. Specifically, MAE randomly masks
tokens within images, allowing its encoder to learn from
unmasked tokens and the decoder to recover masked ones.
The STMAE [45] extends the MAE paradigm into video
modeling, achieving remarkable performance. While MAE has
found applications in various domains such as non-Euclidean
data modeling (GraphMAE [46]) and time series modeling
(STEP [47]), conventional random-based MAE methods lack
task-specific adaptability. In response, innovative adaptations
have been introduced: MAERec [48] masks tokens with higher
structural consistency for robust sequential recommendation,
GPT-ST [49] uses cluster-aware masking for cross-cluster
knowledge learning, and EMAE [50] masks learned semantic
parts in images for fast training. However, these methods can
not be directly transferred into time series anomaly detection.

III. PRELIMINARIES

1) Time Series Representations: We define a time se-
ries S as a sequence of observations representing numerical

values produced by sensors or machines. Formally, S =
{s1, . . . , st, . . . , s|S|}, where st ∈ RN comprises N numerical
values at time t. The length of the time series is denoted as
|S| with S ∈ R|S|×N . In the special case where N = 1, S
is a univariate time series. For the given S, we can generate
its D-dimensional representation by using the parameterized
model G(·,Θ), where Θ denotes parameters.

2) Problem Definition: Given a trained model G(·,Θ) and
a time series S ∈ R|S|×N , the objective in time series
anomaly detection is to determine whether observations in
the series exhibit anomalies. This determination is made
through the D-dimensional representation and the labels Y =
{y1, . . . , yt, . . . , y|S|} ∈ R|S|, where yt ∈ {0, 1} and yt = 1
indicates that the t-th observation is an anomaly.

3) System Overview: Figure 2 depicts the architecture of
our TFMAE, which consists of the following components:

• Temporal-Frequency Masks. Given an univariate or
a multivariate time series, TFMAE adopts a window-
based temporal masking strategy and an amplitude-based
frequency masking strategy to selectively eliminate po-
tential abnormal observations and patterns, which can
avoid abnormal bias and derive two different views of
the input time series. After the temporal masking, the
masked observations are replaced with learnable parame-
ters, and the unmasked observations are projected to the
high-dimensional space, respectively. After the frequency
masking, the masked patterns are replaced with learnable
parameters and then the whole time series is projected to
the high-dimensional space.

• Transformer-based Autoencoders. To enhance the re-
covery of masked patterns and observations, TFMAE in-
corporates the widely adopted sequential modeling frame-
work, Transformer, for effective temporal information
learning. For the frequency masking-based representa-
tions, a decoder-only manner is employed for recovering
masked patterns due to the mix of frequencies. For the
temporal masking-based representations, unmasked parts
are initially passed through the encoder to learn normal
patterns. Subsequently, all observations are fed into the
decoder, facilitating the recovery of masked observations.



TABLE I: Summary of notations.

Notations Explanations
S, |S| input time series and its length
Y , Ŷ real and predicted anomaly label
Θ, θ learnable parameters and filter
V , µ coefficient of variation and average value
r(T ), r(F ), r ratio of temporal masking, frequency mask-

ing, and calculating threshold
idx(T ), idx(F ) masked indices of observations and fre-

quencies
I(T ), I(F ) number of masked observations and fre-

quencies
X , X̃ , A frequency representation, updated fre-

quency representation, and amplitude
e, j, ω Euler’s number, imaginary unit, and angu-

lar frequency
U , P , F unmasked temporal representation, masked

temporal representation, and frequency rep-
resentation

c positional encoding
W (F ), b(F ) learnable parameters and bias in frequency

projection
W (T ), b(T ) learnable parameters and bias in temporal

projection
W , L, D sub-sequence length, layers, and latent di-

mensions

• Model Training. After obtaining learned temporal
and frequency masking-based representations, the con-
trastive objective function is used to minimize the Kull-
back–Leibler divergence (KLD) of them. The gradient of
temporal masking-based representations is halted in the
contrastive function to ensure the alignment of frequency
masking-based representations. Subsequently, the adver-
sarial training is applied to maximize the KLD between
temporal-frequency masking-based representations, with
the gradient of frequency masking-based representations
being stopped. The adversarial training acts as a safeguard
against discrepancy over-fitting.

The details of the above components are shown in Sec-
tion IV. Moreover, notations utilized in this paper are summa-
rized in Table I.

IV. METHODOLOGY

We proceed to provide specifics on each component in
TFMAE and the anomaly detection, and then analyze the
complexity of TFMAE.

A. Temporal-Frequency Masks

1) Window-based Temporal Masking: Currently, the re-
construction paradigm is popular for time series anomaly
detection. However, reconstruction-based methods face the
risk of learning misleading information from anomalies when
the input time series is not pristine during the training phase,
which may lead to recovering anomalies well and normal
observations badly. The natural solution to reduce abnormal
bias is replacing anomalies with normal patterns. Inspired by
the success of masked autoencoder (MAE) [44] in diverse
fields and its inherent masking-reconstruction property, we
design a novel window-based temporal masking strategy to
substitute the random masking strategy in MAE, which can
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mask potential abnormal observations and recover them with
normal information. The details of the window-based temporal
masking strategy are shown below.

