
DACE: A Database-Agnostic Cost Estimator
Zibo Liang1, Xu Chen1, Yuyang Xia1, Runfan Ye1, Haitian Chen1, Jiandong Xie2, Kai Zheng1,∗

1University of Electronic Science and Technology of China, China 2Huawei Technologies Co., Ltd., China
{zbliang, xuchen, xiayuyang, yerunfan, haitianchen}@std.uestc.edu.cn,

xiejiandong@huawei.com, zhengkai@uestc.edu.cn

Abstract—Cost estimation is of great importance in query
optimization. However, traditional optimizers compute the cost
based on heuristics, sacrificing accuracy for efficiency. In recent
years, learning-based cost estimation models have achieved high
accuracy. However, their poor robustness and inefficiency lead
to their failure to meet the needs of practical scenarios. We
propose a lightweight and Database-Agnostic Cost Estimation
model (DACE) to address the above limitations. To further
improve the effectiveness of DACE, we design a tree-structure-
based loss adjustment strategy to learn sub-plan information
and solve the information redundancy problem. As a pre-trained
estimator, DACE can efficiently make accurate predictions on
unseen databases. For more complex scenarios, we fine-tune
DACE with LoRA. The excellent efficiency allows DACE to adapt
to challenging scenarios with minimal effort. As a pre-trained
encoder, DACE can improve the accuracy and robustness of other
cost estimation models through knowledge integration and solve
the notorious cold start problem. Extensive experiments have
shown that DACE’s accuracy, efficiency, and robustness are much
better than existing methods.

Index Terms—Cost estimation, Query optimization

I. INTRODUCTION

Cost estimation has a wide range of applications in many
areas, such as resource allocation [28] and query optimiza-
tion [11], [17]. The traditional database optimizer compute
the cost of query plans based on heuristics [36], ensuring
efficiency but sacrificing accuracy. In recent years, many
researchers have attempted to apply machine learning (ML)
techniques to make more accurate predictions [8], [18], [26],
[29], [39] than traditional methods. Although ML-based ways
have performed far better than database management systems
(DBMSs) on several publicly available datasets, many limita-
tions remain.

Limitation I: Poor Robustness. Within-database models
(WDMs) [18], [26], [39] train and test with different workloads
on the same database for higher accuracy. However, the ability
of WDMs to make accurate predictions is highly dependent
on the training workload (Out of Distribution, OOD) [14],
[21]. Unfortunately, choosing appropriate training queries for
WDMs is difficult in practice [14]. Some works improve the
model’s accuracy on the new workload by retraining [25], [27].
However, when to retrain and how to collect the data used for
retraining (also known as the cold start problem) are challeng-
ing. Besides, scenarios such as data drifts are prevalent in real

∗The corresponding author, Kai Zheng, is with Shenzhen Institute for
Advanced Study, University of Electronic Science and Technology of China,
Shenzhen, China.

applications [21]. Therefore, the poor robustness of WDMs
leads to possible security issues when applied to DBMSs (may
produce sub-optimal execution plans or incorrect scheduling).

Limitation II: Inadequate Accuracy. In recent years, across-
database models (ADMs) have received attention from many
researchers [8], [34]. Specifically, ADMs train and test on
different databases and workloads (i.e., testing performed on
workloads with unseen databases) to improve generalization.
Compared to WDMs, ADMs have more robust generalization
capabilities. However, ADMs may be unable to optimize the
individual database as effectively as WDMs (also known as
instance optimization [25]). As a result, the accuracy of ADMs
cannot meet the requirements of commercial DBMSs [25].

Limitation III: Low Efficiency. Regardless of robustness and
accuracy, the efficiency of existing cost estimation models
(both training efficiency and inference efficiency) makes it
challenging to meet the needs of commercial databases. For
inference efficiency, either embedding into DBMS for better
execution plan selection or performing query performance
prediction (QPP) for resource scheduling. Both require cost
estimation models with high inference speed. For training
efficiency, faster-trained models can retrain or fine-tune more
easily. Thus, they can adapt to more complex and changing
scenarios. However, most ML-based cost estimation models
sacrifice efficiency to achieve higher accuracy. In particu-
lar, ADMs, which build complex models to learn diverse
databases, result in lower efficiency than WDMs. This paper
argues that a superior cost estimation model must focus more
than just accuracy and give up efficiency.

Among existing cost estimation models, including WDMs
and ADMs, none meet the requirements of commercial sys-
tems. Since ADMs possess strong robustness. In addition,
we contend that ADMs can be more effective and efficient.
Therefore, in this paper, we focus on building an innovative
ADM that simultaneously solves limitations I, II, and III, based
on the following insights:

Insight I: The Struggle with Cardinality Estimation. Cardi-
nality estimation predicts the number of rows returned in the
query result, and its the basis for cost estimation1. However,

1The cost of a filter (e.g., t.production year>2010) will change as the
size or data distribution of the production year column changes. For a join
(e.g., t.id=mk.movie id), when the sizes of tables t and mk vary or the result
of a join is modified, the execution time will be affected. Therefore, data
characteristics influence the execution time in the physical query plan via
underlying cardinality data.



current solutions for cardinality estimation either lack robust-
ness [4], [12] or are constrained to within-dataset estimations
with inefficient inference [9], [35], [36]. Thus, leveraging
cardinality estimation models directly for cost prediction is
impractical. We contend that ADMs should avoid deriving
information from data characteristics like filters or joins.
While many cost estimation models prioritize learning these
data characteristics, the inherent challenges in cardinality es-
timation might render this information potentially detrimental
(limitations I and II) or the model inefficient (limitation III).

Insight II: The Power of Cost Correction. Correcting the
estimated cost of DBMSs is a more efficient approach than
learning data characteristics [33]. It sidesteps the complexity of
cardinality estimation and instead learns the error distribution
of the query optimizer’s estimated cost (EDQO). In recent
years, many studies have demonstrated the effectiveness of
this approach on within-dataset [1], [17], [25]. Further, we
find that the EDQO of different datasets is more transferable
than the data characteristics. Therefore, we correct the research
direction of cost estimation, especially ADMs, that learning
the EDQO is a more effective and efficient way until the
cardinality estimation task is properly addressed.

Insight III: Advancing cost estimation with pre-training.
In recent years, pre-trained models have had an increasing
number of applications in computer vision and natural lan-
guage processing [5], [6], [24]. Pre-training has the following
advantages [24]: (1) provides good model initialization, (2)
avoids overfitting on small datasets, and (3) can learn a large
amount of generalized knowledge to help downstream tasks. In
cost estimation, the pre-trained model has two roles. (1) As a
pre-trained estimator, the model can make accurate predictions
directly on new scenarios or quickly adapt to unseen complex
scenarios with only fine-tuning. (2) As a pre-trained encoder:
The pre-trained generalized knowledge can help other cost
estimation models improve their accuracy and robustness and
solve the notorious cold-start problem (helping them to solve
limitations I and II).

Based on the above observations, we establish a Database-
Agnostic Cost Estimator named DACE, which promises ac-
curacy, efficiency, and robustness in estimating costs across
databases. DACE achieves efficient and robust inference
(solves limitations I and III) without relying on the data char-
acteristics of any specific dataset (insight I), instead focusing
on learning the EDQO (insight II). It employs a lightweight
transformer model to accomplish this, facilitating the paral-
lel prediction of sub-plans through tree-structured attention.
DACE designs with a tree structure-based loss adjustment
strategy (solves limitation II). This design explicitly addresses
the information redundancy observed in sub-plans. Finally, we
extract generalized knowledge from DACE to improve existing
WDMs (insight III).

Our contributions are summarized as follows:

• We discuss the relationship between cardinality and cost
estimation, arguing that learning the EDQO is a more
sensible way of cost estimation.

• We develop DACE, a novel cost estimation model de-
signed for efficiency, accuracy, and robustness.

• We incorporate tree-structured attention and a tailored
tree-structure-based loss adjustment strategy to facilitate
sub-plans learning parallelly.

• To the best of our knowledge, this is the first time
that knowledge of ADMs is utilized to enhance the
performance of WDMs, effectively solving the cold start
and OOD problems WDMs face.

• We extend the across-database concept to apply DACE
to different machines with other performances.

• We conduct extensive experiments on several public
datasets to demonstrate the effectiveness of DACE. Fur-
thermore, we make our code publicly available2.

We organize the remainder of the paper as follows. Sec. II
introduces the problem. The DACE framework is detailed in
Sec. III. Sec. IV presents the methodology of DACE. We show
and analyze the experimental results in Sec. V. Sec. VI surveys
related work, and Sec. VII concludes the paper.

II. PROBLEM DEFINITION

Before defining the problem, we first introduce the scenarios
of cost estimation targeted in this paper, i.e., various forms of
drifts, as shown in Fig. 1. (1) Drift I: Similar templates. The
workload for training and testing is divided based on similar
templates. The main drift is the restricted range of filters, and
new join conditions rarely appear. (2) Drift II: New schema.
Queries with unseen columns, tables, or join conditions appear,
assuming the database is static. (3) Drift III: Data drift. Data
updating (adding, deleting, or modifying data) and adding new
columns or tables. This condition often accompanies Drift II.
Some possible solutions are to recode the new features or
to collect new data to retrain the model [14]. (4) Drift IV:
Across-database. The test workload of the model appears on
an unseen database. It is an extreme case of Drift III. (5) Drift
V: Across-more. Drift I to IV assume the same DBMS and
hardware setup (i.e., the training and testing workloads collect
labels on the same machine). Across-more, on the other hand,
breaks this assumption, and as a result, there exist much more
complex scenarios than Drift IV.

