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Abstract—With the proliferation of GPS-equipped edge de-
vices, huge trajectory data is generated and accumulated in
various domains, motivating a variety of urban applications. Due
to the limited acquisition capabilities of edge devices, a lot of
trajectories are recorded at a low sampling rate, which may lead
to the effectiveness drop of urban applications. We aim to recover
a high-sampled trajectory based on the low-sampled trajectory in
free space, i.e., without road network information, to enhance the
usability of trajectory data and support urban applications more
effectively. Recent proposals targeting trajectory recovery often
assume that trajectories are available at a central location, which
fail to handle the decentralized trajectories and hurt privacy. To
bridge the gap between decentralized training and trajectory
recovery, we propose a lightweight framework, LightTR, for
federated trajectory recovery based on a client-server architec-
ture, while keeping the data decentralized and private in each
client/platform center (e.g., each data center of a company).
Specifically, considering the limited processing capabilities of
edge devices, LightTR encompasses a light local trajectory
embedding module that offers improved computational efficiency
without compromising its feature extraction capabilities. LightTR
also features a meta-knowledge enhanced local-global training
scheme to reduce communication costs between the server and
clients and thus further offer efficiency improvement. Extensive
experiments demonstrate the effectiveness and efficiency of the
proposed framework.

Index Terms—Trajectory Recovery; Lightweight; Federated
Learning;

I. INTRODUCTION

Thanks to the explosive adoption and development of mo-
bile sensing devices, a massive amount of trajectories has been
collected in a decentralized fashion, which empowers a variety
of trajectory-based applications [1]–[8], such as traffic predic-
tion [9], destination prediction [10], and vehicle navigation [4].
Nonetheless, in practice, the collected trajectory data is often
sampled at a low-sampling rate [11], called incomplete trajec-
tories (a.k.a. low-sampling-rate trajectories), which damages
the effectiveness of the above-mentioned applications due to
the loss of detailed information and high uncertainty. Thus, it is
important to recover missing points for incomplete trajectories
called trajectory recovery to enable more effective utilization
of these low-sampling-rate trajectories.
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Due to its significance, considerable research efforts have
been made to design effective trajectory recovery models [1],
[12]. Traditionally, statistical models are employed to recover
incomplete trajectories using historical trajectory data [13],
[14], accompanied by a variety of map-matching algorithms,
which match original GPS coordinates with their correspond-
ing road segments. Some recent studies [15]–[17] apply neu-
ral networks to recover trajectories by learning deep repre-
sentations of the trajectories. Generally, these networks are
composed of a stack of spatio-temporal (ST) blocks, aim-
ing at learning the complex spatio-temporal dependencies of
trajectories. The ST-block contains base ST-operators, which
can be further categorized into convolutional neural networks
(CNN) [18], recurrent neural networks (RNN) [16], [19],
and attention neural networks (Attn) [15] based ST-operators.
However, existing methods assume that the models are trained
with centralized data gathered from edge devices, which
incur high collection and storage costs and fail to handle
decentralized training data. Moreover, with the rising concerns
of privacy protection, people may be unwilling to disclose
their raw trajectories to untrusted data providers, because it is
dangerous that real data can be used by a malicious third party.
Thus, decentralized trajectory processing, which enables pri-
vacy protection, becomes a critical issue in current trajectory-
based applications to adapt existing licensing agreements and
data access restrictions [9].

As a result, we need a new kind of decentralized learning
model that can adapt decentralized trajectory data and can
learn complex spatio-temporal correlations effectively. Re-
cently, federated learning (FL) provides a solution for training
a model with decentralized data on multiple clients (e.g.,
mobile devices, organizations, or platform centers) promising
the privacy. FL is a machine learning setting where many
clients collaboratively train a model under the orchestration
of a central server while keeping the training data decentral-
ized. However, existing FL-based methods [20], [21] do not
consider the inherent spatio-temporal dependencies, which are
important for effective trajectory embedding [16]. In this study,
we aim to develop a novel FL-based trajectory recovery model,
which can bridge the gap between decentralized data pro-
cessing and complex spatio-temporal dependency modeling.
Nonetheless, it is non-trivial to develop such kind of model,
due to the following challenges.



Challenge I: scalability. Existing popular trajectory recovery
methods usually suffer from poor scalability, as these deep
learning based models are often large, where training and
inference are often time-consuming and computationally ex-
pensive. This limits the scalability of the trajectory recovery
model on resource-constrained edge computing devices, which
play a vital role in decentralized computation. In addition,
these methods may incur memory overflow in large-scale
trajectory learning settings since the entire network must reside
in memory during training. For example, given N trajectories,
each of which has L points, the memory cost of Attn-based
ST-operators increases quadratically with L and N (see Ta-
ble II). Nevertheless, no customized lightening module exists
in current trajectory recovery models, and simply lightening
these models degrades their performance dramatically [22],
which also limits the scalability of trajectory learning.

Challenge II: communication cost. During the training of
FL, certain rounds of communication exist between the central
server and all participating clients. Two lines of factors, such
as the limited network bandwidth and explosive participating
clients, can create a communication bottleneck in an FL
environment, which increases latencies and decreases practi-
calities. Statistically, the collected trajectories across different
clients are usually not independent and identically distributed
(Non-IID) and heterogeneous, which leads to a significant
increase in communication rounds to achieve convergence
and makes it difficult to obtain an optimal global model.
Systematically, a certain number of clients involve in an FL
environment, while the communication capacity of each client
may differ due to significant constraints in hardware, network
connection, and power. It is highly desirable, but also non-
trivial, to develop a communication cost reduction method in
federated trajectory recovery, that is capable of solving these
statistical and systematical issues.

To tackle the two challenges, we provide a lightweight
framework for federated trajectory recovery called LightTR
based on horizontal federated learning (i.e., a server-clients
architecture), where the objective is to collaboratively train
models by maintaining a shared global model on a cen-
tral server and utilizing all clients’ data in a decentralized
fashion. LightTR encompasses two major modules: a local
trajectory preprocessing and light embedding module and a
meta-knowledge enhanced local-global training module.

To avoid huge memory consumption and limited scalabil-
ity (Challenge I), we design a local lightweight trajectory
embedding (LTE) model for each client. Specifically, LTE
contains an embedding component and a stack of ST-blocks to
learn effective spatio-temporal representations. Unlike previ-
ous studies [19], we formalize a lightweight ST-operator in ST-
blocks and replace the popular ST-operators (e.g., CNN and
Attn) with a pure MLP (multi-layer perceptron) architecture
considering the lower space complexity (i.e., O(L+D + 1))
and time complexity (i.e., O(N · (L + D))) of MLP, where
L denotes the number of points in each trajectory, D is the
embedding size, and N is the number of trajectories. Here,
we use only one RNN layer combined with MLP to ensure

temporal dependencies capturing.
To reduce communication cost and speed up the model

convergence (Challenge II), we propose a meta-knowledge
enhanced local-global training module by means of knowledge
distillation. Before federated training, we propose a Teacher
model (i.e., a meta-learner) to learn local meta-knowledge for
each client using a part of its local data. We consider the
local lightweight trajectory embedding model as the student
model. During FL, the teacher model is employed to guide
the optimization of the student model, in order to learn better
common features and achieve faster convergence.