Figure 3 illustrates the pipeline of this masking strategy,
which initially utilizes a sliding window to extract sub-
sequences, and then employs local statistics as the metric to
mask. The reason for sliding a window on time series to extract
sub-sequences of each observation is that statistics calculated
based on windows are local temporal enriched and more robust
to the distribution shift compared with values of observa-
tions [51]. Different from directly using the average value of
sub-sequences, the coefficient of variation is adopted in our
strategy, which can reflect the relative degree of fluctuation of
the local sub-sequence [52]. Specifically, given an observation
snt of feature n of the input time series S, its sub-sequence
sn[t−W :t] is sampled through the sliding window, where W
denotes the length of the sliding window. The coefficient of
variation of the t-th sub-sequence is calculated as follows:

vt =

N∑
n=1

1
W−1

∑t
k=t−W (snk − µn

t )
2

µn
t

(1)

where vt indicates the summation of coefficient of variation of
N features at the t-th sub-sequence, µn

t denotes the average
value of the n-th feature at t-th sub-sequence, and V ∈ R|S|

contains the coefficient of variation of all observations. The
coefficient of variation will be increased when the window
is sliding on fluctuations. A larger coefficient of variation
indicates that data are more dispersed, i.e., the local sub-
sequence is more abnormal. Therefore, we select a subset
of r(T )% observations with a large coefficient of variation
as candidate anomalies to reduce abnormal observation bias.
Moreover, our masking strategy is not affected by changes in
the scale of the data because the coefficient of variation is
normalized by its average value. Mathematically, indices of
the masked observations can be formulated as follows:

idx(T ) = TopIndex(V, I(T )) (2)

where I(T ) = ⌊r(T )% × |S|⌋ and TopIndex(·, I(T )) returns
indices with top I(T ) values in the first input, and thus
idx(T ) ∈ RI(T )

is a subset of temporal indices. After getting
the indices of masked observations, we utilize the learnable
parameter-based vector m(T ) ∈ RD as masked representations
and a linear projection to transform unmasked observations
into latent space for better modeling. The temporal unmasked



input U ∈ R(|S|−I(T ))×D and the temporal masked input
P ∈ RI(T )×D are computed as follows:

ut =W (T )st + b(T ), where t /∈ idx(T )

pt = m(T ), where t ∈ idx(T )
(3)

where W (T ) ∈ RN×D and b(T ) ∈ RD are learnable parame-
ters of the linear projection.

FFT-based Acceleration. Considering that efficiency stands
as a pivotal consideration in anomaly detection, our window-
based temporal masking strategy introduces two unavoidable
loops (the inner one for calculating statistics and the outer
one for sliding the window), significantly amplifying com-
putational time. Recognizing the critical role of efficiency, we
explore an alternative derivation for the coefficient of variation,
i.e., one that relies on the expected and average values. This
alternative form can be simply formulated as follows:

vt =

N∑
n=1

µ
(2)n

t + µn2

t

µn
t

(4)

where µ(2) denotes the average value of the square of sub-
sequence. Benefit from the average values of each window
can be obtained by sliding a filter θ ∈ 1W on S (i.e.,
employing a convolution with the ones kernel on time series).
The acceleration of calculating the coefficient of variation is
achieved through Fast Fourier Transforms (FFT) according to
the Wiener–Khinchin theorem [53]:

V =

N∑
n=1

v̄n, where

v̄n =
F−1(F(sn

2

)⊙F(θ)) + (F−1(F(sn)⊙F(θ)))2

F−1(F(sn)⊙F(θ)) ·W

(5)

where v̄n ∈ R|S| denotes the coefficient of variation of the n-
th feature, and

∑
in Eq. (5) is the element-wise addition. Next,

F(·) and F−1(·) indicate the FFT and its inverse operation.
Thus, two loops are replaced by the FFT operation, which can
be parallel executed with O(|S|log(|S|)) complexity.

2) Amplitude-based Frequency Masking: While our
window-based temporal masking effectively filters potential
abnormal observations, various pattern anomalies persist
in time series, including seasonal and trend anomalies. To
address this, we introduce a novel frequency masking strategy
applied directly to the input time series, aiming to alleviate
abnormal pattern bias. Notably, we opt to perform frequency
masking on the original time series rather than the time
series post-temporal masking. The design of this dual channel
allows us to retain abnormal patterns after temporal masking
and abnormal observations after frequency masking. This
deliberate choice is rooted in contrastive learning needs two
distinct representations to detect anomalies.

Figure 4 illustrates the process of frequency masking. Ini-
tially, to facilitate the masking of potential abnormal patterns,
time series is transformed into frequency-based representa-
tions. The frequency domain is chosen for its heightened sensi-
tivity to pattern changes and its ease in updating patterns [13].
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Given the input time series S, its frequency representation
X ∈ C|S|×N is obtained by using the Discrete Fourier Trans-
form (DFT) on each feature. Mathematically, the frequency
spectrum xn

i of feature n with angular frequency ωn
i = 2πi

|S| is
formulated as follows:

xn
i =

|S|∑
t=1

(snt e
−jωn

i t) (6)

where e and j are Euler’s number and the imaginary unit,
respectively. Previous frequency-based time series modeling
methods often discard high frequency components (angular
frequency with large i) under the assumption that high fre-
quencies signify noises. However, in this paper, we argue
that frequency alone is insufficient as a criterion for judging
abnormal patterns. Firstly, certain high frequency operations,
e.g., writing logs in server clusters, should be retained. Second,
trend and shaplet anomalies may manifest as low frequency
components still exist in time series. To address these con-
siderations, we utilize the amplitude to replace frequency as
our masking criterion, which allows for a more comprehensive
evaluation of frequency importance, considering factors such
as existence duration and temporal magnitude [29], like the
masked curve in Fig. 4. The amplitude A ∈ C|S|×N of input
times series can be calculated as follows:

ani =
√
R2[xn

i ] + J2[xn
i ] (7)

where R[xn
i ] and J[xn

i ] denote real and imaginary parts of the
frequency, respectively. Finally, we select a subset of r(F )%
frequencies with small amplitude as masked patterns due to
their lower magnitude and shorter existence. Mathematically,
indices of these selected frequencies can be formulated as:

idx(F )n = TopIndex(−an, I(F )) (8)

where I(F ) = ⌊r(F )%× |S|⌋ and idx(F ) ∈ RI(F )×N .
In contrast to the temporal domain, where masked and

unmasked representations can be separated, frequencies are
mixed after reverting to the temporal domain. Therefore,
the conventional MAE paradigm, which typically models
unmasked and all observations sequentially, encounters chal-
lenges in the frequency domain. To address this issue, we
directly employ a learnable vector m(F ) ∈ CN to substitute
masked frequencies before converting to the temporal domain.
Thus, the replaced representation can be formed as follows:

x̃n
i =

{
m(F )n [n, i] ∈ idx(F )

xn
i [n, i] /∈ idx(F )