[26], [39]

Similar templates

[18]

New schema

[14], [15], [21]

Data drift

[8]

Across-database

DACE

Across-more

Fig. 1. Comparing model against data drifts. The horizontal axis from left
to right indicates that the drifts are becoming more complex, and the model
cannot handle the scenes to its right. For example, QPPNet [18] can take the
new schema but cannot cope with data drift or more complicated tasks.

As a cost estimator, DACE has the same goal as previ-
ous works, namely to minimize qerror (also known as Q-
Error) [20], [26], [39], defined as follows:

qerror =
max(est cost, cost)

min(est cost, cost)
, (1)

2https://github.com/liang-zibo/DACE



where est cost represents the estimated execution time of
the model. The cost means the actual execution time, also
known as latency. However, the goal of DACE is not only
to achieve a minor qerror than previous work, but we also
propose the following purposes:

• Achieve across-dataset cost estimation with accuracy (i.e.,
a minor qerror) comparable to WDMs.

• DACE is a lightweight model with efficiency compared
to existing ADMs and WDMs.

• DACE as a pre-trained model can effectively improve the
accuracy and robustness of WDMs with little additional
burden.

The evaluation for the above objectives is complex, and we
will show the details in Sec. V.

III. FRAMEWORK OVERVIEW

In this section, we introduce the framework of DACE. The
workflow of DACE is shown in Fig. 2, where we first introduce
data collection and feature extraction. After that, we introduce
the DACE model. Finally, we present the application of DACE
as a pre-trained model.

Data collection. Like previous works [8], [39], we collect
the query plans corresponding to the query statements for
training and inference. However, unlike WDMs [18], [26],
[39], we create several databases and organize the correspond-
ing workloads (i.e., query statements). Specifically, each plan3

has a connected database [8].
Feature extraction. This part performs feature extraction

on the query plan. First, we obtain the sequence of nodes
corresponding to the query plan tree by Depth-First Search
(DFS), which also allows us to get the tree-structured attention
and the height of the nodes. After that, we encode each node
by the encoder. In the training phase, we compute the loss
weight for each node. This weight is determined based on the
height of the nodes. A loss adjuster is used for this purpose
and subsequent model updates.

DACE model. DACE builds a lightweight estimation model.
First, we apply a self-attention mechanism [30] to the plan
encodings output from feature extraction and add the tree-
structured attention for mask out. It ensures that DFS does not
corrupt the tree structure information of the query plan tree.
After that, we utilize a feed-forward neural network to obtain
the hidden layer encoding. Using the predictor of a multilayer
perceptron (MLP), we then predict the cost of all sub-plans in
parallel. Finally, we utilize the dynamic loss weights output
from the loss adjuster to compute the loss for updating the
model. The learning of sub-plans is enhanced and prevents
side effects caused by information redundancy.

Pre-trained model. As a pre-trained model, DACE serves
two purposes:

1) As a pre-trained estimator. DACE enables accurate cost
estimation in across-database scenarios and does not require
fine-tuning parameters. However, relying only on pre-trained

3In this paper, we use the terms “plan”, “query plan” and “query plan tree”
to represent the execution plan of the DBMS.

models for inference is hard in the across-more design. There-
fore, we adopt a lightweight fine-tuning method, Low-Rank
Adaptation (LoRA) [10]. It can adapt DACE to span more
scenarios with only a tiny fine-tuning cost.

2) As a pre-trained encoder. DACE has the potential to
provide a priori knowledge (also known as context [19]) for
all WDMs through knowledge integration. Specifically, DACE
acts as an encoder to learn the information embedded in the
query plan. After that, we incorporate this information into a
WDM encoder. DACE can improve the accuracy and robust-
ness of WDMs. Moreover, due to the lightweight advantage
of DACE, this knowledge integration imposes only a small
additional burden on WDMs.

IV. METHODOLOGY

A. Data Collection

Our methodology for data collection follows Zero-Shot [8].
Specifically, we utilize a training workload Qtrain, which
comprises a series of query statements associated with a
specific database Dtrain within the DBMS. For each query
in Qtrain, we procure the corresponding query plan, referred
to as query plans Ptrain. These plans are generated by the
DBMS’s query optimizer (e.g., by EXPLAIN command in
PostgreSQL), which devises an efficient execution strategy and
includes the estimated information (i.e., cardinality and cost).
It is worth noting that the test workload Qtest and its respective
database Dtest remain undisclosed to DACE. Nevertheless, for
WDMs, subsets of Qtest or their associated plans Ptest (same
collection process as Qtrain) may be utilized as training data.

B. Feature Extraction

This section extracts information from the query plan for
DACE training or inference. Specifically, feature extraction
includes an information catcher and an encoder. The infor-
mation catcher uses DFS to obtain node sequences, adjacency
matrices, and node heights. The encoder consists of a one-hot
encoder, scaler, and loss adjuster and finally outputs the plan
encoding.

Information catcher. As shown in Fig. 3, the information
catcher first obtains the sequence of nodes corresponding to
the query plan tree through DFS, after which it extracts node
features, tree structure, and sub-plans information.

(1) Node features. The query plan tree provided by the
DBMS consists of several nodes, and we obtain the corre-
sponding sequence of nodes through DFS. Each node includes
rich information, and we extract the features as follows: a)
node type, b) DBMS-estimated cardinality, and c) DBMS-
estimated cost. The node type indicates this node’s specific
operation type (seqscan, hashjoin, etc.). The DBMS calculates
the cost based on the DBMS-estimated cardinality and the
constant value of the cost model [13] (cpu operator cost,
etc.). QPPNet [18] also employs this extraction method of
node features. However, unlike QPPNet, we also extract tree
structure and sub-plans information.

(2) Tree structure. The tree structure in a query plan
tree implies the order of execution between nodes, i.e., the



Training 
plans

Unseen 
database plans 

Feature Extraction

Query 
plans

DFS

…

Node sequences
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Attention mask
…

Loss heights

…

Encoder

Training
only

Node 
type

Rows
Cost

Training
only

One-hot 
encoder

Scaler

Loss 
adjuster

Plan 
encodings

Data Collection

Database 1Workload 1

Explain

Plan set 1
Analyze

Database 2Workload 2

Explain

Plan set 2
Analyze

…

…

Plan encodings

Tree-structured 
attention 𝑊!

𝑊"

𝑊# 𝑉
𝐾

𝑄 Attention 
score

Multiply

Multiply

Masking out

…forward
Feed

Dynamic loss 
weights

MLP
predictor

Actual time Predicted time
Calculate loss

Compute all child nodes 
in parallel

OutputAdjust

Training 
only

Inference 
mode

Pre-trained Model

DACE

Transformer

𝑟

…

Predicted 
time

Low-Rank 
adaptation

1) As a 
pre-trained
estimator 

2) As a 
pre-trained 

encoder

Knowledge 
integration

Transformer

Workloads DACE

Feature 
extraction

Custom
encoder

Custom
preprocessing

Custom
WDM

Integration

Predicted 
time

…

Hidden encodings

Feature 
extration

Transformer

DACE Model

Fig. 2. DACE Framework Overview.

DFS on 
execution plan

"Node Type": Aggregate
"Cost": 213552.25

"Plan rows": 1

"Node Type": Hash Join
"Cost": 213080.27

"Plan rows": 188370

"Node Type": Nested Loop
"Cost": 205739.42
"Plan rows": 26670

"Node Type": Hash
"Cost": 2626.12

"Plan rows": 94764

"Node Type": Seq Scan
"Cost": 2626.12

"Plan rows": 94764

"Node Type": Hash Join
"Cost": 204425.49

"Plan rows": 311151

"Node Type": Index Scan
"Cost": 1.10

"Plan rows": 6

"Node Type": Seq Scan
"Cost": 103622.78

"Plan rows": 933452

"Node Type": Seq Scan
"Cost": 73926.08

"Plan rows": 842766

1

2

3

4

5

6

7

8

1

9

2

3

4

5 6

7

8

Node sequence

Partial order set

{ 1 ≼ 2 , 1 ≼ 3 , 1 ≼ 4 , 1 ≼ 5
, 1 ≼ 6 , 1 ≼ 7 , 1 ≼ 8 , 1 ≼ 9
, 2 ≼ 3 , 2 ≼ 4 , 2 ≼ 5 , 2 ≼ 6
, 2 ≼ 7 , 2 ≼ 8 , 2 ≼ 9 , 3 ≼ 4
, 3 ≼ 5 , 3 ≼ 6 , 3 ≼ 7 , 4 ≼ 5