The major contributions are summarized as follows.
• To the best of our knowledge, this is the first study to

systematically learn federated trajectory recovery on de-
centralized trajectories. We propose a lightweight feder-
ated framework entitled LightTR to perform decentralized
trajectory recovery, which offers privacy protection of
locally collected trajectories.

• To increase the scalability, we introduce a local trajec-
tory preprocessing and light embedding module to cap-
ture effective spatio-temporal correlations of trajectories
with a customized lightweight trajectory embedding ST-
operator.

• To reduce the communication cost in FL, we design a
meta-knowledge enhanced local-global training module
by means of knowledge distillation to achieve faster
convergence and better accuracy.

• We report on experiments using real datasets, demon-
strating the effectiveness and efficiency of the proposed
LightTR framework.

The remainder of this paper is organized as follows. Sec-
tion II covers preliminary concepts and formalizes the prob-
lem of federated trajectory recovery. Section III analyzes the
drawbacks of existing trajectory learning methods. We report
the design of LightTR framework in Section IV, followed by
the experimental study in Section V. Section VI surveys the
related work, and Section VII concludes the paper.

II. PRELIMINARIES

We proceed to present necessary preliminaries and then
define the problem addressed. Table I lists the notations used
throughout the paper.

Definition 1 (Road Network): A road network is a directed
graph G = (V,E), where V is a road vertex set, and E
is a road edge set. Each vi ∈ V denotes a road segment
intersection or a road end, and each ei,j ∈ E denotes a directed
road segment from vi to vj .

Definition 2 (GPS Point): A GPS point can be defined as
a triple p = ⟨lat, lng, γ⟩, which captures the latitude lat
and longitude lng of the GPS position including additional
information γ, e.g., address.

Definition 3 (Raw Incomplete Trajectory): A raw incom-
plete trajectory τ is a sequence of n points, i.e., τ =
⟨(p1, t1), (p2, t2), · · · , (pn, tn)⟩, where ti denotes the times-
tamp of pi.



TABLE I
SUMMARY OF NOTATIONS

Symbol Definition
G Road network
V Vertex set
E Edge set
vi Road segment intersection or road end
ei,j Road segment from vi to vj
pi GPS Point
τ Raw incomplete trajectory
ti Timestamp of pi
ϵ Sampling rate
p̃i Map-matched point
r Moving ratio

dis(a, b) Distance between nodes a and b
e.N1 Start node of e
e.N2 End node of e
e.Ncur The current node of e

T Map-matched trajectory
T Map-matched trajectory dataset
Ci The i-th client

Definition 4 (Sampling Rate): A sampling rate ϵ is the time
difference between two consecutively sampled points, which
is usually determined by the sampling device.

In practice, the sampling rate often changes near ϵ in most
cases because of the inherent temporal bias of trajectory data.
It is also worth noting that the collected trajectory points may
not be precise due to GPS device measurement errors and GPS
noises. Map matching is usually adopted to project raw points
onto the road network [16], [23]–[25]. In this study, we use
the map-matching method in the deep hierarchical network
(DHN) [26] to convert a sequence of raw latitude/longitude
coordinates for map matching.

Definition 5 (Map-matched ϵ-Sampling-Rate Trajectory): A
map-matched trajectory T with ϵ-sampling rate is a sequence
of map-matched trajectory points, i.e.,

T = ⟨(p̃1, t1), · · · , (p̃i, ti), · · · , (p̃n, tn)⟩, (1)

where ti+1−ti = ϵ, p̃i = ⟨e, r⟩ is the map-matched (trajectory)
point at timestamp ti, e denotes the road segment, and r is the
moving ratio. Next, r represents the ratio between the current
moving distance (from the start node of e to the current node)
and the length of road segment e, i.e., r = dis(e.N1,e.Ncur)

dis(e.N1,e.N2)
,

where dis(a, b) denotes the distance between nodes a and b,
e.N1 denotes the start node of e, e.Ncur denotes the current
node of e, and e.N2 denotes the end node of e.

As shown in Figure 2, each road segment e covers the
start node e.N1 and end node e.N2, and records the distance
between the two points. Next, the moving ratio r will be
determined by the moving distance (from e.N1 to the current
node e.Ncur) and the total length of e. For example, if the
current node is located in the middle of e4, we can obtain that
r = 0.5.

Definition 6 (Incomplete Map-matched ϵ-Sampling-Rate
Trajectory): An incomplete map-matched ϵ-sampling-rate tra-
jectory, i.e.,

Ticp = ⟨(p̃1, t1), · · · , (p̄j , tj), · · · , (p̃n, tn)⟩, (2)

is composed of a sequence of map-matched points (e.g., p̃i)
and missing points (e.g., p̂j).

In the rest of the paper, we will use the terms map-
matched point (map-matched ϵ-sampling-rate trajectory) and
point (trajectory) interchangeably when the context is clear.
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Definition 7 (Platform Center): A platform center C, e.g.,

the distributed data center of a company, keeps its map-
matched trajectory dataset T = {T1, T2, · · · , Tl}, where Ti

is the i-th map-matched trajectory and l is the length of T .
Note that we consider a platform as a client.

Based on the above definitions, we formally define the
studied problem as follows.

Federated Trajectory Recovery Problem Statement.
Given a server S and N clients with their local trajectory
datasets T = {T1, T2, · · · , TN}, each dataset Ti (1 ≤ i ≤ N )
in client Ci is a set of incomplete map-matched trajectories,
i.e., Ti =

{
T i
icp,1, · · · , T i

icp,l

}
. Our problem aims to learn a

shared global function F (·), such that for any incomplete map-
matched trajectory, their missing coordinates are recovered.
Formally, for each incomplete trajectory Ticp in a platform
center, we have

Incomplete Trajectory︷ ︸︸ ︷
⟨· · · , (p̄i, ti), · · · , (p̃j , tj), · · · ⟩

F (·)−→

Recovered Trajectory︷ ︸︸ ︷
⟨(· · · , (p̂i, ti), · · · , (p̃j , tj), · · · ⟩,

(3)
where 1 ≤ i < j ≤ n.

III. ANALYSIS AND OBSERVATIONS

In this section, we first analyze existing trajectory modeling
proposals in a generic framework and investigate the com-
plexity of representative models. Next, we identify directions
for achieving a decentralized lightweight trajectory recovery
framework.

