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Abstract—The time signals behind a user’s historical behaviors
are important for better inferring what she prefers to interact
with at the next time. For the attention-based recommendation
methods, relative position encoding and time intervals division
are two common ways to model the time signal behind each
behavior. They either only consider the relative position of each
behavior in the behavior sequence, or process the continuous
temporal features into discrete category features for subsequent
tasks, which can hardly capture the dynamic preferences of a
user. In addition, although the existing recommendation meth-
ods have considered both long-term preference and short-term
preference, they ignore the fact that the long-term preference
of a user may be multi-faceted, and it is difficult to learn
a user’s fine-grained short-term preference. In this paper, we
propose a Dynamic Multi-faceted Fine-grained Preference model
(DMFP), where the multi-hops attention mechanism and the
feature-level attention mechanism together with a vertical con-
volution operation are adopted to capture users’ multi-faceted
long-term preference and fine-grained short-term preference,
respectively. Therefore, DMFP can better support the next-
item recommendation. Extensive experiments on three real-world
datasets illustrate that our model can improve the effectiveness of
the recommendation compared with the state-of-the-art methods.

I. INTRODUCTION

The task that how to build a better recommendation system
can be turned into that how to characterize and understand
users’ interests or needs more accurately. In real life, a user’s
preference is intrinsically dynamic and evolving. In addition,
intuitively, the next item or action more likely depends on
the items or actions the user engaged recently [1], [2]. As
the historical behaviors of a user can naturally form a se-
quence over the timeline, the approaches based on Recurrent
Neural Network (RNN) or Convolutional Neural Networks
(CNN) are the most common ways to capture users’ dy-
namic preferences [2]–[8]. However, limited by the recursive
structure, RNN-based methods usually have expensive time
cost for offline training and online inference. Besides, CNN-
based methods usually overemphasize the interaction between
several contiguous behaviors, which makes it hard for them to
capture the long-term dependencies [9].

Recently, inspired by the great success of the attention
mechanism in image captioning [10] and reading comprehen-
sion [11], some studies focus on how to effectively integrate
the attention mechanism into recommendations [1], [9], [12].
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Fig. 1. A schematic diagram of the difference ways of modeling the time
signals behind a user’s historical behaviors. A basic shape (e.g., circle,
triangle, square, diamond and pentagram) represents a historical behavior of
the corresponding user. The all historical behaviors of a specific user can
be lined up sequentially along the timeline naturally. In addition, the farther
the two shapes are apart, the greater the time difference between the two
corresponding behaviors.

These attention-based methods are more applicable in parallel
processing compared to RNN-based methods, which reduces
the time cost of offline training and online prediction. More
importantly, the attention mechanism can maintain a variable-
length memory, which provides an opportunity to improve the
performance of recommendations.

A. Limitations of the Existing Works
1) Difficult to model the time signals behind users’

behaviors: As shown in Fig 1, for the attention-based rec-
ommendation methods, there are two common ways to model
the time signals behind users’ behaviors: (1) relative position
encoding, and (2) time interval division. The relative position
encoding only considers the relative orders like the first, the
second and so on [13], [14]; and the time interval division first
slices the continuous time signal into intervals of different
sizes, then each interval is mapped to a unique discrete
value [9], [15]. Compared to the relative position encoding,
this method is more in line with the law of the forgetting in
human Brain. However, the size of each interval is related to
the experimentally selected dataset, which requires a wealth
of experience and increases the difficulty of processing time
information.

2) Difficult to capture the multi-faceted long-term prefer-
ence and fine-grained short-term preference: To characterize
and understand users’ interests or needs more accurately,



finding a balance between long-term preference and short-term
preference is considered as a feasible solution [2], [15], [16].

The long-term preference. The long-term preference refers
to a user’s general “tastes” hidden in her whole historical be-
haviors. Caser [2] and HARSAM [15] learn a static embedding
for each user to represent her long-term preference. Here,
this long-term preference is considered static, because once
a recommendation model is trained, the long-term preference
embedding will not change before the next retraining, even
if some new behaviors occur. Different from these methods
described above, SHAN [1] believes learning a static long-term
preference representation for each user cannot fully express
the dynamics of long-term preference preference, and thus
reconstructing long-term user representations from the up-to-
date historical behaviors set is more reasonable. However,
SHAN ignores a key point, that is, a user may have multi-
faceted preferences, which should be treated as a learning goal
and explicitly expressed in the loss function. Observing Fig. 1,
intuitively, this user is likely to have a long-lasting interest for
the two different types of things represented by blue circles
and red pentagrams.

The short-term preference. The short-term preference
refers to the current interests of a user, which can be reflected
by the user’s latest L behaviors. Compared to the long-term
preference, the short-term preference tends to show a user’s
demands at the next time. Thus, for better recommendations, a
fine-grained analysis of the user’s recent behaviors is crucial.
SHAN [1] and ATEM [12] adopt an attention mechanism to
learn a context embedding that intensifies relevant items but
downplays those irrelevant items to the next choice. Specif-
ically, this principle can be formulated as ~C =

∑n
i=1 ai~vi,

where ~C is the context embedding that represents the interests
of the corresponding user, ~vi is a vector which can be under-
stood as an abstract representation of one recent behavior, ai is
a scalar where the larger the value, the better the corresponding
behavior can reflect the user’s short-term preference. However,
in the above process, each abstract feature in ~vi multiplies by
the same value of ai, which makes it hard to preserve only the
highly related aspects/features of a historical behavior while
discarding those unrelated parts. In other words, many of the
existing methods are not good at capturing the fine-grained
short-term preference of a user.