, 4 ≼ 6 , 8 ≼ 9 }

Node heights
0 1 2 3 4 4 3 2 3

1 1 0 0 0 0 0 1.52 -0.03

2 0 1 0 0 0 0 1.51 0.75

3 0 0 1 0 0 0 1.45 0.08

4 0 1 0 0 0 0 1.44 1.26

5 0 0 0 1 0 0 0.65 3.87

6 0 0 0 1 0 0 0.41 3.49

7 0 0 0 0 1 0 -0.17 -0.03

8 0 0 0 0 0 1 -0.14 0.36

9 0 0 0 1 0 0 -0.14 0.36

1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1

One-hot encoder

Normalizer

Loss 
adjuster

1 2 3 4 5 6 7 8 9

1 0.5 0.25 0.125 0.063 0.063 0.125 0.25 0.125

Node encodings

Node loss weights

Adjacency matrix
Attention 

mask

Information catcher Encoder
"Node Type": Aggregate
"Cost": 213552.25
"Plan rows": 1

"Node Type": Hash Join
"Cost": 213080.27
"Plan rows": 188370

"Node Type": Hash
"Cost": 2626.12
"Plan rows": 94764

"Node Type": Nested Loop
"Cost": 205739.42
"Plan rows": 26670

"Node Type": Hash Join
"Cost": 204425.49
"Plan rows": 311151

"Node Type": Index Scan
"Cost": 1.10
"Plan rows": 6

"Node Type": Seq Scan
"Cost": 2626.12
"Plan rows": 94764

"Node Type": Seq Scan
"Cost": 103622.78
"Plan rows": 933452

"Node Type": Seq Scan
"Cost": 73926.08
"Plan rows": 842766

Fig. 3. An example of information catcher and encoder.

execution of a parent node follows that of its children. Inspired
by QueryFormer [39], we define the query plan tree as a
directed graph as follows:

G(p) = {Np, Op}, (2)

where p is a query plan in P , and G(p) denotes the directed
graph corresponding to p, including the node sequence for
the query plan Np obtained by DFS, and the partial order
set Op [32]. Specifically, we define nodei ⩽ nodej to mean
that nodei is the parent of nodej (nodei and nodej are two
different nodes in Np). In addition, Op has the following
properties: (a) Reflexivity: ∀nodei ∈ Np, nodei ⩽ nodei.
(b) Antisymmetry: ∀nodei, nodej ∈ Np, if nodei ⩽ nodej
and nodej ⩽ nodei then nodei = nodej . (c) Transitivity:
∀nodei, nodej , nodek ∈ Np, if nodei ⩽ nodej and nodej ⩽
nodek then nodei ⩽ nodek.

Based on G(p), we can obtain the adjacency matrix A(p)
corresponding to p, defined as follows:

A(p)i,j =

{
1, if nodei ⩽ nodej

0, else
(3)

Where nodei is the ith node in the sequence of nodes acquired
by DFS. In addition, Op can be received during the DFS pro-
cess, thereby obtaining A(p) according to (3). Thus, acquiring
A(p) does not add an extra burden to feature extraction. In
Sec. IV-C, we will utilize A(p) to learn the tree structure,
which ensures that DFS does not corrupt the tree-structured
information of the query plan.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of nodes in query plans

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n 
qe

rr
or

Zero-Shot
Trends

Fig. 4. Zero-Shot performance on query plans with different number of nodes.
We use Zero-Shot’s experimental setup to train on 19 databases at a time and
test on the remaining one database for a total of 20 experiments. We report
the average of the results of the 20 experiments.

(3) Sub-plans. Most of the existing cost estimation methods
update the parameters of the model based only on the execu-



tion time of the root node (i.e., the execution time of the query
plan). The drawback of this approach is that it fails to utilize
the sub-plans information (i.e., the execution time of the sub-
plans) in the query plan. It leads to difficulties in adapting
the model to complex query plans. As shown in Fig. 4, the
mean qerror of Zero-Shot increases as the number of nodes
increases. It indicates that query plans with a more significant
number of nodes have more incredible learning difficulty.
QPPNet [18] proposes a tree-structured model that can predict
the cost of sub-plans and calculate the loss. However, its
parent nodes need to wait for the outputs of the child nodes,
resulting in slower inference. In addition, we find that QPPNet
performs a large amount of repetitive learning, which we call
information redundancy. The large number of sub-plans covers
the information of the query plan, leading to less accurate
estimations. Therefore, despite the importance of learning sub-
plans for cost estimation, the following two issues need to be
addressed: a) slow inference (discussed in “loss adjuster” of
the encoder) and b) information redundancy (addressed in this
section).

We design a tailored tree-structure-based loss adjustment
strategy to handle information redundancy. Specifically, we
make nodes with greater heights have lower loss weights, i.e.,
the loss on the node multiplies some weight between 0 and 1.
The weight is calculated based on the height of the node. We
define the height of a node as the length of the shortest path
from the node to its root node. Therefore, in this section, we
need to collect the height Hp of each node in p (we present
the computation of weights in loss adjuster). Like Ap, we can
also collect Hp during the DFS.

Encoder. As shown in Fig. 3, the encoder processes the
results of the information catcher, which includes the one-
hot encoder, scaler, and loss adjuster. Specifically, the node
type is processed using the one-hot encoder, while the scaler
addresses the DBMS information within the node features.
Among them, DBMS information includes the cost and car-
dinality of DBMS estimation. The corresponding adjacency
matrix A(p) of G(p) is obtained based on (3), which is the
attention mask of the transformer. We design the loss adjuster
in the training phase to realize the tailored tree-structure-based
loss adjustment strategy. The loss weights of the nodes are
calculated based on the nodes’ height, which is the basis for
updating the model.

(1) one-hot encoder. As in previous works [26], we use
one-hot encoding to represent node types. As shown in Fig. 3,
columns 2 to 7 of “Node encodings” represent one-hot en-
codings of node types. For the presentation, we only design
six node types encodings in Fig. 3. However, we consider 16
node types in actual experiments (details in Sec. V).

(2) Scaler. Motivated by Zero-Shot [8], we use the robust
scaler to process the cost and cardinality estimated by DBMS.
As shown in Fig. 3, columns 8-9 of “Node encodings”
represent the processed encodings.

(3) Loss adjuster. First, we explain why QPPNet’s learning
of sub-plans is flawed. The main reason is that learning the
parent node also takes into account the information of the child

nodes, which in turn leads to repeated learning of the child
nodes. We call it information redundancy. As shown in Fig. 3,
QPPNet learns node 5 (nodes 1 , 2 , 3 , and 4 are
the parents of node 5 ) five times while learning node 1
only once.

To solve information redundancy, we design a loss adjuster
based on the tailored tree-structure-based loss adjustment
strategy. Specifically, the loss adjuster calculates the loss
weights of the nodes through the node heights collected by
the information catcher, defined as follows:

Lp = αHp , (4)

where Lp denotes loss weights corresponding to nodes in the
query plan p, and we introduce α as a hyperparameter. As
shown in Fig. 3, when α = 0.5, the loss weights of nodes
with heights from 0 to 4 are 1, 0.5, 0.25, 0.125, and 0.0625,
respectively. Thus, DACE considers the learning of sub-plans
and can utilize more knowledge of the query plan than previ-
ous works [8], [26], [39]. Compared to QPPNet, the tailored
tree-structure-based loss adjustment strategy prevents repeated
learning of sub-nodes by making them possess smaller loss
weights.

C. DACE Model

In this section, we introduce the DACE model. Because
QueryFormer [39] demonstrates the details of applying the
Transformer to cost estimation. In this paper, we will not
present the foundations of the Transformer. Instead, we intro-
duce the key components that make the DACE model superior.
These include (a) tree-structured attention, (b) parallel learning
sub-plans, and (c) pre-trained model.

Tree-structured attention. Motivated by QueryFormer, we
extract the tree-structured information in the query plan to
apply to Transformer’s attention mechanism. Specifically, we
use the tree-structured attention obtained by the encoder as the
attention mask of the Transformer, defined as follows:{

Q = SWQ,K = SWK , V = VWV ,

Attention(Q,K, V ) = softmax(QKT⊙M√
d

)V,
(5)

where S ∈ Rn×d is the node encoding sequence output by
the encoder, n is the number of nodes, and d is the length of
the node encoding. WQ ∈ Rd×dk , WK ∈ Rd×dk and WV ∈
Rd×dv denote the parameter matrices of queries Q ∈ Rn×dk ,
keys K ∈ Rn×dk , and values V ∈ Rn×dv , respectively. And
dk is the dimensions of the queries and keys, and dv is the
dimensions of the values. M ∈ Rn×n serves as the attention
mask, derived from the adjacency matrix A. In this mask, we
set 0 to a negative infinity value while keeping 1 unchanged.

Unlike QueryFormer, we do not introduce a learnable scalar
(bd in QueryFormer). Although bd can dynamically measure
the distance between nodes, a simple scalar must be improved
to represent complex query plans. Instead, we devise a parallel
learning approach for sub-plans. It effectively and efficiently
utilizes all the sub-plans information in the query plan.