(9)



where X̃ ∈ C|S|×N encapsulates information about learnable
masked and original unmasked frequencies. To convert the
frequency representation into the original temporal domain,
the inverse Discrete Fourier Transform (IDFT) is used for X̃ .
Besides, a linear projection is also utilized to transform the
frequency masking-based time series into latent space for bet-
ter modeling. Mathematically, the representation F ∈ R|S|×D

after frequency masking is presented below:

ft = W (F )

|S|∑
i=1

(
x̃ie

j 2π
|S| it

|S|
) + b(F ) (10)

where W (F ) ∈ RN×D, b(F ) ∈ RD are learnable parameters
of the fully-connected network.
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Fig. 5: Left: Transformer-based decoder-only autoencoder for
recovering masked frequencies, where ⊕ indicates element-
wise addition. Right: Transformer-based autoencoder for re-
covering masked observations, where || denotes inserting
masked representations into learned unmasked representations.

B. Transformer-based Autoencoders

1) Frequency Masking-based Autoencoder: In this section,
we employ the vanilla Transformer-based decoder to recover
masked frequencies, drawing inspiration from the Trans-
former’s efficacy in capturing temporal dependencies [54], as
demonstrated by Informer [55], PatchTST [56], AnoTran [42]
and TranAD [8] models. The decision to adopt a decoder-
only architecture in the frequency masking-based autoencoder
arises from the mixing of masked and unmasked frequencies
after IDFT. Furthermore, as illustrated in the left part of Fig-
ure 5, the vanilla Transformer includes a positional encoding
module and the subsequent L-layer self-attention module.

Positional Encoding. Following the paradigm of the vanilla
Transformer, we incorporate absolute order information of
observations into the representation F using a sinusoidal
function to expedite convergence. Specifically, the value of i-
th dimension of the t-th representation is denoted as f

(0)i

t ,
obtained by adding the original representation f i

t and its

corresponding positional encoding cit. The details of positional
encoding are formulated as follows:

f
(0)i

t = f i
t + cit, where

cit =

{
sin(t/10000i/D) i ∈ Even

cos(t/10000(i−1)/D i ∈ Odd

(11)

where F (0) ∈ R|S|×D denotes the encoding-decorated output.
Self-Attention. As depicted in Figure 5, each attention layer

comprises a dot-product self-attention mechanism and a feed-
forward network. In the l-th layer, the input F (l−1) is initially
projected into a query Q(l) ∈ R|S|×D, key K(l) ∈ R|S|×D,
and value V (l) ∈ R|S|×D through three linear projections.
Subsequently, attention weights, i.e., correlations between each
observation, are calculated through the multiplication of the
query Q(l) and key K(l). Finally, the value V (l) is temporal
enhanced based on their attention weights. Mathematically, the
representation of self-attention for the t-th observation in the
l-th layer can be expressed as follows:

f̃
(l)
t =

∑|S|
i=1(e

q
(l)
t k

(l)
i√

D v
(l)
i )∑|S|

i=1 e
q
(l)
t k

(l)
i√

D

(12)

where F̃ (l) ∈ R|S|×D indicates the representation of l-th self-
attention. To ensure stable training and improve the generaliza-
tion of self-attention, we incorporate a residual connection and
a feed-forward network. The formulation is presented below:

F̄ (l) = LN(F (l−1) + F̃ (l))

F (l) = LN(F̄ (l) +MLP (F̄ (l)))
(13)

where LN(·) and MLP (·) indicate the layer normalization
and multilayer perceptron, respectively. F̄ (l) ∈ R|S|×D and
F (l) ∈ R|S|×D are representations after the residual connec-
tion and feed-forward network.

2) Temporal Masking-based Autoencoder: In this section,
we elaborate on the process of modeling the representation
after temporal masking. As illustrated in the right part of Fig-
ure 5, the unmasked observations are initially processed by a
Transformer-based encoder to learn normal temporal patterns.
Subsequently, the entire set of observations is input into the
Transformer-based decoder to recover masked observations
through the learned normal patterns.

Encoder. Differing from the decoder-only design in the
frequency domain, the unmasked temporal input U is initially
processed by the encoder to acquire normal temporal pat-
terns. Concretely, U is initially decorated with the sinusoidal
positional encoding and then modeled through the L-layer
encoder, facilitating the propagation of temporal information
from the context to the current state. After the encoder, the
learned representation U (L) ∈ R(|S|−I(T ))×D of unmasked
observations is obtained.

Decoder. Similar to the frequency view, the full set of
observations (i.e., encoded unmasked and learnable masked
observations) are used in the Transformer-based decoder. Prior
to their input into the decoder, the sinusoidal positional



encoding is added to the masked observations based on
their locations in the original time series, as the learnable
vector-based masked representation lacks location informa-
tion. Subsequently, the decorated representation of masked
observations is inserted into the encoded representation of
unmasked observations. Both are then fed into the decoder to
recover masked observations through normal patterns learned
in the encoder. Finally, following the L-layer decoder, the
representation P (L) ∈ R|S|×D for all observations is obtained.

C. Model Training

In this section, we formulate the adversarial training en-
hanced contrastive objective function, which uses representa-
tions from two distinct perspectives, namely the temporal and
frequency view, to train our TFMAE.