B. Contributions of Our Work
To address the limitations of the existing works, we pro-

pose a Dynamic Multi-faceted Fine-grained Preference model,
called DMFP, for the next-item recommendation. Firstly, this
model abandons the customary way of converting continuous
time signals into discrete features in many attention-based
recommendation models, and adopts a time decay function
to preserve the temporal information behind each historical
behavior. Secondly, in order to more accurately characterize
users’ preference, our model extends the existing methods
from two different perspectives, i.e., the long-term preference
and the short-term preference, respectively. Specifically, in-
spired by the work in sentence embedding [17], a multi-hops

attention mechanism is adopted to mine a user’s multi-faceted
long-term preference, where a penalization term is designed to
encourage to learn different interests of a user. Furthermore, to
better understand the users’ short-term preference, we model
the latest L behaviors of a user in two different ways. One
is the natural extension of additive attention [18], [19] at the
feature level, the other is the vertical convolution operation [2],
[20]. These can capture the relationships among the same
dimensional entries of the recent behaviors.

Compared to the existing works, our method offers several
distinct advantages:
• DMFP adopts a time decay function to model the time

signal of each behavior, which is flexible for a variety of
scenarios.

• DMFP encourages to capture the multi-faceted long-term
preference and fine-grained short-term preference at the
same time, which can learn more accurate preference
representation for each user and eventually lead to better
recommendations.

• Extensive experiments on three real-world datasets illus-
trate that DMFP outperforms the state-of-the-art methods
in terms of Area Under Curve (AUC), Recall, and Nor-
malized Discounted Cumulative Gain (NDCG).

II. RELATED WORK

Sequential Recommendation: Sequential recommendation
predicts the next item that a user is likely to be interested in,
based on the user’s historical behaviors. Recurrent Neural Net-
works (RNN) together with its variants LSTM and GRU have
been widely applied in sequential recommendation, including
session-based GRU [3], dynamic recurrent model [16], and
hierarchical personalized RNN model [4]. These RNN-based
methods encode historical interaction records into a latent
state vector representing the preferences of a user. Although
the state vector is able to capture sequential patterns, it still
suffers from several issues. For example, it can hardly to be
paralleled, and has low efficiency. In addition, it can hardly to
preserve long-term dependencies, and emphasize the impact
of the recent behaviors excessively.

Inspired by the capability of extracting local features and
good efficiency, CNN has been used in sequential recom-
mendation. Similar to the sentence classification [21], Caser
[2] uses the 1-D convolution layer and the max-over-time
pooling layer to encode historical interactions into a vector
to represent the preferences of a user. However, for CNN, the
fixed-size encoding vector may not support both short and long
sequences well.
Attention and Self-Attention: Recently, attention has been
widely used in, such as machine translation task [18], and
reading comprehension [11], [22], as it can preserve the
highly related elements by assigning different weights for each
element in a sequence. For the next-item recommendation,
the attention-based transaction embedding model (ATEM) [12]
can learn an attentive context embedding that intensifies rel-
evant items but downplays those irrelevant ones to the next
choice. Different from attention, self-attention considers the



inner-relations of a sequence, and thus can learn the internal
dependencies between elements of a sequence. Following the
structure of Transformer [23], ATRank [9] transforms the inter-
action sequence into a new sequence via self-attention, and has
achieved good performance in the next-item recommendation.

III. PROBLEM FORMULATION

We first define notations used throughout the paper, and then
formalize the problem to be addressed.

Notations. Let U =
{
u1, u2, . . . , u|U |

}
denote the set of

users and I =
{
i1, i2, . . . , i|I|

}
denote the set of items, where

|U | and |I| denote the number of elements in the set of User
U and Item I respectively. Our task focuses on personalized
recommendation, so we concern whether a user u ∈ U
interacts with an item i ∈ I at time t. Hence each historical
behavior can be formulated as a triple ip(u) = 〈u, i, t〉, where
p is the relative position of this behavior in all historical
behaviors of user u. By sorting the historical behaviors of
user u in ascending order according to the corresponding time
signal of each behavior, a historical behaviors sequence can
be formed, denoted as Su = (i1

(u), i2
(u), ...in

(u)), where
n is the length of the historical behaviors sequence. In
addition, taking the latest L ones from Su, namely S̃u =
(in−L+1

(u), in−L+2
(u), ...in

(u)), it can reflect user u’s short-
term preference, which is an important factor for predicting
the next item that user u will interact with.

Problem Definition. The task of personalized recommen-
dation aims to output the k items from a candidate set based
on their probabilities that a user will interact with at the next
time. Formally, the problem can be defined as follows:

Input: The historical behaviors sequences of all users S ={
S1,S2, ...S|U |

}
.