Parallel learning sub-plans. In Sec. IV-B, we introduce the
motivation for learning sub-plans. Most existing work focuses
only on the loss of the root node to update the model. Although
QPPNet can predict the cost of the sub-plans and obtain the
loss, its parent node needs to wait for the computation results
of all the child nodes before making a prediction. We firmly
believe that the inference speed of the cost estimation model is
crucial [25]. Therefore, we utilize the structure of Transformer
and the tree-structured attention mask M to enable parallel
prediction of sub-plans, defined as follows:

est cost(subp) = MLP (Attention(Q,K, V )), (6)

where Attention(Q,K, V ) ∈ Rn×dv is obtained via (5), subp
denotes all the sub-plans of p. MLP consists of a three-layer
fully connected linear network (details in Sec. V). Ultimately,
we obtain the estimations of subp costs cost(subp). The DACE
model enables parallel learning through two components: (a)
Transformer and (b) MLP. In the Transformer, the model
concurrently computes the attention of all sub-nodes, resulting
in the hidden state (denoted as Attention(Q,K, V )) for each
node. It is worth noting that by employing tree-structured
attention, each node computes based only on the information
of its children. It is the same logic as the actual execution
of the query plan (i.e., the execution of the parent node must
come after the child nodes). Therefore, although we achieve
efficient parallel prediction of subplans, we also consider tree-
structured information for accurate prediction compared to
QPPNet. In MLP, the model can predict the costs of subp
based on Attention(Q,K, V ) in parallel. Therefore, DACE
can efficiently obtain the estimated costs of all sub-plans of a
query plan through parallel computation.

In Sec. IV-B, we contend that QPPNet’s learning of sub-
plans leads to information redundancy. Therefore, we design
the loss adjuster based on the tailored tree-structure-based loss
adjustment strategy. Its role is to set lower loss weights for
nodes with greater height (motivation and details in Sec. IV-B).
Based on the loss adjuster, we define the training loss as
follows:

lossp =

n∑
i=1

(Lp,i · qerror(est cost(subp)i, cost(subp)i)) (7)

Lp,i denotes the loss weight of the ith node (DFS determines
the order) of Lp. est cost(subp)i and cost(subp)i represent
the estimated and actual cost of the ith node of subp, respec-
tively. Ultimately, we obtain the loss lossp of the query plan
p. To clearly show the effect of node weights on loss, we use
summation to compute lossp. However, we implement this
process in a parallel way. There is no additional burden on
the training of the model. In Sec. I, we discuss the motivation
for estimating the parameters of DACE using MLE. Therefore,
we perform backpropagation based on lossp to solve for the
optimal parameters θ̂ of DACE.

D. Pre-trained Model

This section describes two uses of DACE as a pre-trained
model, i.e., a pre-trained estimator or a pre-trained encoder.

Pre-trained estimator. In most scenarios, DACE can make
accurate predictions directly without fine-tuning (e.g., Zero-
Shot’s few-shot approach). However, we further extend the
concept of across-database by proposing across-more. In this
paper, we define across-more as testing on unseen databases
on hardware devices with different configurations. Specifically,
we obtain workloads Q1

train and Q1
test on machine M1 (DACE

is trained on Q1
train to get θ̂). The same query statements

are then executed on machine M2 to fetch new workloads
Q2

train and Q2
test. It is hard to test directly on Q2

test based on
M2 since different machines may have the different EDQO.
However, we argue that the knowledge possessed by DACE
is migratable, i.e., it can quickly adapt to across-more. Unlike
Zero-Shot, we use Low-Rank Adaptation (LoRA) [10] to fine-
tune DACE, defined as follows:{

hi = hi−1Wi + hi−1 △Wi,

△Wi = WBi
WAi

(8)

Wi ∈ Rdi−1 (i = 1, 2, 3 and d0 = dv) denotes the weights
of the ith network layer of the MLP, and hi ∈ Rn×di

represents the hidden layer of the output of the ith network
layer. △Wi ∈ Rdi is the parameters of LoRA, which consists
of WBi

∈ Rdi−1×ri and WAi
∈ Rri×di and has ri ≪

min(di−1, di). During the training phase, we updated only
Wi and set △Wi untrainable. Conversely, during fine-tuning,
we update only △Wi and select Wi to be untrainable. Since
ri ≪ min(di−1, di), the training cost of △Wi is less than that
of Wi. Specifically, DACE fine-tuning is 192% more efficient
than retraining (details in Sec. V).

Pre-trained encoder. Knowledge integration (transfer
learning) has many applications in computer vision and natural
language processing [22], [41]. It effectively enhances the
performance of task-specific models by offering generalized
contexts across various tasks [19]. In cost estimation, DACE,
as a superior ADM, can give context for WDMs. Specifically,
DACE can seamlessly integrate with WDMs as a pre-trained
encoder. We take MSCN as an example and define it as
follows:

wout = MLPout([wT , wJ , wP , wE ]), (9)

where MSCN [12] defines wT , wJ , and wP and denote the
table, join, and predicate information of the query, respectively.
wE is the output of DACE as a pre-trained encoder and has
wE = h2 (based on (8)).

V. EXPERIMENTS

A. Experimemt Setting

Datasets. For a fair comparison, we use the benchmark
proposed by Zero-Shot. It consists of 20 different databases
(including IMDB, TPC-H, etc.), and there is a large gap
between them regarding schemas, tables, columns, etc.

Workloads. (1) Workload 1: Following Zero-Shot, we gen-
erated 10000 query statements for each database (complex
queries in Zero-Shot). We select queries from each database
for testing, and queries from the remaining 19 databases,



except the test database, are used for training. We execute
all the query statements on M1 to obtain the execution time
and query plan4 (each query statement corresponds to a query
plan). (2) Workload 2: In this paper, we propose the across-
more scenario. Specifically, we take the query statements of
workload 1 and execute them on M2 to obtain new labels
and query plans. The training and testing of workload 2 is
the same as that of workload 1. (3) Workload 3: We adopt
the benchmark proposed by MSCN [12] based on IMDB as
workload 3. Its training set includes 100000 query statements.
The test set comprises synthetic, scale, and job-light with
5000, 500, and 70 queries, respectively. Like workload 1, we
obtain the execution times and query plans based on M1. It is
worth noting that WDMs need to be trained on the training set
of workload 3 first and tested afterward. DACE, on the other
hand, can test directly, i.e., without utilizing any IMDB queries
for training. Combining the above workloads, we answer three
crucial questions: (a) why is DACE accurate? (limitation I), (b)
why is DACE efficient? (limitation II) and (c) why is DACE
robust? (limitation III)

Baselines. We compare DACE with representative cost
estimation models, including ADMs and WDMs. (1) ADMs.
Zero-Shot [8]: Zero-Shot transforms query plans into di-
rected graphs. Build node-type-specific MLPs to learn dif-
ferent node information. It is reasoning through bottom-up
information propagation to predict execution time. (2) WDMs.
MSCN [12]: MSCN is a learning-based cardinality estimation
model. It extracts tables, joins, and predicates information
from query statements into a Deep Set for prediction. QPP-
Net [18]: QPPNet accepts the query plan tree as an input and
predicts its execution time. QPPNet learns the nodes in the
query plan by different networks. The outputs of its children
nodes are used as inputs to the parent nodes to predict the
execution time. TPool [26]: TPool extracts diverse information
from the query plan, including tables, joins, and predicates. It
also learns string predicates through string embedding. Finally,
it predicts both the cardinality and execution time of the query
plan through multi-task learning. QueryFormer [39]: Query-
Former is designed with height encoding, tree-bias attention,
and Super node and learns the query plan through an encoder
with eight layers of Transformer. QueryFormer can be applied
to a variety of tasks in database optimization.

Implementation details. The implementation details of our
experiments are as follows:

Parameters Setting. We consider a total of 16 node types,
so the encoding length of each node of the feature extraction
output is 18 (including the cost and cardinality estimated by
DBMS). d = 18 and dk = dv = 128 in Transformer. The value
of α in the loss adjuster is 0.5 by binary search. Furthermore,
DACE consists of only one encoder layer and does not utilize
the multi-head attention mechanism. W1, W2 and W3 in the

4We use the EXPLAIN ANALYZE command in PostgreSQL to execute and
obtain the query plan corresponding to each query statement. It is worth noting
that the features input to the model include only the information estimated by
the query optimizer in the query plan (e.g., estimated cardinality and cost),
and we use the actual execution time only as a label.

MLP of DACE are set to 128, 64, and 1, respectively. r1, r2
and r3 in LoRA are set to 32, 16, and 8, respectively.

Hardware and Platform. The hardware devices and plat-
forms used in our experiments are as follows: machine M1:
the CPU is Intel(R) Xeon(R) CPU E5-2650 v4@2.20GHz, and
the GPU is GeForce GTX 1080 Ti. Machine M2: the CPU
is Intel(R) Core(TM) CPU i5-8500@3.00GHz. The DBMS
selected is PostgreSQL14.5, the algorithms are implemented
based on Python 3.9.18. Other software versions can be
obtained from our code5.

B. DACE Accuracy

As a pre-trained estimator, DACE can make accurate pre-
dictions. As a pre-trained encoder, DACE can provide WDMs
with information-rich encoding, thus helping them to make
more accurate predictions. To evaluate the accuracy of DACE,
we conduct extensive experiments on workloads 1, 2, and 3.
We also compare DACE with currently representative ADMs
and WDMs. First, we compare DACE with ADMs. We design
an experimental scenario similar to Zero-Shot (workload 1)
and propose a more complex across-more scenario (work-
load 2). Then, we argue that DACE can outperform WDMs
even when tested directly without knowledge of the specific
database (workload 3). Finally, we use DACE as a pre-trained
encoder to provide query plan embeddings for WDMs. Due
to the superiority of DACE, this simple knowledge integration
method can effectively improve the accuracy of all WDMs.