1) Contrastive Objective Function: While the reconstruc-
tion error has been a staple loss function in anomaly detection
tasks, the persistent challenge of time series distribution shift
hampers its efficacy. Time series distribution shift denotes
alterations in the distribution of test data compared to the
training data, posing difficulty in reconstructing unseen data
from previously learned patterns. In other words, observations
with high anomaly scores may not necessarily be abnormal but
rather unseen. To mitigate the negative influence of time series
distribution shift, we propose a novel contrastive objective
function to train our TFMAE, which replaces the minimization
of the discrepancy between original and reconstructed time
series with the minimization of the discrepancy between
temporal and frequency masking-based representations. This
is because the temporal-frequency masking-based represen-
tations of the same time series remain consistent according
to their temporal-frequency consistency [57], even when the
input has not been seen. Moreover, only positive samples are
employed in our contrastive objective function to minimize
the discrepancy of representations from temporal-frequency
masking views, in contrast to classic contrastive learning
that utilizes positive-negative pairs [58]. During the training
phase, anomalies will be progressively highlighted because the
discrepancy between normal-recovered and original-abnormal
representations of anomalies in different views is more resis-
tant to reduction compared to consistent normal observations.
Therefore, observations with higher discrepancies will be
detected as anomalies in the inference stage. Mathematically,
the contrastive objective function is calculated as follows:

L = DKL(P
(L), F (L)) +DKL(F

(L), P (L)) (14)

where DKL(·, ·) indicates the Kullback–Leibler divergence,
which calculates the distance between two representations and
is used to reflect the discrepancy between temporal-frequency
masking-based representations.

2) Adversarial Training: As depicted in Table IV, the
utilization of contrastive learning alone does not yield optimal
results, primarily due to the emergence of the over-fitting
phenomenon, e.g., the representation of abnormal frequencies
in the temporal view tends to be proximate to its corresponding
normal-recovered representation in the frequency view after

the contrastive training. This phenomenon contradicts our
intended objective of minimizing the discrepancy between nor-
mal observations while maximizing the discrepancy between
anomalies. To overcome this issue, we introduce an adversarial
mechanism into our objective function, which enhances the
robustness and generalization in most deep learning tasks. In
TFMAE, adversarial training aims to increase the similarity
between normal representations while maintaining a signifi-
cant discrepancy between abnormal representations and their
corresponding normal views. Mathematically, our adversarial
contrastive function is expressed below:

L = min
F (L)

max
P (L)

(DKL(P
(L), F (L))+DKL(F

(L), P (L))) (15)

where max and min denote increasing and decreasing the
discrepancy between temporal-frequency masking-based rep-
resentations. During the training phase, the gap between the
discrepancy of abnormal representations and the discrepancy
of normal representations gradually increases because the
discrepancy of abnormal representations is more difficult to
reduce and easier to increase. Moreover, the gradient of
temporal and frequency masking-based representations is re-
spectively stopped in the minimizing and maximizing stage
because temporal masking-based representations reserve more
original information and are thus more suitable for acting as
labels in the adversarial training. As illustrated in Figure 8,
the adversarial contrastive objective function can output large
discrepancies in anomalies.

D. Anomaly Detection
In our contrastive design, the magnitude of discrepancy

between temporal-frequency masking-based representations
directly corresponds to the likelihood of an anomaly. Conse-
quently, we employ the contrastive discrepancy as the anomaly
score during the inference stage. The score for the input
observation st ∈ RN can be calculated as:

Score(st) = DKL(p
(L)
t ||f (L)

t ) +DKL(f
(L)
t ||p(L)

t ) (16)

Ultimately, observations are assessed based on the anomaly
score and the pre-determined threshold δ, i.e., an anomaly is
detected when the score surpasses the threshold. The detected
labels Ŷ ∈ R|S| are shown below:

ŷt =

{
1 Score(st) ≥ δ

0 Score(st) < δ
(17)

E. Complexity Analysis
In this section, we discuss the complexity of TFMAE, which

is composed of window-based temporal masking, amplitude-
based frequency masking, and Transformer-based autoen-
coders. The time complexity of the window-based temporal
masking is optimized from O(N |S|W ) to O(N |S|log(|S|))
by the FFT operation, and the DFT algorithm in the amplitude-
based frequency masking is also can be fasted by the FFT op-
eration with the complexity O(N |S|log(|S|)). Therefore, the
time complexity of our TFMAE is dominated by O(LD|S|2)
due to the quadratic self-attention in the Transformer, which
is comparable to or even surpasses state-of-the-art methods.



TABLE II: Dataset statistics. The term ”AR” indicates anomaly ratio.

Datasets Sources Type Dimension #Training #Validation #Inference AR(%)
MSL NASA Space Multivariate 55 46653 11664 73729 10.5
PSM eBay Server Multivariate 25 105984 26497 87841 27.8
SMD Internet Server Multivariate 38 566724 141681 708420 4.2
SWaT Water Treatment Multivariate 51 396000 99000 449919 12.1
SMAP NASA Space Multivariate 25 108146 27037 427617 12.8

NIPS-TS-Global Synthetic Univariate 1 40000 10000 50000 5.0
NIPS-TS-Seasonal Synthetic Univariate 1 40000 10000 50000 5.0

V. EXPERIMENTS

To validate the effectiveness and efficiency of our TFMAE,
we conduct comprehensive experiments on seven datasets to
answer the following six research questions:

• RQ1: Does our TFMAE demonstrate superior perfor-
mance compared to baselines across diverse datasets?

• RQ2: How do components within TFMAE, e.g., autoen-
coders, impact the performance of anomaly detection?

• RQ3: How effective are the temporal-frequency masking
strategies designed in TFMAE?

• RQ4: How does adjusting various hyperparameters, par-
ticularly the temporal-frequency masking ratio, impact
the performance of TFMAE?

• RQ5: Does TFMAE output reasonable anomaly scores?
• RQ6: How efficient is TFMAE in anomaly detection?