Output: A personalized recommendation model, denoted
as frec, which can output the k items that the corresponding
user is most likely to interact with at the next time based on
a user’s historical behaviors sequence Su.

IV. PROPOSED METHODOLOGY

The overall architecture of DMFP is shown in Fig. 2,
it consists of three major parts: (1) Long-Term Preference,
(2) Short-Term Preference, and (3) Downstream Application
Network. In addition, each major part contains a number of
layers. Firstly, we introduce two important components, i.e.,
items embedding and time decay function, which are shared
by Long-Term Preference and Short-Term Preference.

Items Embedding. The items that a user interacts with
are usually identified by some unique digital IDs, whereas
these original IDs have a very limited representation capacity.
Therefore, our model first converts each ID to a one-hot
encoding vector. Specifically, for the item (ID = i), only the
unit at position i is set to 1 and all others are set to 0. Then
our model employs a fully-connected layer to embed the one-
hot encoding vector into a continuous low-dimensional space,
which is more informative. Formally, let V ∈ Rde×|I| be the
weight matrix of the fully-connected layer, where de is the
dimensionality of the latent embedding spaces, and the ith

column of the weight matrix encodes that item (ID = i) to the
real-valued embedding V:,i.

Time Decay Function. Each behavior may have different
action time, which is an important continuous feature and
provides a good opportunity to understand how a user’s
interests drifts over time. Intuitively, the closer the behavior
occurs from the current time point, the more it reflects the
user’s current preference. In order to integrate the time effect
into our recommendation model, we design a time decay
function ftime, as E.q.(1).

fλtime(tnow, ti) = e−λ|tnow−ti|(λ ≥ 0) (1)

where tnow is the current time point, ti is the time point
at which the ith behavior in a historical behavior sequence
occurs, and thus ftime(tnow, ti) is a scalar between 0 and 1.
In addition, λ is the time decay factor, and its value is different
in different systems. If the users’ interest of a system change
frequently, it should take a larger value of λ, and vice versa.

A. Multi-faceted long-term preference
1) Long-Term Behaviors Embedding With Time Decay

Layer: A user’s long-term preference can be reflected by
her whole historical behaviors, Su = (i1

(u), i2
(u), ...in

(u)).
Hence, for a specific user u, we can encode the historical
behavior ip(u) = 〈u, i, t〉 as Eq. (2).

hp = fλ1
time(tnow, t)× V:,i (2)

where hp ∈ Rde×1 and λ1 is the time decay factor for long-
term preference.

Assuming that user u has n historical behaviors, then her
historical behavior sequence can be encoded as 2-D matrix
H ∈ Rn×de , namely:

H = [h1,h2, · · ·hn]
T (3)

2) Multi-hops Attention Layer: After gaining the embed-
ding of each historical behavior, we hope to get a user’s
long-term preference from the historical behavior sequence
embedding matrix H . The items that provide more informa-
tion about users’ preference or more relevant to users’ next
choice should be given larger weights. Thus, the additive
attention mechanism can be adopted, like ATEM [12] and
SHAN [1]. Specifically, the attention mechanism takes the
historical behavior sequence embedding matrix H as input,
and outputs a vector of weights a ∈ R1×n:

e (hj) = ws2ReLU
(
Ws1hj

T
)

(4)

αj =
exp (e (hj))∑n
i=1 exp (e (hi))

(5)

a = [α1, α2, · · ·αn] (6)

where j ∈ {1, 2, ..., n}, Ws1 ∈ Rde×de , ws2 ∈ R1×de ,
ReLU() is an activation function and e (uj) is a scalar. In
addition, E.q.(5) is also known as the softmax(), and it
ensures the sum of the weight αj equals 1.
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Fig. 2. The overall architecture of DMFP

Then, a vector m ∈ Rde×1 can be seen as an abstract
representation of the user’s long-term preference. It can be
obtained based on the historical behavior sequence embedding
matrix H and the attention weight vector a. Specifically, this
process can be formulated as Eq. (7).

m =

n∑
j=1

αjhj (7)

However, a user’s interests may be multi-faceted. In other
words, there may be more than one type of things the user
likes, for example, a user may like both love movies and
science fiction movies. Inspired by the work of the sentence
embedding [17], to represent the overall long-term preference
of a user, we perform multiple hops of the attention to get
multiple m’s. Namely, we will extract r different prefer-
ences from the historical behavior sequence. Therefore, the
ws2 ∈ R1×de is extended into Ws2 ∈ Rr×de , and the weight
vector a ∈ R1×n becomes a weight matrix A ∈ Rr×n. For
simplicity, the above process is formalized as

A = softmax
(
Ws2ReLU

(
Ws1H

T
))

(8)

M = AH = [m1,m2, · · ·mr]
T (9)

Here, the softmax() is performed along the second dimension
of its input. As a result of the multi-hops attention, the original
vector m ∈ Rde×1 becomes a matrix M ∈ Rr×de , which can
reflect the user’s r different long-term preferences.