Comparison with ADMs. We follow the experimental
setup of Zero-Shot. We trained each model on 19/20 databases
and later tested it on the remaining database. For PostgreSQL,
the estimated cost is not in the same units as the execution
time, so we processed it with a linear model as the execution
time predicted by PostgreSQL. Fig. 5 shows the overall
accuracy of DACE on workloads 1 and 2. The median qerror
of DACE is less than Zero-Shot on 16 of the databases. In
addition, the median qerror of DACE is less than 1.48 on all
of the databases (compared to 1.56 for Zero-Shot).

In addition, we conducted experiments on the adaptability
of the DACE model in across-more scenarios. We first train
the DACE model on workload 1 and apply the LoRA tech-
nique [10] to fine-tune it on workload 2, thus obtaining the
optimized DACE-LoRA model. For example, we select the
IMDB database as the test set for workload 1. In that case, we
trained the DACE model on 19 other databases except IMDB
and evaluated it on IMDB. After completing this phase, we
fine-tuned the DACE model on the 19 databases of workload
2 (excluding IMDB) to obtain DACE-LoRA. Surprisingly,
DACE-LoRA performs well on workload 2, exceeding the
performance of DACE on workload 1. Specifically, the median
qerror of DACE-LoRA on workload 2 are all lower than 1.27,
a result that highlights that the DACE model can be effectively
adapted to a broader range of scenarios through fine-tuning.
In addition, we further reveal the significant value of general
knowledge by analyzing the experiments on workload 2.

5https://github.com/liang-zibo/DACE



acc
ide

nts
air

lin
e

ba
seb

all

ba
ske

tba
ll

car
cin

og
en

esi
s

co
nsu

mer
cre

dit

em
plo

ye
e

fhn
k

fin
an

cia
l

ge
ne

ea

ge
no

me

he
pa

titi
s

im
db

mov
iel

en
s

sez
na

m ssb

tou
rna

men
t

tpc
_h

walm
art

0

2

4

6

8

M
ed

ia
n 

Q
-E

rr
or

Optimal
PostgreSQL
Zero-Shot
DACE
DACE across-more

Fig. 5. DACE’s overall accuracy on workload 1 and workload 2. We trained DACE and Zero-Shot models on 19/20 databases and tested on the remaining
database (workload 1). DACE across-more was further fine-tuned on 19/20 databases (based on LoRA) and similarly tested on the remaining databases
(workload 2).

DACE-LoRA fuses the knowledge from workloads 1 and 2
and exhibits even better performance. This finding reinforces
our view that learning EDQO, a general knowledge, is a much
more effective way.

Comparison with WDMs. Although ADMs have better
robustness, they may not be as accurate as WDMs (called
instance optimization in Auto-WLM [25]) on the specific
database. However, even on the specific database, DACE can
outperform WDMs. Tab. I shows the performance of various
cost estimation models on workload 3. Notably, DACE and
Zero-Shot were trained on 19/20 databases (excluding IMDB)
and did not utilize any information from IMDB. In contrast,
we train WDMs on 100,000 queries based on IMDB. It can be
seen that QueryFormer’s median qerror on all three test sets
is lower than Zero-Shot’s, and Zero-Shot does not significantly
outperform QueryFormer on the remaining metrics. However,
DACE outperforms all metrics (except for Synthetic’s median
qerror) on all three test sets (including WDMs and ADMs).
Specifically, DACE outperforms the best existing models
(Zero-Shot and QueryFormer) by more than 10×, 13×, and
23× in terms of maximum qerror on Synthetic, Scale, and
JOB-light, respectively. Thus, we can conclude that DACE can
make more accurate predictions than WDMs on a specific
database and does not utilize any knowledge of that database
for fine-tuning (i.e., DACE achieves instance optimization).

Median 90th 95th 99th Max Mean

100

101

102

JO
B

-li
gh

t Q
-E

rr
or

s

3.35

21.37

35.28

54.51

327.00

7.63

1.54

4.82
5.66

7.48

27.35

3.14

1.47

13.69
17.22

21.58

105.00

3.71

1.34

2.16

3.91
5.38

14.57

1.95

MSCN
DACE-MSCN
QueryFormer
DACE-QueryFormer

Fig. 6. Comparison of MSCN and QueryFormer with and without DACE.
As a pre-trained encoder. As a pre-trained encoder,

TABLE I
qerror ANALYSIS FOR COST ESTIMATION ON WORKLOAD 3. DACE AND

ZERO-SHOT MODELS UNTRAINED ON IMDB WORKLOADS.

Synthetic Median 90th 95th 99th Max Mean

PostgreSQL 3.58 15.49 17.62 137.14 983 13.47

MSCN 2.19 4.95 12.37 47.52 376 5.34

QPPNet 1.33 3.39 8.52 37.15 103 3.49

TPool 1.45 3.57 8.24 23.63 219 3.51

QueryFormer 1.18 2.03 5.40 13.93 127 1.54

Zero-Shot 1.34 2.19 4.96 8.67 52.60 1.50

DACE 1.23 1.70 1.98 2.45 4.47 1.32

DACE-LoRA 1.14 1.49 1.67 2.30 3.31 1.22

Scale Median 90th 95th 99th Max Mean

PostgreSQL 3.19 12.74 19.68 65.38 544 15.82

MSCN 2.06 5.74 11.34 20.83 204 6.17

QPPNet 1.30 3.95 9.64 13.64 84 3.58

TPool 1.53 4.06 10.37 15.47 192 4.06

QueryFormer 1.32 2.26 2.95 5.63 59.81 1.52

Zero-Shot 1.46 2.18 3.64 6.49 63.79 1.62

DACE 1.25 1.89 2.26 2.96 4.44 1.37

DACE-LoRA 1.16 1.67 1.88 2.55 3.41 1.28

JOB-light Median 90th 95th 99th Max Mean

PostgreSQL 4.90 25.36 43.58 67.29 852 17.49

MSCN 3.35 21.37 35.28 54.51 327 7.63

QPPNet 2.94 17.58 19.37 23.41 48.01 4.72

TPool 3.28 23.58 38.54 45.82 254 6.72

QueryFormer 1.47 13.69 17.22 21.58 105 3.71

Zero-Shot 1.58 2.57 5.05 6.38 92.47 2.84

DACE 1.30 2.39 2.64 3.58 3.72 1.52

DACE-LoRA 1.18 1.83 2.12 2.75 2.90 1.32



DACE can provide all WDMs with embeddings of query
plans through knowledge integration. WDMs can have better
accuracy and robustness by utilizing the embeddings provided
by DACE. Besides, they can solve the notorious cold start
problem effectively. In this section, we demonstrate DACE’s
accuracy improvements to WDMs (robustness and the cold
start problem details in Sec. V-D).

We integrate DACE into MSCN (defined in (9)) and
QueryFormer. And we obtain DACE-MSCN and DACE-
QueryFormer by training on workload 3. Fig. 6 illustrates
the performance of the models on JOB-light. The maxi-
mum qerror of MSCN and QueryFormer are 11× and 7×
higher than those of DACE-MSCN and DACE-QueryFormer,
respectively. Therefore, as a pre-trained encoder, DACE can
effectively improve the accuracy of WDMs.

Discussion. An important question is: why can only DACE
adapt to across-more scenarios or act as an effective pre-
trained encoder? Zero-Shot can also be fine-tuned with LoRA
and achieve competitive results on across-more scenarios.
Similarly, Zero-Shot can also provide query plan embeddings
for knowledge integration. However, a superior cost estimation
model should balance accuracy and efficiency (both training
and inference efficiency). Zero-Shot’s model size is 33× larger
than DACE (details in Sec. V-C). Thus, Zero-Shot is less
efficient than DACE in training, fine-tuning, or inference,
making DACE only less burdensome for fine-tuning or as a
pre-trained encoder.

Furthermore, since DACE is efficient, it is more appropriate
to adapt it to a specific database (or across-more scenarios) by
fine-tuning (details in Sec. V-C). As shown in Tab. I, we obtain
DACE-LoRA based on the training workload of workload 3 by
updating only △W (defined in (8)). DACE-LoRA outperforms
DACE in all metrics, and its accuracy is further improved.
Therefore, the ability to make accurate predictions is only
one of the advantages of DACE, and the lightweight nature
of DACE can further expand its application scenarios. In
Sec. V-C, we will analyze the efficiency of DACE.

Why is DACE accurate? Making accurate predictions
is the essential task of cost estimation modeling. Although
ADMs are more robust than WDMs. Their limitation is that
they are less accurate than WDMs on a particular database.
However, the experimental results in this section illustrate that
DACE outperforms WDMs in accuracy. The main reason for
DACE’s superior accuracy is that we design tree-structured
attention and parallel learning of sub-plans to correct EDQO.
In particular, we employ a tailored tree-structured loss-based
adjustment strategy to equip sub-nodes with smaller loss
weights to address the information redundancy problem. We
argue that learning EDQO is a more efficient approach until
the base estimation task is solved correctly. As a result, DACE
still outperforms WDM, even on specific database workloads.
Moreover, EDQO is a general knowledge with better transfer-
ability than predicate information. Therefore, DACE also has
excellent accuracy in across-database scenarios.