A. Experimental Setup

1) Benchmark Datasets: In this paper, we selected seven
widely used time series anomaly detection datasets to assess
the effectiveness of TFMAE. These datasets include five
real-world and two synthetic datasets: MSL (Mars Science
Laboratory rover) and SMAP (Soil Moisture Active Passive
satellite) are both released by NASA [59], where the time
series and anomaly alarms in them are recorded by the Incident
Surprise Anomaly reports of spacecraft monitoring systems.
PSM (Pooled Server Metrics) is released by eBay [60], con-
taining time series from multiple server nodes at eBay. SMD
(Server Machine Dataset) [6] is a larger dataset compared
to the aforementioned ones, encompassing a five-week-long
time series of internet server nodes. SWaT (Secure Water
Treatment) records data from the critical infrastructure sys-
tem under continuous operations [61]. NIPS-TS-Global and
NIPS-TS-Seasonal are synthetic datasets generated by well-
designed rules [62], representing global observation anomalies
and seasonal anomalies, respectively. Detailed information
about these datasets is presented in Table II.

2) Metrics: To compare time series anomaly detection
performance, we employ three widely used evaluation metrics:
precision (P), recall (R), and F1-score (F1). Consistent with
literature settings, we apply the point adjustment strategy
to obtain detection results, where continuous anomalies are
identified if a single observation in the segment is detected.

3) Baselines: We extensively compare our proposed TF-
MAE against the following six categories-based 14 baselines:

• Density-based methods: LOF [20] computes the local
density deviation and observations with lower density are

anomalies. DAGMM [22] further utilizes the Gaussian
Mixture Model to compute the density of data.

• Tree-based methods: IForest [63] performs anomaly de-
tection using isolation trees with linear time complexity.

• Clustering-based methods: DSVDD [26] uses deep net-
works to derive representation and detect anomalies
through distances to clusters. THOC [27] extracts hier-
archical information through the dilated recurrent neural
network and trains the model using one-class objective
on clustered hyperspheres for anomaly detection.

• Reconstruction-based methods: OmniAno [6] utilizes the
normalizing flow enhanced LSTM to reconstruct time se-
ries for detecting anomalies. TimesNet [7] transforms 1D
time series into multiple 2D tensors and then uses convo-
lution backbones to reconstruct time series. GPT4TS [64]
combines large language models with the time series
anomaly detection task.

• Adversarial reconstruction-based methods: USAD [36]
proposes a two decoders-based autoencoder and uses
the adversarial manner for fast training. BeatGAN [35]
utilizes adversarial enhanced convolution models to detect
time series anomalies. DAEMON [37] utilizes two dis-
criminators to adversarially train an autoencoder and then
derive the robust reconstructed time series. TranAD [8]
utilizes the Transformer framework to encode time series
and then introduces adversarial training into the two
decoders-based model to enhance robustness.

• Contrastive-based methods: AnoTran [42] encodes time
series by the prior association and the series association,
and then uses the discrepancy between two representa-
tions to distinguish anomalies. DCdetector [43] utilizes
positive contrastive learning on the representations of
time series with different patch sizes to detect anomalies.

We utilize the configuration of best performance in baselines
to run their official codes on the same machine that running
our model.

4) Hyper-Parameter Settings: TFMAE is trained by the
Adam optimizer [65] with an initial learning rate of 0.0001,
an epoch of 1, and a batch size of 64. In autoencoders, we set
the number of transformer layers as 3 with 128 hidden feature
dimensions. During the window-based temporal masking pro-
cess, the length of the sliding window is set to 10 to calculate
local statistical features. Moreover, we set different temporal-
frequency masking ratios for different datasets due to their
characteristics. The detailed settings can be seen in Figure 6.
Besides, the threshold δ is pre-determined by detecting r%



TABLE III: Main results on five time series anomaly detection datasets. The precision (P), recall (R), and F1-score (F1) are
in %. The term ”Average” refers to the mean value across these five datasets. Grey: Best result, Bold: Second best result.

Dataset SWaT PSM SMD
Model Venue P R F1 P R F1 P R F1
LOF MOD-00 15.37 94.15 26.42 68.77 93.86 79.38 39.52 10.57 15.72

IForest ICDM-08 80.31 81.90 81.09 95.74 85.83 90.51 47.18 72.66 57.21
DSVDD ICML-18 91.26 80.49 85.54 72.88 88.99 80.13 56.06 72.56 63.25
DAGMM ICLR-18 26.19 87.41 40.31 92.07 90.09 91.07 65.39 86.17 74.36
BeatGAN IJCAI-19 92.46 79.06 85.23 96.58 90.16 93.26 77.11 77.60 77.36
OmniAno KDD-19 71.65 83.76 77.23 95.71 90.09 92.82 72.58 83.67 77.73

USAD KDD-20 57.76 83.76 68.37 97.63 98.08 97.86 90.96 90.04 90.99
THOC NeurIPS-20 83.10 83.54 83.32 78.33 88.60 83.15 69.08 77.30 72.96

DAEMON ICDE-21 90.86 78.50 84.23 97.57 86.22 91.55 78.08 77.91 77.99
AnoTran ICLR-22 83.85 100.0 91.22 96.74 97.73 97.23 90.90 81.20 85.78
TranAD VLDB-22 94.23 94.36 94.29 97.44 98.19 97.92 74.30 81.65 77.80

TimesNet ICLR-23 81.83 97.32 88.90 97.64 98.22 97.93 77.67 81.58 79.58
DCdetector KDD-23 93.25 100.0 96.51 97.40 98.16 97.78 85.37 82.85 84.09

GPT4TS NeurIPS-23 90.13 95.60 92.79 97.39 94.13 95.73 89.60 81.13 85.16
TFMAE - 96.77 100.0 98.36 98.06 99.06 98.56 91.41 91.07 91.24