Finally, like AttRec [24], we take the mean embedding
plong ∈ Rde×1 of the r row vectors in matrix M as an
abstract representation of the user’s long-term preference.

plong =
1

r

r∑
t=1

mt (10)

Penalization Term: The preference matrix M can suffer
from redundancy problems, if the attention mechanism always

provides similar weights vector a for all the r hops. Thus,
we introduce a penalization term to encourage the diversity
of weight vectors across different hops of attention, which is
equivalent to promoting the multi-faceted preferences. Specifi-
cally, like the sentence embedding [17], we use the dot product
of A and its transpose, subtracted by an identity matrix, as the
measure of redundancy.

P =
∥∥AAT − I

∥∥2
F

(11)

‖X‖F =

√√√√ m∑
i=1

n∑
j=1

Xi,j
2 (12)

where ‖•‖F means the Frobenius norm of a matrix. Similar
to the L2 regularization term, the penalization term P will be
multiplied by a coefficient, and we minimize it together with
the original loss.

Considering that ai and aj are any two different weight
vectors in A, and the sum of all entries within any one weight
vector in A is 1, then any non-diagonal elements aij(i 6= j) in
matrix AAT corresponds to a summation over element-wise
product of the two weight vectors:

0 < aij =

de∑
k=1

aki a
k
j < 1 (13)

where aki and akj are the kth element in the ai and aj ,
respectively.

In the extreme case, there is no overlapping between the
two weight vectors ai and aj , the correspond aij will be 0.
Otherwise, it will have a positive value. On the other extreme
case, if the two weight vector ai and aj are identical and only
one unit is 1 while all others are 0, aij will have a maximum
value of 1. An identity matrix I is subtracted from AAT , so
that the diagonal elements and no-diagonal elements of AAT



are forced to approximate to 1 and 0 respectively, where the
former encourages each weight vector to focus on different
historical behaviors, the latter punishes redundancy between
different weight vectors, thus it can learn the multi-faceted
long-term/general preference.

B. Fine-grained short-term preference
As discussed in Section I, a user’s recent behaviors are

more representative of the user’s current interests. Therefore,
we need to analyze the recent behaviors of a user to obtain
the fine-grained short-term preference, thus ultimately leads to
better recommendations.

1) Short-Term behaviors Embedding With Time Decay
Layer: Following Caser [2], in our model, the latest L
behaviors S̃u = (in−L+1

(u), in−L
(u), ...in

(u)) of user u are
selected from her historical behavior sequence Su. Then, like
the long term behaviors, with a time decay factor λ2, the
short term behaviors S̃u can be encoded as a 2-D matrix
H̃ ∈ RL×de , namely:

H̃ =
[
h̃1, h̃2, · · · h̃L

]T
(14)

where h̃1 ∈ Rde×1, and it should be noted that λ1 and λ2
used to calculate H and H̃ can be different.

2) Feature-Level Self-Attention Layer: The existing atten-
tion based recommendation methods calculate a scalar weight
for each historical behavior of a user, and the items that are
more relevant to the next choice are given larger weights.
However, the user preferences obtained by the above methods
are coarse-grained, as they do not consider the fact that a
user may have different preferences for each part of an item.
For example, we might score 10 points for a movie’s special
effects, but only 5 points for its story line. Thus, to capture
more fine-grained short-term preference, we adopt a feature-
level self-attention mechanism that can calculate a scalar
weight for each abstract feature of each item. Then the method
can only preserve the highly related aspects of a historical
behavior while discarding those unrelated parts.

Suppose h̃i and h̃j are two behaviors embedding vectors
in matrix H̃ respectively, so the attention score of vector
f
(
h̃i, h̃j

)
∈ Rde×1 between h̃i and h̃j is:

f
(
h̃i, h̃j

)
=

Ws5 tanh(Ws4h̃i +Ws3h̃j + bs2) + bs1 (15)

where all the parameter matrices (Ws3,Ws4,Ws5) ∈ Rde×de ,
the two bias terms (bs1,bs2) ∈ Rde×1, and tanh() is a
nonlinear activation function.

Then, the alignment vector βij between h̃i and h̃j can be
computed by normalizing each dimension as shown in E.q.(16)
and E.q.(17).

[βij ]k =
exp

([
f
(
h̃i, h̃j

)]
k

)
∑L
t=1 exp

([
f
(
h̃i, h̃j

)]
k

) (16)

βij = [[βij ]1 , [βij ]2 , · · · [βij ]de ]T (17)

...
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where k ∈ {1, 2, · · · de}, [x]k indexes the kth dimension of
the vector x, and a large [βij ]k means that the kth abstract
feature of behavior embedding h̃i is strongly relevant with the
behavior embedding h̃j . Finally, the output of this feature-
level self-attention mechanism is still a matrix and its shape is
consistent with the corresponding input H̃ , denoted as M̃ ∈
RL×de :

m̃i =

L∑
j=1

βij ◦ h̃j (18)

M̃ = [m̃1, m̃2, · · · m̃L]
T (19)

Here, following the definition of Hadamard product1, we use
“◦” to represent the element-wise product between two vectors
with the same shape.