To gain insight into the prospects of the decentralized light-
ening trajectory modeling methods, we consider representative
models [1], [12], [15]–[17], [19], [27]–[30]. Figure 2(a) shows
a generic framework for these models. Generally, a trajectory
recovery model has three components:

1) a data collection module that gathers data collected from
different data centers into a central server;

2) a machine learning (ML) model consisting of stacked
spatio-temporal blocks to extract spatio-temporal corre-
lations as high-dimensional features;
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Fig. 2. (a) A generic framework of existing trajectory recovery methods. (b)
An illustration of the federated learning framework.

3) an optimization module that iteratively updates the model
with loaded mini-batch data by means of forward and
backward propagation.

We observe that these trajectory recovery models are trained
in a centralized manner while fail to consider the decentralized
setting. Although models learned on such centralized trajectory
data hold the promise of greatly improving usability, there are
risks and responsibilities to storing trajectories in a centralized
location due to their sensitive nature, which also leads to
high storage and computational cost [21]. In addition, it is
dangerous that real data can be used by a malicious third
party. Thus, people may be unwilling to disclose their raw
trajectories, which are especially sensitive and private.

This calls for a decentralized trajectory learning model
where the data and computation are distributed among multiple
data centers, which brings the benefit of privacy protection
and potentially more efficient processing. We thus propose to
design a new federated trajectory recovery framework, to be
detailed in Section IV-B. Figure 2(b) shows the typical learning
process of a federated learning framework. Specifically, each
data center trains a local model using its private data, while the
central server aggregates the parameters of the learned local
models periodically to collaboratively obtain a global model.

In addition, we discuss the benefits in privacy protection
of the proposed framework LightTR briefly. First, LightTR
alleviates sensitive information leakage since it keeps the
training data decentralized and only sends model parameters to
the central server. Further, LightTR mitigates malicious attacks
by distributing the learning process across clients, making it
harder for an untrusted third party to use the real trajectory
data.

In this study, we only consider deep learning (DL) based
trajectory modeling solutions, which usually are composed of
a stack of spatio-temporal (ST) blocks. ST-blocks, including
stacked ST-operators, are the basic ingredients for extracting
comprehensive features. We categorize popular ST-operators
into different families based on the base operators that they ex-
tend: convolutional neural network (CNN) based ST-operators,
recurrent neural network (RNN) based ST-operators, and
attention (Attn) based ST-operators. A line of studies [18], [31]
applies CNN-based ST-operators, i.e., temporal convolutional
networks, that applies dilated causal convolutions to trajectory
data for feature extraction. Another line of research [16],

TABLE II
CATEGORIZATION AND ANALYSIS OF BASE ST-operators.

Categorization Time Complexity Space Complexity

ST
-o

pe
ra

to
r

CNN [18], [31] O(D2 ·N · L) O(D2)

RNN [16], [19] O(D2 ·N · L) O(D2)

Attn [15], [17] O(D2 ·N · L · (D + L)) O(D2)

[19] uses RNN-based ST-operators that process trajectories
based on a recursive mechanism, which is usually combined
with graph neural network. The rest of studies [15], [17]
adopts Attn-based ST-operators that enables weighted tempo-
ral information extraction over long sequences by applying
the attention mechanism to establish self-interactions of in-
put trajectories. The time and space complexity of the base
operators is reported in Table II, where D is the number of
embedding dimensions, N is the number of trajectories, and L
is the maximum length of historical trajectories (each historical
trajectory may have different length).

As shown in Table II, we observe that ST-operators, which
are the main components of trajectory learning models, incur
expensive computational and storage costs, where the time
and space complexities are both proportional to D2. It mo-
tivates us to develop lightweight ST-operators for trajectory
recovery. Although it is straightforward for achieving lightness
to manipulate the embedding size D of ST-operators, many
studies [32]–[34] have shown that reducing D will inevitably
degrade learning capabilities of ST-operators.

Recent studies [35], [36] show the superior capabilities of
multi-layer perceptron (MLP) (also called Dense) based archi-
tectures in feature extraction. MLP-based architectures benefit
in low computational cost and fewer parameters while keeping
comparable performance to mainstream ST-operators. Thus,
we propose to simplify and reduce the model computations
by replacing a majority of the base network (e.g., CNN) in
ST-operators with MLP.

IV. METHODOLOGY

In this section, we propose a federated trajectory recovery
framework, entitled LightTR, as shown in Figure 3. We first
give an overview of the framework and then provide specifics
on each module in the framework.

A. Framework Overview

As illustrated in Figure 3, LightTR is based on horizontal
federated learning, i.e., a client-server architecture, to col-
laboratively train local trajectory learning models under the
orchestration of a central server, while keeping the local data
private. LightTR can be divided into two major modules: local
trajectory preprocessing and light embedding as well as meta-
knowledge enhanced local-global training.

• Local Trajectory Preprocessing and Light Embedding. In
this module, each client first preprocesses the collected
trajectory data to generate the map-matched trajecto-
ries by DHN [26]. Moreover, we design a lightweight
local trajectory embedding module aiming at reducing
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Fig. 3. LightTR: Lightweight Trajectory Recovery Framework

the computation cost. Finally, each client will download
parameters and learn a local model to recover trajectories.

• Meta-knowledge Enhanced Local-Global Training. In this
module, the central server will aggregate the updated
parameters from selected clients to obtain a global model.
In particular, a novel meta-knowledge enhanced local-
global training module is proposed to accelerate the
model convergence and reduce the communication cost
between clients and the central server by means of
knowledge distillation.

Next, we will provide the technical details of each module,
respectively.

B. Local Trajectory Preprocessing and Light Embedding

In this section, we report the preprocessing of local tra-
jectories and the proposed lightweight trajectory embedding
module in a client. Note that the model for the central server
shares the same trajectory learning model architecture, which
will be elaborated in Section IV-B2, with models for all clients.

1) Local Trajectory Preprocessing: Given a road network,
we first map all collected trajectories into the corresponding
road intersections by converting their GPS location into dis-
crete units, referring to the Hidden Markov Model (HMM) in
DHN [26]. Specifically, given a low-sampling-rate trajectory
τ , we obtain the corresponding map-matched trajectory T as
follows:

τ = ⟨(p1, t1), · · · , (pi, ti), · · · (pn, tn)⟩
T = ⟨(g1, t1), · · · , (gi, ti), · · · (gn, tn)⟩ = HMM(τ),

(4)

where gi = (xi, yi, tidi), ∀1 ≤ i ≥ n is the converted unit,
and xi and yi represents the i-th grid cell. We extract tidi =
⌊ ti−t0

ϵ ⌋ to guide the model to learn how many points should be
recovered between two consecutive low-sampling-rate points.

2) Lightweight Trajectory Embedding: As shown in Fig-
ure 3, Lightweight Trajectory Embedding (LTE) module is
composed of an embedding model and stacked ST-blocks. The
embedding model encodes the map-matched trajectory T into
a single vector to capture its complex sequential dependencies,

while the ST-blocks, containing a customized lightweight ST-
operator, aim to predict the road segment e and moving ratio
r of missing points, simultaneously.