C. DACE efficiency

We present the efficiency of DACE in three aspects: (1)
model size, (2) training efficiency, and (3) inference efficiency.
The above efficiency makes DACE easy to deploy. In addition,
efficient training allows DACE to be fine-tuned with less cost,
thus adapting to more complex environments. Finally, DACE
has an inference efficiency that can meet the requirements of
real application scenarios. Efficient inference makes DACE
as a pre-trained encoder does not bring extra burden to
WDMs. Model size. We report the number of parameters

TABLE II
EFFICIENCY ANALYSIS OF THE MODELS

Model Model size (MB) Training efficiency
(queries/sec)

Inference efficiency
(queries/sec)

PostgreSQL - - 1035

MSCN 2.509 675 978

DACE-MSCN 2.611 633 824

QPPNet 2.836 436 592

TPool 3.808 549 697

QueryFormer 8.553 473 638

DACE-QueryFormer 8.714 455 609

Zero-Shot 2.708 307 426

DACE-LoRA 0.080 40426 (tuning) 29561

DACE 0.064 21031 33995

for each cost estimation model, as shown in Tab. II. Except
for DACE, MSCN has the most miniature model. The model
sizes of MSCN, QPPNet, TPool, QueryFormer, and Zero-
Shot are 39×, 44×, 59×, 133×, and 42× larger than DACE,
respectively. We also show the model size of DACE-LoRA. It
can be seen that DACE-LoRA is 25% larger than the model
of DACE. However, MSCN, QPPNet, TPool, QueryFormer,
and Zero-Shot model sizes are 31×, 35×, 47×, 106×, and
33× larger than DACE-LoRA, respectively. Therefore, even if
we introduce additional parameters to DACE based on LoRA
to obtain DACE-LoRA, the number of model parameters of
DACE-LoRA is still much smaller than the other models.

Training efficiency. We set the batch size for each model
training to 512. Tab. II shows the training efficiency of each
cost estimation model (based on workload 3). Specifically, the
training efficiency of DACE is 31×, 48×, 38×, 44×, and 68×
higher than that of MSCN, QPPNet, TPool, QueryFormer, and
Zero-Shot, respectively. In addition, the inference efficiency
of DACE-LoRA is 1.92× that of DACE. It is because DACE-
LoRA only needs to update the parameters associated with
LoRA (i.e., △W in (8)). Therefore, DACE has superior
training efficiency. And DACE-LoRA has lower fine-tuning
expenses.

Inference efficiency. Inference efficiency is an essential
metric for evaluating cost estimation models. Tab. II demon-
strates the inference efficiency of PostgreSQL and learning-



based cost estimation models6. The inference efficiency of all
learned models is lower than that of PostgreSQL except DACE.
And DACE is 32× more efficient than PostgreSQL. Therefore,
based on DACE’s superior inference efficiency, DACE as a pre-
trained encoder does not impose an additional burden on other
models (as shown in Tab. II).

Why is DACE efficient? Auto-WLM [25] argues that
inference efficiency is one of the main limitations of ADMs.
However, we contend that a superior ADM (i.e., DACE) can
also have efficient inference. As shown in Tab. II, DACE
is superior to other baselines regarding model size, training
efficiency, and inference efficiency. The reasons for this are:
First, unlike previous work, DACE learns EDQO rather than
data characteristics. It means that we have more straightfor-
ward coding. Later, since EDQO is easier to handle, we only
need a lightweight transformer to make accurate predictions.
Finally, we utilize the sub-plan information in the query plan to
make the prediction more accurate. However, through parallel
learning, DACE takes only a small additional burden. There-
fore, DACE is more efficient than other baselines (including
WDMs).

D. DACE Robustness

Fig. 5 demonstrates not only the accuracy but also the
robustness of DACE (across-database in Fig. 1). In this section,
we first show the performance of DACE on data drift scenarios.
After that, we analyze the effect of the training workload’s
size on DACE. Finally, we offer that DACE as a pre-trained
encoder can effectively improve the robustness of WDMs.

0 20 40 60 80 100
TPC-H (GB)

2

4

6

8

M
ed

ia
n 

Q
-E

rr
or

PostgreSQL
MSCN
QueryFormer
Zero-Shot
DACE

0 20 40 60 80 100
TPC-H (GB)

5

10

15

20

95
th

 Q
-E

rr
or

PostgreSQL
MSCN
QueryFormer
Zero-Shot
DACE

Fig. 7. Robustness of DACE on the data drift scenario.

Data drift. Data drift alters the execution time of query
statements, challenging existing cost estimation models to
maintain accuracy without retraining. And most models need
to collect a new workload for retraining. As a superior ADM,
DACE can adapt better to data drift scenarios. Fig. 7 shows
the performance of DACE and other cost estimation models
on the data drift scenario. We trained on 19/20 databases

6This efficiency comparison is unfair to PostgreSQL but enables a more
straightforward comparison of the efficiency differences of ML-based models.
Because, except MSCN, all other models (i.e., query-plan-based cost estima-
tion models) require query plan output from PostgreSQL as input. Therefore,
the runtime of a plan-based model consists of two aspects: (1) the time to
obtain the query plan from PostgreSQL and (2) the time for the model to train
or test using the query plan. However, to compare the efficiency of ML-based
cost estimation models more clearly. We did not consider the effect of the
time consumed by PostgreSQL on QPPNet, TPool, QueryFormer, Zero-Shot,
and DACE.

(excluding TPC-H) to obtain ADMs (i.e., DACE and Zero-
Shot). Regarding WDMs (i.e., MSCN and QueryFormer), we
generate 50,000 queries for them for training (based on TPC-
H (1GB).) The test datasets for ADMs and WDMs are 10,000
queries, and we execute them to obtain the labels on different-
sized TPC-H.

As shown in Fig. 7, DACE has the highest accuracy across
the full range of test workloads. Specifically, the maximum
degradation of the median and 95th qerror during data drift is
5% and 29% for DACE (41% and 66% for Zero-Shot). Except
for DACE, Zero-Shot has the best performance. It indicates
that ADMs are more adept at handling data drift scenarios
than WDMs. WDMs have higher qerror than PostgreSQL
when TPC-H is larger than 50GB. Therefore, most WDMs
find it challenging to cope with data drift scenarios. On the
other hand, DACE can still make accurate predictions even
in data drift scenarios and does not need to fine-tune any
parameters. It makes DACE more suitable for deployment in
real applications.

5 10 15
Number of Training Databases

2

4

6

8

Q
-E

rr
or

s

Synthetic
Zero-Shot 50th
Zero-Shot 95th
DACE 50th
DACE 95th

5 10 15
Number of Training Databases

2

4

6

8

Q
-E

rr
or

s

Scale
Zero-Shot 50th
Zero-Shot 95th
DACE 50th
DACE 95th

5 10 15
Number of Training Databases

2

4

6

8

Q
-E

rr
or

s

JOB-light
Zero-Shot 50th
Zero-Shot 95th
DACE 50th
DACE 95th

Fig. 8. DACE and Zero-Shot accuracy by the number of training databases.

0 20000 40000 60000 80000 100000
Number of Training Queries

2

4

6

8

10

Q
-E

rr
or

s (
JO

B
-li

gh
t)

Median
PostgreSQL 50th
MSCN 50th
DACE-MSCN 50th

0 20000 40000 60000 80000 100000
Number of Training Queries

20

40

60

Q
-E

rr
or

s (
JO

B
-li

gh
t)

95th
PostgreSQL 95th
MSCN 95th
DACE-MSCN 95th

Fig. 9. Performance of MSCN with and without DACE by the number of
training queries.

Training overhead. In most scenarios, as the training over-
head (i.e., the number of training queries increases) increases,
the model will perform better. However, a superior cost
estimation model should only require less training overhead
to achieve competitive performance. Essentially, this means
that the model is more robust and better able to cope with the
cold start problem. In this section, we show the correlation
between the performance of DACE and the training overhead.

We gradually increase the number of databases used for
training and test the model’s performance. Specifically, we
set the training databases to 1, 3, 5, 10, 15, and 19 (without
IMDB) to test them on the same workload. Fig. 8 shows the
performance of Zero-Shot and DACE on Synthetic, Scale, and
JOB-light workloads. Zero-Shot needs about 10 to 15 training
databases to achieve stable performance. DACE, on the other



hand, requires only 3 to 5 training databases for accurate
prediction. Therefore, DACE has better performance with the
same training overhead. In addition, considering the excellent
efficiency of DACE (in Sec. V-C), the training cost of DACE is
much smaller than existing cost estimation models in practical
applications.

Enhancing the robustness of WDMs. As a pre-trained
encoder, DACE can effectively improve the robustness of
WDMs. Further, DACE can help WDMs to solve the notorious
cold start problem. Fig. 9 shows the qerror by the number
of training queries for DACE-MSCN and MSCN. MSCN
needs about 5,000 to 10,000 queries to achieve a performance
comparable to PostgreSQL. DACE-MSCN, on the other hand,
outperforms PostgreSQL on 100 to 100,000 training queries.
In addition, the prediction accuracy of DACE-MSCN with only
100 training queries is still higher than that of MSCN (both
median and 95th qerror). Therefore, as a pre-trained encoder,
DACE can effectively improve the accuracy (in Sec. V-B) and
robustness of WDMs. And it will not bring extra burden to
WDMs (in Sec. V-C).