In addition, like the long-term preference, in order to learn a
single embedding p1short ∈ Rde×1 to represent a user’s short-
term preference, an average operator is executed on the L rows
of the matrix M̃ .

p1short =
1

L

L∑
k=1

m̃k (20)

3) Vertical Convolutional Layer: Inspired by the work of
the knowledge graph embedding [20], to further capture a
user’s short-term preferences, we perform a vertical convolu-
tion operation on matrix H̃ . Suppose that a filter ω ∈ RL×1 is
repeatedly operated over each column of H̃ to finally generate
a feature map v = [v1, v2, · · · vde ] ∈ R1×de as:

vi = ReLU(

L∑
t=1

ωtH̃t,i + b) (21)

where ωt indexes the tth dimension of the filter vector ω, H̃t,i

denotes the element of the tth row and the ith column of the
matrix H̃ , and b ∈ R is a bias term.

Our model uses different filters ω’s to generate different
feature maps v’s. Specifically, let Ω and τ denote the set of
filters and the number of filters, respectively, i.e. τ = |Ω|,
resulting in τ feature maps. In addition, in order to facilitate

1https://en.wikipedia.org/wiki/Hadamard product (matrices)



the subsequent operation, these τ feature maps are concate-
nated into a single vector ∈ R1×τde which then is converted
into a vector p2short ∈ R1×de by a full-connected layer.
Fig. 3 illustrates the above computation process in the vertical
convolutional layer. Formally, this process can be defined as
follow:

p2short = ReLU(concat(ReLU(H̃ ∗ Ω))Ws5 + bs2) (22)

where ∗ and concat denote a convolution operator and a
concatenation operator respectively, and Ws5 ∈ Rτde×de is
the weight matrix in a full-connected layer. Finally, the vector
p2short can be considered as an abstract representation of a
user’s short-term preference at the feature level.

To sum up, the vertical convolution layer is used to exam
the global relationships between the same dimensional entries
of the latest L behaviors S̃u of a user, which can capture the
fine-grained short-term preference.

4) Short-Term Preference Mixed Layer: Two abstract
representations of a user’s short-term preference have been
obtained by the Feature-Level Self-Attention Layer and Ver-
tical Convolutional Layer respectively. However, there may
be overlapping between p1short and p2short. Thus, we first
concatenate the two abstract representations of a user’s short-
term preference, and then feed the result into a fully-connected
neural network layer to get a more high-level and abstract
feature vector pshort ∈ Rde×1, namely:

pshort =

ReLU(Ws6 concat([p
1
short,p

2
short

T
]) + bs3) (23)

where Ws6 ∈ Rde×2de is the weight matrix in the full-
connected layer, bs3 ∈ Rde×1 is the bias term, and pshort

is viewed as a user’s fine-grained short-term preference.

C. Downstream Application Network

1) Long-Term and Short-Term Preference Fusion Layer:
After obtaining a user’s long-term preference vector plong and
short-term preference vector pshort, unlike SHAN [1] which
gives a scalar weight for the long-term preference manually, in
our model, a dimension-wise fusion gate is used to accomplish
the combination of plong and pshort, which can learn the
nonlinear relationship between the two types of preferences.
Formally,

F = σ(Ws7 plong +Ws8 pshort + bs4) (24)

pu = F ◦ plong + (1 − F ) ◦ pshort (25)

where pu ∈ Rde×1, Ws7,Ws8 ∈ Rde×de and bs4 ∈ Rde×1
are the learnable parameters of the fusion gate, σ denotes the
sigmoid function f(x) = 1/(1 + e−x), and like E.q.(18), “◦”
refers to the element-wise product between two vectors with
the same shape. As a result, a user’s holistic preference, includ-
ing long-term and short-term preferences, can be represented
by the vector pu.

2) Recommendation Layer: For the personalized recom-
mendation task, our goal is to sort the candidate set Cu

according to the similarity between the user’s interests and
the corresponding item. The similarity is usually expressed
by a score of scalar, and the higher the score, the higher the
similarity [1], [9]. Specifically, we employ the inner product
to compute the corresponding preference score scorec of the
candidate item (ID = c) ∈ Cu, as follows:

scorec = pu V:,c (26)

where V:,c is the embedding of the candidate item (ID = c).
The scorec can be understood as the overlapping between

the candidate item (ID = c) and the user’s holistic interests.
A large scorec means that the user has a high probability to
interact with the corresponding item at the next time. Finally,
there is a preference score for each candidate item, and thus
the top-k items can be identified accordingly.

D. Optimizing the Framework
Based on the above steps, we have built up the personalized

recommendation model frec. Then we consider how to train
this model.

Given the historical behavior sequence Su of user u, we
take the first (t-1) items and the tth item from it, denoted St−1

and it, respectively. Then, we can construct such a set Du ={(
St−1, i

(u)
t

)
| t = 2, 3, ..., n

}
. Recall our task is to predict

the most likely item which will be interacted with by the user
at the next time, for the corpus S =

{
S1,S2, ...S|U |

}
, a

natural optimization objective is:

maximize L =
∏

Su∈S

∏
(
St−1,i

(u)
t

)
∈Du

P
(
i
(u)
t | St−1

)
(27)

P
(
i
(u)
t | St−1

)
=

exp(score
i
(u)
t

)∑
k∈I exp(scorek)

(28)

With this definition, achieving the goal defined in E.q.(27) will
force the item it to be the one that the user is most likely to
interact with at the next time. Nevertheless, optimizing the
objective function is non-trivial since each evaluation defined
by E.q.(27) needs to traverse all items in the candidate set,
which is very time-consuming.