Dataset MSL SMAP Average
Model Venue P R F1 P R F1 P R F1
LOF MOD-00 63.46 90.05 74.45 79.62 85.26 82.34 53.35 74.78 55.66

IForest ICDM-08 76.95 90.77 83.29 88.60 56.36 68.90 77.76 77.50 76.20
DSVDD ICML-18 87.93 86.93 87.43 87.34 58.78 70.27 79.09 77.55 77.32
DAGMM ICLR-18 90.05 86.93 88.46 87.58 56.31 68.55 72.26 81.38 72.55
BeatGAN IJCAI-19 91.44 85.42 88.33 93.91 55.41 69.70 90.30 77.53 82.78
OmniAno KDD-19 90.82 86.47 88.59 92.34 56.18 69.85 84.62 80.03 81.24

USAD KDD-20 91.24 94.73 92.96 92.02 65.78 76.71 85.92 86.48 85.38
THOC NeurIPS-20 90.30 75.99 82.53 90.08 55.50 68.69 82.18 76.19 78.13

DAEMON ICDE-21 91.47 87.37 89.37 84.95 56.49 67.86 88.59 77.30 82.20
AnoTran ICLR-22 91.95 96.50 94.17 94.01 86.72 90.22 91.49 92.43 91.72
TranAD VLDB-22 90.72 94.73 92.68 93.12 71.33 80.78 89.96 88.05 88.69

TimesNet ICLR-23 87.32 85.42 86.36 86.47 65.48 74.53 86.19 85.60 85.46
DCdetector KDD-23 92.08 94.44 93.24 93.18 98.84 95.93 92.26 94.86 93.51

GPT4TS NeurIPS-23 82.08 85.45 83.73 88.78 64.72 74.86 89.60 84.21 86.45
TFMAE - 92.83 97.59 95.15 94.71 99.19 96.90 94.76 97.38 96.04

data as anomalies. Specifically, we set r = 0.9% for MSL and
PSM, 0.75% for SMAP, 0.45% for SMD, and 0.3% for SWaT.

5) Implementation Details: The experiments of TFMAE
and all baselines are conducted on a machine with one
Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz and a
NVIDIA GeForce RTX 3090 GPU card with PyTorch
1.12.1. The source code of TFMAE is available at:
https://github.com/LMissher/TFMAE. For a fair comparison,
thresholds of all methods are calculated through the validation
set.

B. Performance Comparison (RQ1)

Table III showcases the performance of time series anomaly
detection across all methods on five datasets, measured in
terms of precision, recall, and F1-score. To ensure a fair com-
parison, we adhere to the original configurations of baselines,
with the only adjustment being a fixed input length of 100,
in line with [42]. Consequently, the reported performance of
baselines may exhibit slight variations compared to the results
in the original literature. The salient findings are as follows:

Advantages of Temporal Learning. Among the baseline
models considered, deep learning-based approaches, exem-
plified by DAGMM, demonstrate significant advantages over
its classical counterpart LOF. Moreover, the performance of
clustering-based DSVDD and THOC suggests that leveraging
advanced temporal modeling techniques leads to more accurate

results. This phenomenon underscores the effectiveness of
learning temporal dependencies.

Advantages of Adversarial Training. In contrast
to reconstruction-based methodologies, adversarial
reconstruction-based approaches (e.g., TranAD and USAD)
exhibit distinct advantages, attributable to the efficacy
of adversarial training, i.e., the ability to circumvent the
reconstruction of abnormal patterns.

Advantages of Contrastive Learning. As illustrated in Ta-
ble III, AnoTran and DCdetector leverage contrastive learning
on representations obtained through a dual channel model,
showcasing notable superiority, particularly on the SWaT
dataset when compared to reconstruction-based methods. This
phenomenon is attributed to the distribution shift, wherein the
multi-view representations of the same time series in the test
set exhibit proximity, while the reconstructed time series may
diverge significantly from the unseen test data.

Advantages of Frequency Learning. The results of Times-
Net demonstrate that using features in the frequency do-
main can significantly improve the performance of detecting
anomalies in time series compared to temporal features alone
methods, e.g., GPT4TS. This is because anomalies are not only
produced in single times but also patterns and the frequency
domain is more sensitive to pattern anomalies.

Consistent Performance Superiority. Drawing on the
aforementioned techniques, we introduce TFMAE, a novel ap-



TABLE IV: Ablation results of TFMAE. The precision (P), recall (R), and F1-score (F1) are in %. Bold: Ours.

Dataset SWaT PSM SMD MSL SMAP
Metric P R F1 P R F1 P R F1 P R F1 P R F1

w/o Ladv 49.93 92.93 64.96 99.41 90.80 94.91 88.63 79.64 83.89 93.03 86.33 89.55 91.17 54.83 68.48
w/ Lradv 95.73 100.0 97.82 97.44 98.21 97.82 90.23 79.86 84.73 92.07 88.82 90.42 95.22 98.43 96.80
w/o Fre 90.36 96.22 93.20 97.59 98.47 98.03 91.96 89.36 90.65 93.06 93.18 93.12 91.69 66.02 76.76
w/o FD 37.40 95.44 53.74 98.72 90.77 94.58 89.03 82.51 85.65 92.74 82.28 87.20 91.01 65.30 76.04
w/o Tem 87.91 96.22 91.88 98.51 95.86 97.17 93.77 87.13 90.33 92.60 87.21 89.83 92.15 65.44 76.53
w/o TE 94.35 98.52 96.39 97.58 99.01 98.29 90.37 88.44 89.39 92.64 94.31 93.47 94.64 98.66 96.61
w/o TD 35.21 90.43 50.69 99.45 69.28 81.67 74.56 51.01 60.58 90.43 79.86 84.82 93.31 88.75 90.97
TFMAE 96.77 100.0 98.36 98.06 99.06 98.56 91.41 91.07 91.24 92.83 97.59 95.15 94.71 99.19 96.90

TABLE V: Ablation results of masking strategies. The precision (P), recall (R), and F1-score (F1) are in %. Bold: Ours.