Why is DACE robust? In this section, we show the
performance of DACE on the robustness test. From this, we
can see that DACE has a more robust adaptability to scenarios
such as data drift than previous methods. Furthermore, it
demonstrates adaptability even in extreme drift scenarios (i.e.,
across-database and across-more), pushing the boundaries of
WDM capabilities. The main reason why DACE is robust is
that the EDQO is more appropriate than cardinality. We did
not learn the cardinality information embedded in the data
characteristics as in previous work [8], [12], [18], [26], [39].
Instead, we correct for the cost estimated by the DBMS, i.e.,
we learn the EDQO. In addition, DACE can learn the EDQO of
different databases compared to WDMs. Therefore, in practical
applications, DACE can utilize richer data than WDMs to
make the model more robust.

E. Ablation Study

In this section, we analyze the impact of critical components
of DACE on its performance. First, we show the effects of
tree-structured attention on the performance and robustness of
DACE. After that, we offer that the tree-structure-based loss
adjustment strategy (i.e., loss adjuster) can effectively solve
the information redundancy problem. Finally, we analyze the
effectiveness of parallel learning sub-plans.

Synthetic Scale JOB-light
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Q
-E

rr
or

s

1.23 1.25 1.30

1.56
1.49

1.60

1.43 1.41 1.45

1.67 1.62

1.75
Median

Synthetic Scale JOB-light
0

1

2

3

4

5

Q
-E

rr
or

s

1.98
2.26

2.64

3.23

3.84

4.79

3.08

3.47

4.154.20

4.57
4.91

95th

Optimal
DACE
DACE w/o TA
DACE w/o SP
DACE w/o LA

Fig. 10. Impact of tree-structured attention and sub-plans information on the
performance of DACE. We train DACE on 19/20 databases (excluding IMDB).

Tree-structured attention. We introduce tree-structured at-
tention to learn the tree-structured information of a query plan.
Unlike QueryFormer, DACE does not use height embedding,
a learnable scaler, or the super node. The main reason is that
the height and learnable scaler information is embedded in
tree-structured attention. In addition, DACE learns the EDQO
rather than data characteristics. Hence, DACE enhances per-
formance without the necessity of complex models. Moreover,
we need to maintain the efficiency of DACE. Therefore, we
only use tree-structured attention to represent tree structure
information efficiently.

Fig. 10 illustrates the performance comparison between
DACE and DACE without tree-structured attention (i.e., DACE
w/o TA). Regarding median qerror on the three test work-
loads, DACE leads DACE w/o TA by 21%,16% and 18%,
respectively. Thus, tree-structured attention can effectively
represent the tree-structured information of the query plan.
In turn, it improves the accuracy and robustness of DACE (we
test it on unseen databases).

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of nodes in query plans

1.0

1.2

1.4

1.6

1.8

2.0

M
ed

ia
n 

Q
-E

rr
or

s

DACE
DACE w/o SP
Optimal

Fig. 11. DACE and DACE w/o SP performance on query plans with different
number of nodes. We train the models on 19 databases, and tested on 10,000
query statements on IMDB.

Loss adjuster. We design the loss adjuster based on the
tree-structure-based loss adjustment strategy. Here, we analyze
the effect of the loss adjuster on the performance of DACE.
Specifically, we analyze the value of α. When α = 0 (i.e.,
DACE w/o SP), only the root node has a loss weight of 1,
and the rest of the nodes are 0. At this time, DACE cannot
learn any information about the subplans. When α = 1 (i.e.,
DACE w/o LA), similar to QPPNet, all nodes have the same
loss weight, implying that the loss adjuster fails. We set the
value of α to 0.5 for DACE by binary search.

Fig. 10 illustrates the performance comparison of DACE
(α = 0.5), DACE w/o SP (α = 0) and DACE w/o LA (α =
1). It can be seen that DACE has the lowest qerror. While
DACE w/o LA has the largest prediction errors. Therefore,
learning the sub-plan information can effectively improve the
model’s performance. However, we must solve the resulting
information redundancy problem (DACE solved by the loss
adjuster).

We also show how well DACE handles complex query plans
(i.e., with larger nodes). Fig. 11 shows the performance of
DACE and DACE w/o LA on query plans with the different
number of nodes. It can be seen that the qerror of DACE
w/o LA increases as the number of nodes increases. On the
other hand, DACE receives almost no effect of the number of



nodes on its performance. Therefore, by learning the subplans,
DACE can handle complex query plans effectively.

Most importantly, learning the sub-plans does not affect the
efficiency of DACE. Specifically, learning all sub-plans during
training costs about 10% to 15% extra burden. On the other
hand, there is no additional overhead for the inference process
(it only predicts the cost of the root node during inference).
Therefore, the tree-structure-based loss adjustment strategy we
designed is efficient and effective.

Comparison with Cardinality. Most existing cost estima-
tion models incorporate predicate information in the encoding.
In Sec. I, we argue that these methods learn the cardinal-
ity information embedded in the predicates. Unlike previous
work, DACE corrects EDQO instead of learning cardinality
information from scratch. In the last experimental sections,
we argued that DACE is more accurate, efficient, and robust
than existing baselines. We concluded that the main reason
for this is that correcting EDQO has more advantages than
learning cardinality.

5 10 15
Number of Training Databases

0.8

1.0

1.2

1.4

1.6

Q
-E

rr
or

s

Synthetic
DACE 50th
DACE-A 50th
Optimal

5 10 15
Number of Training Databases

0.8

1.0

1.2

1.4

1.6

Q
-E

rr
or

s

Scale
DACE 50th
DACE-A 50th
Optimal

5 10 15
Number of Training Databases

0.8

1.0

1.2

1.4

1.6

Q
-E

rr
or

s

JOB-light
DACE 50th
DACE-A 50th
Optimal

Fig. 12. DACE and DACE-A accuracy by the number of training databases.

In this section, we explore the differences in performance
between DACE and cost estimation models based on actual
cardinality. Specifically, we replace the DBMS-estimated car-
dinality used by DACE with the actual cardinality, namely
DACE-A. Fig. 12 shows the difference in performance be-
tween DACE and DACE-A on the three test workloads. The
experimental setup is the same as the “Training overhead” in
Sec. V-D. We can see that DACE-A has better performance. On
the other hand, DACE needs to utilize the general knowledge
of 19 databases to perform similarly to DACE-A. DACE-A
uses more accurate general knowledge. However, obtaining
the actual cardinality of all predicates in advance in practical
applications is impossible. Therefore, our future work will ex-
plore how to efficiently improve general knowledge accuracy
for DACE learning.

VI. RELATED WORK

Cardinality estimators. Cardinality estimation, a core of
query optimizers, is also used as a basis for cost estimation in
DBMSs. In recent years, ML-based cardinality estimators have
received much academic attention [7], [27], [31]. Researchers
categorize these methods into two types: (1) query-driven and
(2) data-driven. Query-driven cardinality estimator [8], [12],
[18], [26], [39] relies on the query or query plan to estimate
the number of rows in the result. Its advantage is that it
has higher efficiency than data-driven methods, especially for
multi-table estimation [27]. However, its drawback is that the
model has poor robustness [14], [21]. Therefore, the model’s

performance is highly dependent on the training workload.
Unlike query-driven approachs, data-driven cardinality estima-
tor learn information from data rather than queries or query
plans. Therefore, the performance of data-driven methods
does not depend on any workload. However, its drawback
is low efficiency, especially for multi-table scenarios [27]. In
addition, it’s challenging to handle scenarios such as data drift.

ML-based DBMS components. In recent years, machine
learning has had many applications in DBMSs (AI4DB) [23],
[38], [40]. ML-based methods have excelled in many areas,
such as index recommendation [3], resource scheduling [16],
and query optimization [2], [37]. For many query-driven
cardinality estimators [8], [12], [18], [26], [39], they are also
able to perform other database optimization tasks simultane-
ously. TPool [26] can predict both the cardinality and the
execution time of a query plan. QueryFormer [39] can perform
cardinality and cost estimation, index recommendation, and
query optimization. Cost estimation is the basis for many
applications. Therefore, proposing an accurate, robust, and
efficient cost estimation model is essential. Zero-Shot [8]
offers an across-database cost estimation model that transforms
the query plan into a directed graph and inference it through
message passing. In addition, Zero-Shot utilizes DeepDB’s [9]
cardinality estimation results to achieve better performance.
However, maintaining a cardinality estimation model on each
database is problematic. We need to improve the accuracy and
efficiency of the across-database cost estimation model on a
specific database.

VII. CONCLUSION AND FUTURE WORK

In this paper, we build a lightweight and Database-Agnostic
cost estimator called DACE, which has superior robustness,
accuracy, and efficiency compared to existing cost estimation
models. Regarding accuracy, DACE can outperform WDMs
on a particular database even without utilizing any knowledge
of that database. Regarding robustness, DACE can adapt to
various offset scenarios (including data offset, cross-database
scenarios, etc.). In addition, we fine-tune DACE based on
LoRA so that DACE can quickly adapt to across-more scenar-
ios. DACE’s training and inference efficiency is much higher
than existing cost estimation models, making the application
of DACE in DBMSs more realistic. Finally, DACE can act as
a pre-trained encoder to help WDMs improve accuracy and
robustness and solve the notorious cold start problem.