We proceed to elaborate the embedding model and the
lightweight ST-blocks.

Embedding Model. Given a map-matched incomplete tra-
jectory Ticp = <(p̃1, t1), · · · , (p̃i, ti), · · · , (p̃n, tn)>, the em-
bedding model aims to convert T into a single vector to capture
the complex spatial and temporal correlations. It is important
to model the sequential dependencies of trajectories, which
enables accuracy [17]. We adopt Gated Recurrent Unit (GRU)
as the embedding layer since GRU brings the benefits of long-
term temporal dependency capturing without performance
decay and efficient computation. We input the map-matched
raw trajectory T into GRU to obtain its hidden features, which
are then input into the ST-blocks. Specifically, we pass the
input trajectory T along the time span [1, 2, · · · , n] through
the GRU. For each time step t, the hidden features can be
formulated as:

rt = σ(Wr · [ht−1, gt] + br)

zt = σ(Wz · [ht−1, gt] + bz)

h̃t = tanh(Wh · [ri ∗ ht−1, gt] + bh)

ht = (1− zt) ∗ ht−1 + zi ∗ h̃t,

(5)

where W represents the weight for respective gate neurons
and b is the bias for the respective gate, and [·] denotes the
feature concatenation.

For simplicity, the embedding model derives the hidden
features ht of the encoder for low-sampling-rate trajectories
embedding:

ht = embedding(ht−1, st−1), (6)

where the last state ht is considered as the learned hidden
features, which is also used as the input of ST-blocks.

ST-blocks. The learned hidden features ht are then input
into the stacked ST-blocks to obtain the data representations
for incomplete trajectory recovery. As illustrated in Figure 3,



to increase scalability and reduce computation cost, we design
a lightweight ST-operator including an RNN layer where
each RNN cell is followed by a pure MLP-based multi-task
(MT) model, which benefits from the low space and time
complexities of MLP. RNN can only predict the numerical
coordinates of trajectories, while cannot ensure the prediction
of missing points being map-matched onto the road network.
Thus, the lightweight ST-operator contains a novel MT model
to predict the road segment e and moving ratio r at the
same time due to their high correlations, leveraging multi-task
learning [37].

More specifically, we feed ht into RNN to obtain high-
dimensional hidden features h′

t, which capture the sequential
dependencies. Next, h′

t is input into the MT model to predict
the road segment et and moving ratio rt simultaneously. The
lightweight ST-operator can be formulated as:

h′
t = RNN(ht)

et, rt = MT (h′
t),

(7)

The left center in Figure 3 shows detailed architecture of the
MT model to predict et and rt, simultaneously. Specifically,
after obtaining hidden features through RNN, we first use a
dense (MLP) layer with a constraint mask layer (Mask) and
a road segment embedding layer (Emb) to predict the road
segment et, which can be formulated as follows.

ht,d = Dense(h′
t,Wd) = Wd · h′

t + bd

et = Mask(ht,d)

ht,e = Emb(ht,d, e
t) = ReLU(ht,d +RNN(et))

rt = ReLU(Dense([ht,e, e
t],Wr)) = Wr · [ht,e, e

t] + br,
(8)

where W and b denote the trainable parameters and bias.
Then, et together with h′

t are concatenated to go through
the dense layer with an activation function (i.e., ReLU) to
predict moving ratio rt. Next, et and rt affect et+1 and rt+1.
For example, people may be more willing to visit places
that are close to their current locations. We also input et
and rt into RNN. When inferring the missing points between
two consecutive points of a low-sampling-rate trajectory, the
hidden state ht of our ST-blocks can be represented as:

ht = STBlocks(ht−1, et−1, rt−1), (9)

where et−1 and rt−1 represent the road segment embedding of
the predicted road segment and its moving ratio at timestamp
t− 1, respectively.

Constraint Mask Layer. In order to reduce the training
complexities and achieve fine-grained trajectory recovery, we
employ a constraint mask layer [16]. We use an exponential
function (shown in Eq. 10) to capture the influence of distance.

ci = exp(
−dist2(pi, p̃i)

γ
), (10)

where dist(pi, p̃i) denotes the Euclidean distance between the
original point pi and its map-matched point p̃i on correspond-
ing road segment e, γ is a parameter related to the road
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Fig. 4. The Process of Knowledge Distillation

network (γ = 125 in our work). Note that we only consider
points existing in low-sampling-rate trajectories that are not
far away from road segments. If the distance between a road
segment e and point pi, we set ω(e, pi) as 0. Finally, we
combine Eq. 10 with softmax as the constraint mask layer,
which can be defined as follows.

P (ei|hi) =
exp(hT

t,d · wc)⊙ ci∑
c′∈C exp(hT

t,d · wc′)⊙ ci
, (11)

where wc is a trainable parameter matrix. We finally use
argmax to get the final prediction of road segment et.

C. Meta-knowledge Enhanced Local-Global Training

To reduce the communication cost, we propose a meta-
knowledge enhanced local-global training (or meta local-
global training for short) module for model aggregation by
means of knowledge distillation. Figure 4 shows the process
of knowledge distillation, which includes a teacher model
and a student model. Specifically, we first pre-train a teacher
model, also called a meta-learner, to learn meta-knowledge
for each client with a subset of local trajectories. During
local training, each client first downloads parameters from
the central server, and the learned meta-knowledge is used to
guide the local model (i.e., lightweight trajectory embedding)
learning. We consider the local model as the student model.
Finally, the central server aggregates parameters to update the
global model with a subset of clients. In this study, we use
the lightweight trajectory embedding model as the student and
teacher model.

In federated trajectory recovery, we have N clients,
denoted as {C1, C2, · · · , CN}, with their own datasets
{T1, T2, · · · , TN}. Each dataset Ti consists of three parts,
a training, validation, and test dataset, denoted as T train

i ,
T valid
i , and T test

i , respectively. We aim to learn a good
trajectory recovery model fi(·) for each client on its local
dataset Ti:

min
1

N

N∑
i=1

1

ntest
i

ntest
i∑
j=1

Ltotal(fi(T
j
icp), T

j
ground), (12)

where Ltotal is the overall loss function, ntest
i is the length of

T test
i , and Tground is the ground truth of complete trajectory.
We proceed to introduce the local trajectory recovery ob-

jective function and meta-knowledge enhanced local-global
training.



1) Local Trajectory Recovery Objective: As we aim to
predict road segment and moving ratio simultaneously, we
combine the cross-entropy loss L1(θ) and mean squared
error L2(θ) as the local loss function Llocal(θ) for trajectory
recovery. L1(θ) is used for road segment prediction, while we
use L2(θ) for moving ratio prediction.

Llocal(θ) = L1(θ) + µL2(θ), (13)

where µ is a tunable parameter to balance the trade-off linearly
between the road segment and moving ratio prediction.