Dataset SWaT PSM SMD MSL SMAP
Metric P R F1 P R F1 P R F1 P R F1 P R F1

w/o MT 94.25 100.0 97.04 97.48 98.27 97.87 91.51 90.06 90.78 92.88 94.90 93.88 95.10 89.54 92.24
w/ SMT 95.79 99.10 97.42 97.65 98.45 98.05 91.48 88.01 89.71 92.49 95.40 93.92 94.24 98.26 96.21
w/ RMT 94.72 99.57 97.09 97.54 98.40 97.97 90.28 88.93 89.60 93.00 90.84 91.91 93.25 99.08 96.08
w/o MF 95.28 99.06 97.13 97.70 98.61 98.15 91.31 89.21 90.03 92.45 96.29 94.33 94.15 97.52 95.81
w/ HMF 95.88 98.88 97.35 97.62 98.87 98.25 91.26 85.01 88.09 92.67 95.20 93.92 93.53 98.31 95.86
w/ RMF 96.08 98.17 96.11 97.72 98.45 98.08 89.92 90.00 89.95 92.50 93.51 93.00 93.69 97.82 95.71
TFMAE 96.77 100.0 98.36 98.06 99.06 98.56 91.41 91.07 91.24 92.83 97.59 95.15 94.71 99.19 96.90

proach that initially employs temporal and frequency masked
autoencoders to acquire pristine representations devoid of
abnormal patterns and observations. Subsequently, it incorpo-
rates temporal-frequency masking-based contrastive objective
function as the anomaly criterion and employs adversarial
training to mitigate the potential adverse effects of over-fitting.
Consequently, as evidenced in Table III, TFMAE consistently
attains state-of-the-art performance across all datasets.

C. Model Ablation Study (RQ2)

In this section, we conduct experiments on five datasets
using seven variants of TFMAE. These experiments aim to
showcase the effectiveness of the model design. The details
of these variants are outlined below:

• ”w/o Ladv”: This variant excludes the adversarial objec-
tive during the training phase.

• ”w/ Lradv”: This version involves swapping the positions
of F (L) and P (L) in Equations 15.

• ”w/o Fre”: TFMAE eliminates the frequency view.
• ”w/o FD”: It no longer equips the frequency decoder.
• ”w/o Tem”: TFMAE removes the temporal view.
• ”w/o TE”: It no longer equips the temporal encoder.
• ”w/o TD”: It no longer equips the temporal decoder.

Based on the ablation results presented in Table IV, the
following findings can be made.

Benefits Brought by Adversarial Training. The results of
”w/o Ladv” show a significant drop in performance, suggesting
that the inclusion of the adversarial objective guides TFMAE
training in a more accurate direction, i.e., adversarial training
may help prevent over-fitting. Moreover, the performance of
”w/ Lradv” further validates that temporal masking-based
representations store more original information.

Effectiveness of Frequency Masked Autoencoder. The
experiments of ”w/o Fre” reveal that, in most scenarios,
removing the frequency view leads to a significant decline in
performance. This observation underscores the effectiveness

of our contrastive objective function. Furthermore, the perfor-
mance of ”w/o FE” is lower than that of ”w/o Fre,” indicating
that deriving correct representations specific to a view is more
crucial than merely introducing this view.

Effectiveness of Temporal Masked Autoencoder. Similar
to the frequency view, the temporal view is indispensable in
our TFMAE as the performance of ”w/o Tem”. Furthermore,
as evidenced by the impaired performance in ”w/o TD,” the
decoder is crucial in the temporal view to convey normal
temporal information into masked observations.

D. Investigation on Temporal-Frequency Masks (RQ3)

In this section, we seek to validate the effectiveness of our
proposed temporal-frequency masking strategies. To achieve
this, we design six variants of TFMAE and perform exper-
iments on five time series anomaly detection datasets. The
details of these variants are as follows:

• ”w/o MT”: It no longer equips temporal masking.
• ”w/ SMT”: This version only uses the standard deviation

to mask observations.
• ”w/ RMT”: This version randomly masks observations.
• ”w/o MF”: It no longer equips frequency masking.
• ”w/ HMF”: It masks high frequencies.
• ”w/ RMF”: This variant randomly masks frequencies.

According to the results presented in Table V, the following
findings can be drawn.

Impact of Window-based Temporal Masking. The results
of ”w/ RMT” consistently indicate that our window-based
temporal masking surpasses the random masking across all
datasets. Additionally, the performance of ”w/o MT” is com-
parable and even outperforms ”w/ RMT,” suggesting that the
key factor in enhancing performance lies not in the ”Masking”
itself but in ”Masking Anomalies.” Notably, the coefficient of
variation demonstrates superior performance compared to ”w/
SMT” as it is less sensitive to the change of data scale.
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Fig. 6: Hyper-parameter study of masking strategies.

Impact of Amplitude-based Frequency Masking. Similar
to temporal masking, the performance of removing frequency
masking ”w/o MF” is comparable and even outperforms the
random masking ”w/ RMF.” Moreover, to further validate
the effectiveness of our masking strategy, we compare our
amplitude-based frequency masking to a variant that utilizes
high frequency-based masking. As depicted in Table V, ”w/
HMF” performs inferiorly to TFMAE in most tasks, sug-
gesting that high frequencies do not exclusively represent
anomalies, instead, short-lived temporal patterns that deviate
from historical data are more likely to be anomalies.