To reduce the complexity, we employ the idea of negative
sampling, which approximates the costly denominator term
softmax with some sampled negative instances [25]. Let
j
(u)
t denote the negative instance for St−1, where j

(u)
t /∈{

St−1, i
(u)
t

}
, we can then approximate the conditional prob-

ability P
(
i
(u)
t | St−1

)
defined in E.q.(28) as:

P
(
i
(u)
t , j

(u)
t | St−1

)
=

∏
z∈
{
i
(u)
t ,j

(u)
t

}P (z | St−1) (29)

where the probability P (z | St−1) is defined as:

P (z | St−1) =

{
σ (scorez) , if z = i

(u)
t

1− σ (scorez) , if z = j
(u)
t

(30)



where like E.q.(25), σ denotes the sigmoid function f(x) =
1/(1 + e−x).

By replacing P
(
i
(u)
t | St−1

)
in E.q.(28) with the definition

of P
(
i
(u)
t , j

(u)
t | St−1

)
in E.q.(29), we can get the approxi-

mated objective function to be optimized. In other words, the
probability that the ground-truth sample appears as the next
should be maximized, whereas the probability that the negative
sample appears as the next should be minimized. Finally, this
model can be learned by optimizing a point-wise classification
loss, and the objective function Loss can be defined as:

L = −
∑
u

∑
i
(u)
t ,j

(u)
t

(log(σ(score
i
(u)
t

))+ log(1−σ(score
j
(u)
t

)))

(31)
minimize Loss = L+ η1‖Θ‖2 + η2P (32)

where Θ = {V,Ws1,Ws2, · · ·,Ws8, bs1, · · ·, bs4} is the
set of weights, and P is a penalization term which is defined
in E.q.(11), and its effectiveness will be discussed in detail in
the experiments. In addition, η1 and η2 control the strength of
the regularization and the penalization item respectively.

V. EXPERIMENTS
In the experiments, we aim to answer the following several

questions:
Q1: How does DMFP perform in terms of several common

recommendation metrics, compared to other state-of-the-art
methods?

Q2: How do Long-Term Preference (LTP) and Short-Term
Preference (STP) affect the performance of DMFP?

Q3: How does the time decay function, compared to time
intervals division?

A. Experimental Settings
1) Datasets: We perform experiments on three real-world

datasets. The details of them are shown in Table. I.

TABLE I
THE DETAILS OF THE THREE DATASETS

Dataset #Users #Items #Actions
#Avg.
actions
/user

#Avg.
actions
/item

Amazon Electronic 127,562 54,205 1,329,336 10.42 24.52
Amazon Clothing 39,387 23,033 278,677 7.07 12.09

Movielens 1m 6,027 3,062 574,026 95.24 187.46

• Amazon Dataset2. This is a user purchase and rating
dataset collected from Amazon.com by [26], and notable
for its high sparsity and variability. In this work, we adopt
its two subsets: Electronic and Clothing.

• Movielens3. This is a popular benchmark dataset for
evaluating the performance of recommendation models.
In our experiment, the Movielens 1m version is adopted.

In addition, in Amzaon Electronic dataset and Movielens 1m
dataset, the items that have been observed by less than 6 users

2http://jmcauley.ucsd.edu/data/amazon/
3https://grouplens.org/datasets/movielens/

and the users who have interacted with less than 6 items are
removed. Let the historical behaviors sequence for user u be
Su = (i1

(u), i2
(u), ...in

(u)), we use the first k interaction be-
haviors (i1

(u), i2
(u), ...ik

(u)) to predict the (k + 1)
th behavior

ik+1
(u) in the training set, where k = 2, · · · (n − 2), and

we use the first (n− 1) behaviors (i1
(u), i2

(u), · · · in−1(u)) to
predict the last one in(u) in the test set. Following the setting
in Caser [2], for the short-term behaviors, L is set to 4, i.e.,
S̃u = (in−3

(u), in−2
(u), in−1

(u), in
(u)). When n is less than

or equal to L (i.e., n ≤ L ), S̃u and Su are the identical (i.e.,
S̃u = Su). In addition, in our experiments, for user u, the
candidate set Cu is defined as the collection of items that she
has never interacted with before.

2) Baselines: We compare DMFP with two groups of
recommendation baseline methods.

The first group includes one CNN-based recommendation
method and an attention-based recommendation method as
follows:

• CNN+Pooling [27]: This method takes a user’s historical
behaviors sequence as a sentence, and then adopts a 1-
D convolution structure with max-pooling to extract user
preferences.

• ATRank [9]: Inspired by the great success of Trans-
former [23], this method exploits multi-head self-
attention mechanism to model the users’ historical behav-
iors sequence for capturing user preferences. In addition,
this method adopts time intervals division to preserve
temporal information.