The cross-entropy loss is formulated as follows.

L1(θ) = −
∑

(T,T̃ ϵT )

|T̃ |∑
j=1

L∑
l=1

1aj · ellog(Rθ(âje = el|d1 : j − 1))

s.t.dj−1 = (T, T̃1:j−1),
(14)

where T and T̃ represent incompleted trajectories and recov-
ered completed trajectories, respectively, L is the number of
road segments, aje is the ground truth of road segment, âj
is the prediction, and Rθ represents the lightweight trajectory
embedding module. Next, D is the training data.

The mean squared error is also employed to predict the
movement ratio, which can be formulated as:

L2(θ) = −
∑

(T,T̃ ϵT )

|T̃ |∑
j=1

(ajr −Rθ(dj−1)
2)

s.t.dj−1 = (T, T̃1:j−1),

(15)

where ajr is the real moving ratio.
2) Meta-knowledge Enhanced Local-global Training.: To

achieve faster convergence and reduce the communication
cost, we propose a meta-knowledge enhanced local-global
training module by means of knowledge distillation. We
first learn a meta-learner (a teacher model) to accumulate
meta-knowledge for each client. Each client trains a local
model after downloading parameters from the server with
meta-knowledge guiding the local training. The central server
obtains the global model by aggregating parameters from the
participating clients.

We employ the proposed lightweight trajectory embedding
model as the teacher model ftea to perform trajectory missing
points prediction task with incomplete trajectories. The teacher
model is then used to guide the local model fstu training
via knowledge distillation. The knowledge distillation can be
formulated as:

Ldist(ftea, fstu;Ticp) = ||ftea(Ticp)− fstu(Ticp)||22, (16)

where || · ||2 represents L2-norm.

Through knowledge distillation, we can make good use of
meta-knowledge to guide the local training for each client.
Therefore, the total loss Ltotal function for each client Ci is:

Ltotal =
1

|T train|
∑

(Ticp,Tground)ϵT train
i

Llocal(Rθ(Ticp), Tground)

+λLdist(ftea, Rθ;Ticp),
(17)

where λ is a trade-off knowledge transfer and focusing on the
current data, and Llocal is the trajectory recovery loss.

Algorithm 1 Teacher model training
Input: subsets of Dataset {Ti}Ni=1 in N clients, λ0, lt
Output: A common teacher model ftea

1: λ← λ0

2: Train local teacher model fi using Llocal with T train
i in each

client Ci

3: Send the current model fi to the next client Ci+1

4: accvaildi+1 ← fi+1(T valid
i+1 )

5: if accvalidi+1 ¿ lt then
6: Train fi+1 with Ti+1 with Eq.17
7: else
8: fi ← fi+1

9: Train fi+1 with Ti+1 with Eq.17
10: end if
11: Repeat steps 3 – 10 until convergence
12: ftea ← fN

Algorithm 1 specifies the process of teacher model train-
ing, which is used for all clients. Here, we train all clients
sequentially in a cyclic way, and the previous knowledge is
transferred to the next one. The previously learned knowledge
will be preserved if it is useful for the current client training.
Otherwise, it will be discarded. The data heterogeneity across
clients is alleviated in this way. We fix λ = λ0 to ensure
preserving enough common knowledge (line 1). The threshold
lt is used to determine whether to completely preserve the
previously learned knowledge (lines 2–10). When accuracy
accvalidi+1 < lt, it means too little information contained in the
current client Ci+1. We directly initial the current model with
the previous one to fully leverage previous knowledge, and
thus handle the data heterogeneity.

Algorithm 2 illustrates the process of meta-knowledge en-
hanced local training (i.e., knowledge distillation) to train a
good local trajectory recovery model for upcoming central
aggregation. Specifically, we first set λ to 0, which means no
knowledge learned from the teacher model (line 1). For each
client, we apply gradient descent to update its local model
Rθi with local training data with Eq. 17 (lines 3–5). When
accuracy accvalidi,tea of the teacher model is lower than accvalidi

of the current local model on local validation data, we keep
λ as 0, meaning that no guidance from the teacher model as
the teacher model has less knowledge of the current client,
and we want to refer little on it. Otherwise, we dynamically
update λ as follows:

λ←− λ0 · 10min(1,(accvalid
i,tea −accvalid

i )∗5)−1, (18)



Algorithm 2 Meta-Knowledge Enhanced Local Training
Input: Datasets {Ti}Ni=1 in N clients, λ0, lt, teacher model ftea,

training epochs epochmax

Output: Local Trajectory Recovery models
{
Ri

θ

}N

i=1
1: λ← 0
2: cn ← 0
3: while cn < N do
4: acctraini ← Ri

θ(T train
i )

5: Train Ri
θ with Eq. 17

6: accvalidi,tea ← ftea(T valid
i )

7: accvalidi ← Ri
θ(T valid

i )
8: if accvalidi,tea ≤ accvalidi and accvalidi < lt then
9: λ← 0

10: else
11: λ←− λ0 · 10min(1,(accvalid

i,tea −accvalid
i )∗5)−1

12: end if
13: end while
14: Repeat steps 3 – 15 in epochmax iterations
15: Return

{
Ri

θ

}N

i=1

Eq. 18 shows that the better the teacher model’s performance
is, the larger the value of λ is, which means that the local
model learns more knowledge from the teacher model. After
several iterations of model updating, we obtain N local models
for the preceding central aggregation (lines 5–15).

Algorithm 3 shows the process of local-global parameter
updating. Especially, at each communication round r, we
randomly select a subset of N clients C, which further
reduces the communication cost. The central server transfer its
current model θr−1

s to selected clients (lines 1–4). Each client
performs meta-knowledge enhanced local training according to
Algorithm 2, which optimizes a local empirical risk objective,
i.e., Eq. 17 (lines 5–10). Next, the selected clients upload their
local model parameters θci to the central server. Finally, the
central server aggregates the uploaded parameters to update
the global model θs until it converges to a stationary point θs
(line 11).

Algorithm 3 Local-global Parameter Updating
Input: communication rounds R, initial global model of server θ0s ,

number of clients N , learning rate α, local training epochs E
Output: final global model of server θs

1: for each round r in [1, 2, · · · , R] do
2: Randomly select C ∈ [1, N ] clients from N clients
3: for each client ci ∈ C do
4: Server transmits θr−1

s to client ci
5: for each local epoch e in [1, 2, · · · , E] do
6: θrci ← argminθLtotal(θ

r
ci)

7: ▽Ltotal(θ
r
ci)←▽Ltotal(θ

r−1
ci )− α(θrci − θr−1

ci )
8: end for
9: θci ← θrci

10: end for
11: θs ←

∑
ci∈C

1
C
θci

12: end for

V. EXPERIMENT

A. Experiment Setup
1) Datasets: The experiments are carried out on two real-

world public trajectory datasets: Tdrive and Geolife.