E. Hyper-Parameter Sensitivity Analysis (RQ4)

Figure 6 and Figure 7 depict the results of varying hyper-
parameters. Specifically, we explore layers of Transformer, di-
mensions of hidden features, the window length of the tempo-
ral masking strategy, and the temporal-frequency masking ratio
from search spaces of [1, 2, 3, 4, 5], [32, 64, 128, 256, 512],
[1, 5, 10, 15, 20], 5 to 95 with an interval of 10, and 10 to
90 with an interval of 10. As depicted in Figure 7, the
performance of TFMAE initially improves with increasing
layers and then decreases when the number of layers exceeds
three. Additionally, when the dimensions of the hidden feature
are set to 128, TFMAE achieves optimal performance. This
is attributed to the fact that an excessive number of hidden
features may impede convergence. Furthermore, additional
insights can be gleaned from figures as follows:

Window Length W . This hyper-parameter governs the
local information considered at each observation. Notably,
setting L = 10 yields the optimal performance, suggesting that
short subsequences overlook crucial information, while long
subsequences may diminish the impact of current fluctuations.
Furthermore, the performance of L = 1, equivalent to masking
with original values, indicates that absolute values do not
effectively mask abnormal observations, particularly under the
potential issue of time series distribution shift.

Temporal Masking Ratio r(T ). This hyper-parameter de-
termines the proportion of observations to be masked. As
shown in Fig. 6, the optimal ratio for SWaT, SMD, SMAP,
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Fig. 7: Left: Hyper-parameter study of TFMAE on MSL.
Right: Hyper-parameter study of TFMAE on SMD.

PSM, and MSL is 25%, 5%, 65%, 65%, and 55%. Despite
achieving optimal performance with a small masking ratio,
such as 5% on the SMD dataset, comparable results are
also observed when increasing the temporal masking ratio to
even 95% on the SWaT dataset. This is attributed to time
series exhibiting significant temporal redundancy, making it
relatively easy to recover from missing observations.

Frequency Masking Ratio r(F ). This hyper-parameter
dictates the number of frequencies to be masked. As shown in
Fig. 6, the optimal ratio for SWaT, SMD, SMAP, PSM, and
MSL is 40%, 20%, 30%, 10%, and 40%. It is observed that a
large frequency masking ratio results in inferior performance
compared to a large temporal masking ratio. This discrepancy
arises from the fact that a single frequency encapsulates
more information than a single observation. Consequently,
frequency masking-based representations may be difficult to
reconstruct and should be aligned with temporal.

F. Case Study (RQ5)

Abnormal Bias. To validate the capability of TFMAE in
producing accurate detection results, we conduct a case study
using the NIPS-TS-Seasonal and NIPS-TS-Global datasets. As
depicted in Figure 8, anomaly scores generated by TFMAE
and DCdetector are consistently distinguishable, i.e., scores
remain small except in the presence of anomalies. Further-
more, TFMAE can identify seasonal and global observation
anomalies, whereas DCdetector fails. This discrepancy sug-
gests that the abnormal bias can mislead the model, and our
masked autoencoders effectively address this issue.
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Fig. 8: Visualization of seasonal and global observation
anomalies in the NIPS-TS-Seasonal and NIPS-TS-Global
datasets. ’DCdet’ refers to DCdetector. In the first row, red
circles denote global observation anomalies, and the red box
indicates a seasonal anomaly. In the second and third rows,
red lines denote the threshold for detecting anomalies.
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Fig. 9: Left: CDF of anomaly scores on SMAP validation
and test sets for TimesNet. Right: CDF of anomaly scores on
SMAP validation and test sets for TFMAE.

Time Series Distribution Shift. To ascertain the robustness
of our contrastive criterion in the presence of time series
distribution shifts, we performed a case study using the SMAP
dataset. As illustrated in Figure 9, the cumulative scores of
TimesNet on the validation and test set show a clear gap
caused by shifts. However, cumulative scores generated by
our TFMAE on the validation and test set are always similar.
This comparison substantiates that our contrastive criterion can
effectively mitigate time series distribution shifts, resulting in
higher generalization in the threshold.

G. Model Efficiency Study (RQ6)

To evaluate the effectiveness and efficiency of TFMAE, we
present the F1-Score, training speed, and GPU memory size
comparisons among TFMAE, the large language model-based
GPT4TS, and state-of-the-art baselines including TranAD,
AnoTran, TimesNet, and DCdetector. Additionally, we include
a variant, denoted as ”w/o FFT,” of TFMAE in the assessment.
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Fig. 10: Performance metrics are compared on the SMD
dataset, with F1-Score represented in % on the y-axis, speed
on the x-axis, and memory footprint indicated by the size of
the circles for each method.

The evaluation is conducted on the SMD dataset, which is the
longest and second largest dataset in our paper.

• ”w/o FFT”: This version omits the use of FFT to expedite
the calculation of the coefficient of variation.

As depicted in Figure 10, TFMAE attains the highest F1-
Score, boasts the most efficient GPU memory utilization, and
ranks second in terms of training speed. While TranAD excels
in speed, the larger memory footprint and lower performance
compared to TFMAE suggest that TFMAE achieves a superior
trade-off between speed and performance, coupled with excel-
lent memory usage. Furthermore, the discernible decrease in
training speed of ”w/o FFT” underscores the effectiveness of
our FFT-based acceleration.

VI. CONCLUSION

In this paper, we introduce a novel Temporal-Frequency
Masked Autoencoder (TFMAE) for time series anomaly
detection, which departs from the conventional reconstruc-
tion paradigm. TFMAE leverages the discrepancy between
temporal-frequency masking-based representations to replace
the traditional reconstruction error and mitigate the im-
pact of time series distribution shifts. Additionally, TF-
MAE incorporates a window-based temporal masking strategy
and an amplitude-based frequency masking strategy before
Transformer-based autoencoders to reduce abnormal bias in
time series. To prevent potential over-fitting during contrastive
training, the adversarial objective function is integrated into
TFMAE. Experimental results on seven benchmark datasets
showcase the superior performance of TFMAE against 14
baselines. Future work will extend TFMAE to other time series
tasks, such as time series prediction and classification.
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