The second group contains two typical methods that con-
sider the long-term preference and the short-term preference
at the same time as follows:

• Caser [2]: This method learns a static embedding for each
user as the long-term preference, and applies convolution
operations on the embedding matrix of the latest L items
of a user to capture the short-term preference. Finally,
the long-term preference embedding and the short-term
preference embedding are concatenated together as the
whole preference of a user for downstream network.

• SHAN∗ [1]: This method is a modified version of SHAN.
It takes the items in a session as a basic input unit.
Specifically, this method adopts two same attention mech-
anisms (like additive attention) to model the long-term
and short-term historical behaviors, respectively. In our
experiments, we use the latest L behaviors instead of the
last session/transaction as the short-term behaviors set.
In addition, the time decay function is used to model the
time signal for each behavior, which does not considered
in the origin version of SHAN.

In addition, to evaluate the contribution of the long-term pref-
erence and the short-term preference for forming a user’s holis-
tic preference, we also compare DMFP with its two variants,
denoted as DMFP L and DMFP S, respectively. DMFP L
only considers the long-term preference, while DMFP S only
considers the short-term preference.
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Fig. 4. Performance Comparison of All Methods in Amazon Clothing, Amazon Electronic and Movielens 1m Datasets

3) Evaluation Metrics: We evaluate all the methods by the
following three metrics:

• Area Under Curve (AUC). The AUC metric shown in
E.q.(33) is used to investigate how the positive samples
are ranked over negative samples, which has been widely
used in evaluating the performance of ranking frame-
works in recommendations [9], [28].

AUC =
1

|U |
∑
u∈U

δ(socre
i
(u)
t

> socre
j
(u)
t

) (33)

where U denotes the user set in the test set, i(u)t denotes
the corresponding ground-truth item for user u, and j(u)t

denotes the corresponding negative sample. socre
i
(u)
t

is a
preference score that can be calculated by E.q.(26), and
δ(∗) is an indicator function which returns 1 if ∗ is true,
and 0 otherwise. The floor of AUC from random guess
is 0.5 and the best result is 1.

• Recall and Normalized Discounted Cumulative Gain
(NDCG). Recall@K and NDCG@K are two popular
metrics for measuring the performance of the Top-
K personalized ranking recommendation list [2], [13],
[14], [29]. In our experiments, we report Recall@K and
NDCG@K with K ∈ {10, 20, 40, 50, 60, 80, 100}. Given
a list of Top-K predicted items for user u, denoted RK

u ,
and the corresponding ground-truth item i

(u)
t in the test



set, Recall@K and NDCG@K are computed by E.q.(34)
to E.q.(36).

Recall@K =
1

|U |
∑
u∈U

δ(i
(u)
t ∈ RK

u ) (34)

NDCG@K =
1

|U |
∑
u∈U

2indexu − 1

log2(indexu + 1)
(35)

indexu =

{
indexu, if i(u)t = RK

u [indexu]

0, if i(u)t /∈ RK
u

(36)

where RK
u [indexu] is the indexuth element in list RK

u . In
addition, in our test set, since each user only contains one
ground-truth item, IDCG@K for each user is equal to 1, which
has been removed in E.q.(35). Note that, the higher the value
of metrics, the better the quality of the recommendation.

4) Hyperparameter Setting: Our method and all baseline
methods use the common hyperparameters as follows.

All models are learned by optimizing the sigmoid cross
entropy loss for a fair comparison, as shown in E.q.(31). All
models are trained with Stochastic Gradient Descent (SGD).
The batch size for Amazon Clothing and MovieLens 1m is set
to 16, but for Amazon Electronic, it is set to 32. The dimension
size of each item embedding and the size of all hidden layers
are set to 128. In addition, the l2-loss weight (i.e., η1) is set
to 5e-4, the learning-rate starts at 1.0, and decay rate is set
to 0.01. For DMFP, the value of r in E.q.(9) is selected from
{6, 8, 10, 15, 20}, and the punish weight (i.e., η2) for P is
selected from {0, 3e-4, 3e-3, 3e-2, 3e-1}.

B. Experimental Analysis
1) Comparison of Performance (Q1): Fig. 4 depicts the

performance of all methods under three metrics, i.e., AUC,
Recall@K, and NDCG@K in three real-world datasets. From
this figure, we can observe that:

(1) DMFP consistently outperforms all baselines under
all evaluation metrics in two sparse datasets (i.e., Amazon
Clothing and Electronic) and one dense dataset (i.e., Movie-
lens 1m). Specifically, for Amazon Clothing dataset, DMFP
improves 3.36%, 29.83%, and 21.34% in terms of AUC,
Recall@100, and NDCG@100, compared with the second
best method (i.e., SHAN*) in the three metrics respectively.
For Amazon Electronic dataset, DMFP improves 4.33% and
2.55% in terms of Recall@100 and NDCG@100 respectively,
compared with the second best method (i.e., CNN+Pooling),
respectively. For Movielens 1m dataset, DMFP improves
0.79%, 3.78%, and 2.49% in terms of AUC, Recall@100,
and NDCG@100, compared to the second best methods (i.e.,
SHAN*) respectively. The above experimental results illustrate
the effectiveness of DMFP in learning a holistic preference for
each user in both sparse and dense datasets.