TABLE III
Statistics of Datasets

Dataset Geolife Tdrive
City name Beijing Beijing
Time span Apr 2007 to Aug 2012 Feb 2, 2008 to Feb 8, 2008
Taxi driver 182 10357

Trajectory attribute
Total length 1.2 million km 9 million km

Type GPS GPS

• Tdrive. The Tdrive dataset contains taxi-trip-based tra-
jectories in Beijing from February 2, 2008, to August 2,
2008, including 10357 taxi drivers and approximately 15
million trajectory points.

• Geolife. The Geolife dataset contains 17621 taxi GPS
trajectories in Asia from April 2007 to August 2012,
including 182 taxi drivers.

2) Evaluation Metrics.: We aim to recover low-sampling-
rate trajectories in free space to high-sampling-rate trajectories
mapped onto the road network. Thus, both accuracy of road
segments recovery and distance error of location inference are
adopted to compare the performance of our model and baseline
methods.

Recall & Precision. We use recall and precision to evaluate
the performance of route recovery by comparing the recovered
road segments PR to the corresponding ground truths G. We
define recall and precision as follows.

Recall =
|PR ∩G|
|G|

, P recision =
|PR ∩G|
|PR|

, (19)

MAE & RMSE. Two distance measurements, i.e., Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE),
are used to evaluate the point recovery performance. Note that
we calculate the distance error based on the road network
by updating the earth distance to road network constrained
distance. The smaller MAE and RMSE are, the better perfor-
mance the model presents. We define MAE and RMSE as:

MAE =
1

m

m∑
j=1

|dis(gj , ĝj)|,

RMSE =

√√√√ 1

m

m∑
j=1

(|dis(gj , ĝj)|)2

s.t.dis(gj , ĝj) = min(rndis(gj , ĝj), rndis(ĝj , gj)),

(20)

where gj is the ground truth location, ĝj is the predicted map-
matched trajectory point, and rndis(gj , ĝj) is the distance of
shortest path between prediction and ground truth. Meanwhile,
we use min(rndis(gj , ĝj), rndis(ĝj , gj)) as the final error
since the road network is a directed graph, where the distance
from gi to gj maybe not equal to the distance from gj to gi.

3) Baseline.: We compared the proposed LightTR with the
following baselines. To our best knowledge, there is currently
no FL-based method for discrete trajectory recovery. For fair
comparisons, we transfer existing centralized baselines for
trajectory recovery into their federated version by combining
them with FedAvg [21].



TABLE IV
OVERALL PERFORMANCE COMPARISON ON TWO DATASETS

Datasets Baseline 6.25% 12.5% 25%
Recall Precision MAE RMSE Recall Precision MAE RMSE Recall Precision MAE RMSE

Geolife

FC+FL 0.212 0.219 0.755 1.015 0.283 0.215 0.728 1.007 0.315 0.294 0.685 0.807
RNN+FL 0.392 0.417 0.630 0.776 0.397 0.394 0.628 0.741 0.456 0.438 0.561 0.659

MTrajRec+FL 0.595 0.601 0.462 0.634 0.599 0.623 0.455 0.636 0.634 0.673 0.410 0.546
RNTrajRec+FL 0.594 0.618 0.455 0.617 0.631 0.655 0.431 0.611 0.669 0.702 0.398 0.501

LightTR 0.674 0.679 0.375 0.464 0.724 0.748 0.335 0.432 0.758 0.739 0.323 0.435

Tdrive

FC+FL 0.211 0.198 0.753 1.001 0.283 0.232 0.723 1.022 0.276 0.270 0.662 0.804
RNN+FL 0.358 0.355 0.584 0.750 0.392 0.396 0.547 0.682 0.456 0.464 0.536 0.664

MTrajRec+FL 0.512 0.554 0.532 0.697 0.543 0.587 0.486 0.628 0.633 0.685 0.452 0.530
RNTrajRec+FL 0.568 0.611 0.488 0.651 0.598 0.643 0.447 0.585 0.620 0.705 0.384 0.473

LightTR 0.624 0.674 0.395 0.473 0.667 0.707 0.366 0.452 0.708 0.732 0.332 0.446

• FC+FL. The FC+FL method combines horizontal FL
with stacked fully connected layers (FC) [38] for trajec-
tory recovery. Here, we apply HMM as the map-matching
algorithm.

• RNN+FL. The RNN+FL method is a decentralized tra-
jectory recovery model, where stacked RNNs are inte-
grated with horizontal FL to collaboratively learn trajec-
tory representations.

• MTrajRec+FL. The MTrajRec+FC devises a decentral-
ized trajectory recovery model, where the MTrajRec [16]
is employed as the local model. MTrajRec [16] is the
state-of-the-art trajectory method based on Seq2Seq.

• RNTrajRec+FL. The RNTrajRec+FL method is a hor-
izontal FL trajectory recovery model, where we set the
local model as RNTrajRec [39]. RNTrajRec applies graph
neural network to learn rich spatio-temporal correlations
of trajectories.

4) Implementation Details.: We implement our model with
the Pytorch framework on a GPU server with NVIDIA GTX
1080Ti GPU. The parameters in the model are set as follows.
We set training epochs to 50 for each client. The initial
learning rate is 0.001. The hidden features dimension in the
local model is set as 512. Meanwhile, to prevent overfitting,
we set the dropout ratio as 0.5 in the embedding module. In
addition, the number of clients is set to 20 as default and each
client owns its decentralized data. The code and additional
materials (e.g., training convergence curve) can be found at
https://github.com/uestc-liuzq/LightTR.

5) Data Preprocessing: We split the datasets into training,
validation, and testing sets with a splitting ratio of 7:2:1. Since
the datasets are completely sampled, we randomly remove
points to transform high-sampling-rate trajectories into low-
sampling-rate trajectories with a keep ratio. In this study, we
set the keep ratio as 6.25%, 12.5%, and 25%. Six points be-
tween each two consecutive points in an incomplete trajectory
are required to be restored averagely. Referring to [16], we
apply HMM on original trajectories to get ground truth for
subsequent model performance comparison.

B. Experiment Results

1) Overall Performance Comparison.: Table IV shows the
performance comparison among different methods on the
two datasets. The best performance by a baseline method is

underlined, and the overall best performance is marked in bold.
The observations are as follows.

• Our LightTR achieves the best results among all the
baselines on the two datasets with different settings
of keep ratio (i.e., 6.25%, 12.5%, and 25%). LightTR
performs better than the best among the baselines by up to
14.7% and 13.19% with keep ratio=12.5% for Recall and
Precision, respectively, while obtaining MAE and RMSE
reduction by at most 22.3% and 29.2%, on Geolife.
This is because of the powerful feature capability of the
proposed light ST-operator. Moreover, the learned meta-
knowledge alleviates the data heterogeneity across clients,
which further improves the model performance. We also
observe that the performance improvements obtained by
LightTR on Geolife exceed those on Tdrive, due to the
fact that the Geolife data are more sufficient than Tdrive.
Thus, the methods trained with more training data lead
to better results.