In future work, a superior and generalized cost estimation
model can be essential in DBMSs. Further, we will explore
AI-driven DBMSs.

ACKNOWLEDGMENT

This work is partially supported by NSFC (No. 61972069,
61836007 and 61832017), Shenzhen Municipal Science
and Technology R&D Funding Basic Research Program
(JCYJ20210324133607021), and Municipal Government of
Quzhou under Grant (No. 2022D037, 2023D044), and Key
Laboratory of Data Intelligence and Cognitive Computing,
Longhua District, Shenzhen.



REFERENCES

[1] X. Chen, H. Chen, Z. Liang, S. Liu, J. Wang, K. Zeng, H. Su, and
K. Zheng, “Leon: A new framework for ml-aided query optimization,”
Proc. VLDB Endow., vol. 16, pp. 2261–2273, 2023.

[2] X. Chen, Z. Wang, S. Liu, Y. Li, K. Zeng, B. Ding, J. Zhou, H. Su, and
K. Zheng, “Base: Bridging the gap between cost and latency for query
optimization,” Proc. VLDB Endow., vol. 16, pp. 1958–1966, 2023.

[3] B. Ding, S. Das, R. Marcus, W. Wu, S. Chaudhuri, and V. R. Narasayya,
“Ai meets ai: Leveraging query executions to improve index recom-
mendations,” Proceedings of the 2019 International Conference on
Management of Data, 2019.

[4] A. Dutt, C. Wang, A. Nazi, S. Kandula, V. R. Narasayya, and S. Chaud-
huri, “Selectivity estimation for range predicates using lightweight
models,” Proc. VLDB Endow., vol. 12, pp. 1044–1057, 2019.

[5] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for
programming and natural languages,” ArXiv, vol. abs/2002.08155, 2020.

[6] X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo, J. Qiu, L. Zhang,
W. Han, M. Huang, Q. Jin, Y. Lan, Y. Liu, Z. Liu, Z. Lu, X. Qiu,
R. Song, J. Tang, J. rong Wen, J. Yuan, W. X. Zhao, and J. Zhu, “Pre-
trained models: Past, present and future,” ArXiv, vol. abs/2106.07139,
2021.

[7] Y. Han, Z. Wu, P. Wu, R. Zhu, J. Yang, L. W. Tan, K. Zeng, G. Cong,
Y. Qin, A. Pfadler, Z. Qian, J. Zhou, J. Li, and B. Cui, “Cardinality
estimation in dbms: A comprehensive benchmark evaluation,” Proc.
VLDB Endow., vol. 15, pp. 752–765, 2021.

[8] B. Hilprecht and C. Binnig, “Zero-shot cost models for out-of-the-box
learned cost prediction,” Proc. VLDB Endow., vol. 15, pp. 2361–2374,
2022.

[9] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and
C. Binnig, “Deepdb,” Proceedings of the VLDB Endowment, vol. 13,
pp. 992 – 1005, 2019.

[10] J. E. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, and W. Chen,
“Lora: Low-rank adaptation of large language models,” ArXiv, vol.
abs/2106.09685, 2021.

[11] Z. Kaoudi, J.-A. Quiané-Ruiz, B. Contreras-Rojas, R. Pardo-Meza,
A. Troudi, and S. Chawla, “Ml-based cross-platform query optimiza-
tion,” 2020 IEEE 36th International Conference on Data Engineering
(ICDE), pp. 1489–1500, 2020.

[12] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper,
“Learned cardinalities: Estimating correlated joins with deep learning,”
ArXiv, vol. abs/1809.00677, 2018.

[13] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, and
T. Neumann, “How good are query optimizers, really?” Proc. VLDB
Endow., vol. 9, pp. 204–215, 2015.

[14] B. Li, Y. Lu, and S. Kandula, “Warper: Efficiently adapting learned
cardinality estimators to data and workload drifts,” Proceedings of the
2022 International Conference on Management of Data, 2022.

[15] J. Liu, W. Dong, D. Li, and Q. Zhou, “Fauce: Fast and accurate deep
ensembles with uncertainty for cardinality estimation,” Proc. VLDB
Endow., vol. 14, pp. 1950–1963, 2021.

[16] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,”
Proceedings of the ACM Special Interest Group on Data Communica-
tion, 2018.

[17] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska,
“Bao: Making learned query optimization practical,” in Proceedings of
the 2021 International Conference on Management of Data, 2021, pp.
1275–1288.

[18] R. Marcus and O. Papaemmanouil, “Plan-structured deep neural network
models for query performance prediction,” Proc. VLDB Endow., vol. 12,
pp. 1733–1746, 2019.

[19] B. McCann, J. Bradbury, C. Xiong, and R. Socher, “Learned in trans-
lation: Contextualized word vectors,” in Neural Information Processing
Systems, 2017.

[20] G. Moerkotte, T. Neumann, and G. Steidl, “Preventing bad plans by
bounding the impact of cardinality estimation errors,” Proc. VLDB
Endow., vol. 2, pp. 982–993, 2009.

[21] P. Negi, Z. Wu, A. Kipf, N. Tatbul, R. Marcus, S. Madden, T. Kraska,
and M. Alizadeh, “Robust query driven cardinality estimation under
changing workloads,” Proc. VLDB Endow., vol. 16, pp. 1520–1533,
2023.

[22] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 22, pp. 1345–1359,
2010.

[23] A. Pfadler, R. Zhu, W. Chen, B. Huang, T. Zeng, B. Ding, and
J. Zhou, “Baihe: Sysml framework for ai-driven databases,” ArXiv, vol.
abs/2112.14460, 2021.

[24] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang, “Pre-trained
models for natural language processing: A survey,” Science China
Technological Sciences, vol. 63, pp. 1872 – 1897, 2020.

[25] G. Saxena, M. Rahman, N. Chainani, C. Lin, G. C. Caragea, F. Chowd-
hury, R. Marcus, T. Kraska, I. Pandis, and B. Narayanaswamy, “Auto-
wlm: Machine learning enhanced workload management in amazon red-
shift,” Companion of the 2023 International Conference on Management
of Data, 2023.

[26] J. Sun and G. Li, “An end-to-end learning-based cost estimator,” Proc.
VLDB Endow., vol. 13, pp. 307–319, 2019.

[27] J. Sun, J. Zhang, Z. Sun, G. Li, and N. Tang, “Learned cardinality
estimation: A design space exploration and a comparative evaluation,”
Proc. VLDB Endow., vol. 15, pp. 85–97, 2021.

[28] R. Taft, W. Lang, J. Duggan, A. J. Elmore, M. Stonebraker, and
D. DeWitt, “Step: Scalable tenant placement for managing database-as-
a-service deployments,” in Proceedings of the Seventh ACM Symposium
on Cloud Computing, 2016, pp. 388–400.

[29] C. Tsapelas and G. Koutrika, “Qpseeker: An efficient neural planner
combining both data and queries through variational inference.”

[30] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Neural Information Processing Systems, 2017.

[31] X. Wang, C. Qu, W. Wu, J. Wang, and Q. Zhou, “Are we ready for
learned cardinality estimation?” Proc. VLDB Endow., vol. 14, pp. 1640–
1654, 2020.

[32] Wikipedia. (2022) Partially ordered set. [Online]. Available:
https://en.wikipedia.org/wiki/Partially ordered set

[33] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacıgümüş, and J. F. Naughton,
“Predicting query execution time: Are optimizer cost models really un-
usable?” 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pp. 1081–1092, 2013.

[34] Z. Wu, P. Yang, P. Yu, R. Zhu, Y. Han, Y. Li, D. Lian, K. Zeng,
and J. Zhou, “A unified transferable model for ml-enhanced dbms,” in
Conference on Innovative Data Systems Research, 2022.

[35] Z. Yang, A. Kamsetty, S. Luan, E. Liang, Y. Duan, X. Chen, and
I. Stoica, “Neurocard,” Proceedings of the VLDB Endowment, vol. 14,
pp. 61 – 73, 2020.

[36] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, P. Chen, P. Abbeel,
J. M. Hellerstein, S. Krishnan, and I. Stoica, “Deep unsupervised
cardinality estimation,” Proc. VLDB Endow., vol. 13, pp. 279–292, 2019.

[37] X. Yu, G. Li, C. Chai, and N. Tang, “Reinforcement learning with tree-
lstm for join order selection,” 2020 IEEE 36th International Conference
on Data Engineering (ICDE), pp. 1297–1308, 2020.

[38] J. Zhang, C. Zhang, G. Li, and C. Chai, “Autoce: An accurate and
efficient model advisor for learned cardinality estimation,” 2023 IEEE
39th International Conference on Data Engineering (ICDE), pp. 2621–
2633, 2023.

[39] Y. Zhao, “Queryformer: A tree transformer model for query plan
representation,” Proc. VLDB Endow., vol. 15, pp. 1658–1670, 2022.

[40] R. Zhu, Z. Wu, C. Chai, A. Pfadler, B. Ding, G. Li, and J. Zhou,
“Learned query optimizer: At the forefront of ai-driven databases,” in
International Conference on Extending Database Technology, 2022.

[41] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and
Q. He, “A comprehensive survey on transfer learning,” Proceedings of
the IEEE, vol. 109, pp. 43–76, 2019.