(2) Compared with the other two methods (i.e., Caser and
SHAN*) that consider both long-term preference and short-
term preference simultaneously, DMFP always achieves the
best performance in the three datasets. Specifically, compared
with SHAN*, DMFP can improve 1.37%, 6.75%, and 8.26%

in terms of AUC, Recall@100, and NDCG@100 in Amazon
Electronic dataset, respectively. This indicates that DMFP
can learn the representation of preference for each user, and
this representation can combine the multi-faceted long-term
preference and fine-grained short-term preference, captured
by multi-hops attention and feature-level self-attention to-
gether with vertical convolution operation, respectively. While
SHAN* can hardly capture users’ preferences by only adopt-
ing the simple additive attention mechanism. In addition,
DMFP outperforms Caser under all evaluation metrics in the
three datasets. This is because that capturing the long-term
preferences from the up-to-date historical behaviors set can
be more effective than learning a static preference embedding
for each user.

2) The Impact of LTP and STP (Q2): From the exper-
imental results of DMFP, DMFP L and DMFP S shown in
Fig. 4, we can observe:

(1) DMFP consistently outperforms DMFP L and DMFP S
in the three datasets. For Amazon Electronic dataset, compared
with DMFP L, DMFP can improve 1.10%, 11.68%, and
15.36% in terms of AUC, Recall@100, and NDCG@100, re-
spectively. Compared with DMFP S, DMFP improves 6.33%,
67.87%, and 93.24% in terms of AUC, Recall@100,and
NDCG@100, respectively. This illustrates that fusing long-
term and short-term preferences can more accurately under-
stand users’ needs or interests, and thus can make better
recommendations.

(2) DMFP L outperforms DMFP S in two sparse datasets
(i.e., Amazon Clothing and Electronic). Specifically, for Ama-
zon Clothing dataset, DMFP L improves 6.27%, 65.93%, and
94.80% in terms of AUC, Recall@100, and NDCG@100,
respectively. For Amazon Electronic dataset, DMFP L im-
proves 1.67%, 11.10%, and 2.79% at AUC, Recall@100,
and NDCG@100, respectively. In contrast, for the dense
dataset (i.e., Movielens 1m), the performance of DMFP S
is much better than that of DMFP L. Specifically, DMFP S
can improve 1.63%, 27.57% and 39.97% in terms of AUC,
Recall@100, and NDCG@100, respectively. From the ex-
perimental results, we can see that the contributions of the
long-term preference and the short-term preference are data
depended. For sparse datasets, there is a long time interval
between two adjacent behaviors, thus it is hard to capture the
short-term preference from the latest L behaviors. In contrast,
for dense datasets that contain sufficient users’ feedback, it is
possible to mine a user’s current preferences from the latest
L behaviors. DMFP can be used in both sparse and dense
datasets, as it can capture multi-faceted long-term preferences
and fine-grained short-term preferences simultaneously.

3) The Impact of Time Decay Function (Q3): We choose
ATRank [9] as the carrier to investigate the effect of the time
decay function in Amazon Clothing and Electronic datasets,
as ATRank has clearly pointed out the detail of slicing the
continuous time signal into intervals of different sizes in the
two datasets. We compare ATRank with its variant ATRank T.
Specifically, in ATRank T, the time intervals division in
ATRank is replaced with time decay function, and other



TABLE II
PERFORMANCE COMPARISON OF ATRANK AND ATRANK T IN AMAZON CLOTHING, AMAZON ELECTRONIC DATASETS

AUC Recall@10 Recall@50 Recall@100 NDCG@10 NDCG@50 NDCG@100

Clothing ATRank 67.18% 0.838% 3.207% 4.880% 0.379% 0.890% 1.146%
ATRank T 67.05% 0.939% 3.313% 5.149% 0.465% 0.941% 1.225%

Electronic ATRank 82.67% 2.908% 6.569% 9.319% 1.511% 2.153% 2.589%
ATRank T 83.31% 2.816% 6.745% 10.073% 1.525% 2.171% 2.581%

settings are kept as in [9]. Table II lists the performance
comparison by ATRank and ATRank T in Amazon Clothing
and Electronic datasets. From the table, we can observe that
ATRank T outperforms ATRank under the most of the metrics.
On average, ATRank T can improve 7.22% in terms of Recall
and 6.61% in terms of NDCG. This is because the time decay
function is a smooth function. In addition, the AUC delivered
by ATRank T is not always better than ATRank. This is
because that the properties of the time decay function can
hardly improve the modeling of the time information when
many behaviors are concentrated into a small time interval.

C. Conclusion

In this paper, we have proposed a Dynamic Multi-faceted
Fine-grained Preference Model (DMFP) for the next-item
recommendation. A time decay function is adopted to preserve
the temporal information behind each historical behavior. In
addition, in order to learn more accurate user preference repre-
sentations, DMFP adopts a multi-hops attention mechanism to
capture the multi-faceted long-term preference of a user, and
adopts a feature-level self-attention mechanism and a vertical
convolutional operation to mine the fine-grained short-term
preference of a user. Extensive validations on three real-world
datasets have demonstrated the superiority of DMFP compared
with other state-of-the-art methods.
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