• All RNN-based methods (i.e., RNN+FL, MTrajRec+FL,
and RNTrajRec+FL), which is able to learn temporal
dependencies of trajectories, perform better than FC+FL
on both Tdrive and Geolife. It shows the importance of
effective temporal dependency capturing for trajectory
embedding. FC+FL performs the worst on both datasets,
which demonstrates that simply stacked FC layers are
too shallow to capture the complex temporal correlations
and thus shows the necessity of the newly proposed
lightweight ST-operator.

• RNN+FL, MTrajRec+FL, and RNTrajRec+FL can cap-
ture the temporal dependencies, RNTrajRec+FL performs
the best. This is because RNTrajRec is capable of learning
more effective trajectory embeddings benefiting from the
graph model, which incorporates the embedding of each
road segment.

The above observations indicate that LightTR is more effective
than the existing FL-based methods.

2) Effect of the Number of Clients.: To study the effect
of the number of clients involved in model training of the
proposed LightTR, we conduct experiments with 5, 10, 15,
and 20 clients. The results are shown in Table V. We observe
that the model performance gets better as the increase of
number of clients, due to more clients bringing more training
data. For example, the Recall on Geolife increases from



TABLE V
EFFECT OF THE NUMBER OF CLIENTS ON BOTH DATASETS (KEEP

RATIO=12.5%)

Datasets Metrics Number of Clients
5 10 15 20

Geolife

Recall 0.629 0.629 0.741 0.724
Precision 0.613 0.692 0.731 0.748

MAE 0.444 0.451 0.377 0.335
RMSE 0.524 0.536 0.478 0.432

Tdrive

Recall 0.622 0.631 0.657 0.666
Precision 0.630 0.690 0.700 0.707

MAE 0.452 449 0.355 0.366
RMSE 0.554 561 0.461 0.452

0.629 to 0.724, and the Precision on Tdrive increases from
0.630 to 0.707. One can also see that the 20-client-based
LightTR performs worse than the 15-client-based LightTR in
terms of Recall. Generally, the results demonstrate that more
clients participating in training are more like to lead to better
performance because of more useful knowledge is learned
from more training data during the training.
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Fig. 5. Running Efficiency on Geolife

3) Running Efficiency.: Considering lightness and scala-
bility, we study the running time (of each epoch), floating-
point operations (FLOPs), and the number of parameters
for LightTR with three RNN-based baselines (i.e., RNN+FL,
MTrajRec+FL, and RNTrajRec+FL) on Geolife. Figure 5(a)
shows the results of running time, while FLOPs and pa-
rameters consumptions are shown in Figure 5(b). Generally,
LightTR has significantly less running time and fewer FLOPs
due to the lightness of the proposed lightweight ST-operator.
We also observe an exception in that RNN+FL achieves
slightly less running time. However, RNN+FL is much less
accurate. In addition, LightTR achieves faster overall con-
vergence, which offers evidence that the proposed meta-
knowledge enhanced local-global training module can accel-
erate model training. Specifically, LightTR converges after
around 100 epochs, while the second fastest baseline (except
RNN+FL) MtrajRec+FL converges after around 160 epochs,
on both datasets. It is noteworthy that we include the training
convergence curve at https://github.com/uestc-liuzq/LightTR
to save space.

It is clear that LightTR uses fewer resources than the two
most accurate competing models MTrajeRec+FL and RNTra-
jRec, while maintaining comparable accuracy. More specifi-
cally, LightTR reduces the running time by 90% and 32.9%
compared with RNTrajRec+FL and MTrajRec, respectively.
Additionally, LightTR obtains FLOPs reduction by 86.7%
compared to RNTrajRec as the high calculation complexities
of the attention mechanism in RNTrajRec. Note that the com-

munication cost in FL is positively correlated with the number
of model parameters and FLOPs [40], [41], where FLOPs
are termed as system overhead. Thus, the fewer FLOPs and
parameters consumed by LightTR bring the benefits of fewer
communication costs and less system overhead in federated
trajectory recovery. Overall, the results in Figure 5 indicate the
feasibility and scalability of LightTR for model deployment in
real decentralized trajectory recovery scenarios.

4) Effect of Client Fractions.: When we aggregate param-
eters in LightTR, a certain fraction of clients is sampled to
perform model training in each client. To study the effect
of client fraction F on the model performance, we conduct
experiments by sampling four different fractions of clients:
20%, 50%, 80%, and 100%, as shown in Figure 6. Generally,
the model performance exhibits an increasing trend with the
increase in client fractions in terms of all evaluation metrics.
LightTR achieved a most improvement of 35.8% in recall
and 37.2% in precision, respectively, while getting MAE and
RMSE most reduction by up to 59.4% and 50.7%. It indicates
that the bigger fraction of clients with more training data is,
the better model performs since more useful knowledge can
be learned.
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Fig. 6. Effect of Client Fractions on Both Datasets (keep ratio=12.5%)

5) Centralized Method vs. LightTR: To compare the pro-
posed LightTR with the centralized method in terms of
trajectory recovery, we select MTrajRec [16], a recent stat-
of-the-art deep learning framework for centralized trajectory
recovery, which integrates attention mechanism with Seq2Seq
to learn effective trajectory embeddings. Although the central-
ized model reduces privacy severely, which makes the learned
model vulnerable, LightTR performs better than MTrajRec in
most cases, as shown in Table VI. This is because LightTR
learns local meta-knowledge by means of knowledge distilla-
tion, which is helpful for better trajectory embedding learning.
In addition, we observe that LightTR gets more performance
improvement compared with MTrajRec on Tdrive. The reason
is that data contained in Tdrive is sparse, and the proposed
meta-knowledge local-global training module can handle the
sparsity and learn more effective trajectory embeddings.

6) Ablation Study.: To gain insight into the effects of key
aspects of LightTR, We evaluate three LightTR variants.

• w/o horizontal FL (w/o FL). w/o FL removes the
central server of LightTR, where each client trains their
model locally and all clients exchange their local model
to each other.



TABLE VI
CENTRALIZED METHOD VS. LIGHTTR

Datasets Baseline 6.25% 12.5% 25%
Recall Precision MAE RMSE Recall Precision MAE RMSE Recall Precision MAE RMSE

Geolife MTrajRec 0.697 0.781 0.315 0.459 0.723 0.739 0.337 0.502 0.732 0.730 0.376 0.461
LightTR 0.674 0.679 0.375 0.464 0.724 0.748 0.335 0.432 0.758 0.739 0.323 0.435

Tdrive MTrajRec 0.630 0.678 0.421 0.593 0.631 0.676 0.411 0.619 0.693 0.711 0.368 0.481
LightTR 0.624 0.674 0.395 0.513 0.667 0.707 0.366 0.452 0.708 0.732 0.332 0.446

• w/o Lightweight ST-operator (w/o LS). w/o LS replace
the Lightweight ST-operator with MTrajRec to learn local
trajectory embeddings for each client.

• w/o meta-knowledge enhanced local-global train-
ing module (w/o Meta). w/o Meta replace the meta-
knowledge enhanced local-global training module with
FedAvg [21].

To assess whether the components in LightTR all contribute to
the performance of trajectory recovery, we compare LightTR
with its variants. The results are shown in Figure 7. The
observations are as follows.

• Regardless of the datasets, LightTR always performs
better than its counterparts without horizontal FL,
lightweight ST-operator, and meta-knowledge enhanced
local-global training module. It shows that these compo-
nents are all useful for trajectory recovery.

• LightTR performs slightly better than w/o LS. This
shows the powerful feature learning capability of the
proposed lightweight ST-operator, even compared with
MTrajRec, a recent state-of-the-art trajectory recovery
model. However, the complex model always has high
space and time complexities, which incurs poor scala-
bilities and more computation resource requirements.

• w/o Meta performs the worst among all variants, which
shows the importance of the meta-knowledge enhanced
local-global training module. It also offers evidence that
the meta-knowledge enhanced local-global training mod-
ule is capable of alleviating the data heterogeneities (Non-
IIDness) across clients and enhancing effective trajectory
learning.

7) Parameter Sensitivities.: We next study how sensitive
the model is on the hyper-parameter λ and the threshold lt,
as shown in Figure 8. λ is set to different values, i.e., 0.1, 1,
5, 10. Figure 8(a) illustrates the effect of λ, showing setting
λ to 5 is the reasonable setting in this experiment. It indicates
that the learned meta-knowledge plays a more important role
in trajectory modeling, which shows the necessity of the pro-
posed meta-knowledge enhanced local-global training module.
Figure 8(b) shows the effect of lt, which is the threshold for
knowledge accumulation, and we set it from 0 to 0.6. Here, we
observe all curves slightly increase and then decrease. LightTR
achieves the best result when setting lt to 0.4. It indicates that
excessive guidance from the meta-learner will make the local
trajectory embedding model confusing, and thus degrade the
trajectory recovery performance.

8) Case Study: To further intuitively illustrate how ac-
curately LightTR can recover low-sampling-rate trajectories
(black points), we visualize the predicted points (in red) and
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Fig. 7. Performance of LightTR and Its Variants on Both Datasets (keep ratio
= 12.5%).
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Fig. 8. Parameters Sensitivity Analysis on both datasets (keep ratio = 12.5%)

the ground truth (in blue) at a keep ratio 12.5% compared with
two baseline models (RNN+FL, RNTrajRec+FL), as depicted
in Figure 9. Figure 9(b) shows the recovered points exhibit
a remarkable level of alignment with the ground truth, which
is largely due to the usage of the proposed meta-knowledge
enhanced local-global training module by means of knowledge
distillation. It is clear that LightTR can accurately trace the
right route and the recovered points are more reliable than the
other two baselines. Figure 9(c) shows the recovery results
of RNN+FL. Although it roughly predicts the right trajectory



(a) Ground Truth (b) LightTR (c) RNN+FL (d) RNTrajRec+FL

Fig. 9. Ground truth vs. prediction on Tdrive. Black points represent the low-sampling-rate trajectory. Red points denote the prediction of recovered points,
and blue points are the ground truth of high-sampling-rate trajectory (keep ratio = 12.5%).

route, most points are not correctly recovered especially in
the bottom area. This is because simply stacked RNNs cannot
learn effective trajectory embeddings, and thus suffer from
poor accuracy when recovering a large number of missing
points. Figure 9(d) shows the recovery results of RNTra-
jRec+FL. It finds the right path as the left two methods but
the recovered points are more accurate than RNN+FL since
RNTrajRec utilizes a powerful network (i.e., graph model and
transformers) to learn more effective features of trajectories
than RNN+FL.

VI. RELATED WORK

We briefly review prior studies on trajectory recovery and
federated learning.

A. Trajectory Recovery

Trajectory recovery [12], [15], [16], [42], [43] attracts
increasing interest due to the increasing availability of tra-
jectory data and rich downstream applications in intelligent
transportation systems.

Traditionally, trajectory recovery methods are mostly based
on statistical models [12], [14]. InferTra [12] learns a Network
Mobility Model (NMM) from historical trajectories, which
employ Gibbs sampling for trajectory recovery. However,
the statistical models cannot capture complex temporal (and
spatial) correlations of trajectory data due to their limited
learning capacity.

With the advance of deep learning techniques, recent deep
learning based methods [15]–[17], [19] address trajectory
recovery by leveraging their powerful learning capabilities.
For example, MTrajRec [16] addresses constrained trajectory
restoration through Seq2Seq based multi-task learning. How-
ever, these methods are trained with centralized data, while
disregard decentralized settings and do not take computational
efficiency into account.

B. Federated Learning

Federated Learning (FL) is a machine learning approach
where many clients (often called edge devices) collaboratively
train a model using decentralized data under the orchestration
of a central server [20], [21]. Generally, FL can be divided
into three categories: horizontal FL [21], vertical FL [44], and
federated transfer learning [45]. Moreover, data heterogeneity
across clients may degrade the performance of FL. To solve

this problem, personalized FL [46], [47] is widely studied
recently. For example, FedDC [46] introduces local drift
decoupling and correction to address Non-IID data across
clients. However, most of the above methods are designed for
computer vision, and cannot be applied to trajectory data due
to the unique spatio-temporal patterns.

Recently, FL is applied in spatio-temporal data (e.g., traffic
data) to ensure data privacy [9], [48], [49]. For instance,
CNFGNN [9] is proposed to perform federated traffic pre-
diction, which extracts high-dimensional spatial and temporal
features utilizing GNN and GRU. Additionally, FRA [48]
explores spatial data aggregation queries in federated scenar-
ios. Meanwhile, FL has also been applied to the trajectory
data.FedLoc [50] collaborates to build accurate positioning
services without sacrificing user privacy, particularly sensitive
information related to its geographic trajectory.

However, these methods are computational heavily. There
still lacks a well-customized FL model for trajectory recovery,
considering the effectiveness and efficiency at the same time.

VII. CONCLUSION

We present LightTR, a new federated framework for
lightweight trajectory recovery that aims at decentralized
trajectory learning and privacy protection. To reduce the
computational cost, we design a lightweight local trajectory
embedding module with a lightweight ST-operator for each
client, which is also capable of effective feature extraction.
A novel meta-knowledge enhanced local-global training mod-
ule is proposed to offer improved communication efficiency
between the server and clients, which alleviates the data
heterogeneity across clients. Comprehensive experiments on
two real datasets offer evidence that LightTR achieves state-of-
the-art accuracy but consumes fewer computational resources
in trajectory recovery.
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