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Abstract—An Attributed Dynamic Graph (ADG) contains
multiple dynamic attributes associated with each edge. In ADG
based applications, people usually can specify multiple constrains
in the attributes to illustrate their requirements, such as the
total cost, the total travel time and the stopover interval of
a flight between two cities. This inspires a type of Multi-
Constrained Temporal Path (MCTP) discovery in ADGs, which
is a challenging NP-Complete problem. In order to deliver an
efficient and effective temporal path discovery method to be
used in real-time environment, we propose a Reinforcement
Learning (RL) based, Monte Carlo Tree Search algorithm (RL-
MCTS). RL-MCTS uses a newly designed memory structure to
address the challenges of Monte Carlo Tree Search (MCTS) in
MCTP discovery. To the best of our knowledge, RL-MCTS is the
first RL algorithm that supports path discovery in ADGs. The
experimental results on ten real dynamic graphs demonstrate
that our algorithm outperforms the state-of-the-art methods in
terms of both efficiency and effectiveness.

I. INTRODUCTION

Path queries, like trip planning in transportation networks
[1], can be modelled as the path discovery problem in graphs
[2]–[4], which has been well studied in the literature. Many
real applications can be encoded as dynamic graphs, in which
a node is associated with another node at particular time
instances [5]. For example, the connections between two
people via telephone calls start at a certain time point of a
day [6], and the connections between cities via courier vehicles
based on the schedules of the vehicles [1].

In addition, there can be many attributes associated with the
edges in dynamic graphs, forming attributed dynamic graphs
(ADGs). These attributes can be like, the travel cost and the
travel distance between two cities by flights, users would like
to specify some constraints on these attributes in a path query
to illustrate their requirements on the targeted dynamic graph.
For example, in a traffic network, if a user plans to drive to
a restaurant after 5:00 PM, what is the shortest route that the
user can arrive at the restaurant under certain constraints on
the toll fee and the drive time? Example 1 below discusses a
scenario with an attributed dynamic graph structure.
Example 1: Fig. 1(a) shows a dynamic graph G, assuming that
G is a subway-transport network, where each node represents
a subway station, the tuple on each edge contains a departure
time point and an arrival time point, e.g., for the edge 〈a→ c〉,
the subway starts from a at 2 : 00 and arrives at c at 3 : 00. For
simplicity, we assume that the distance between two connected
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Fig. 1. Dynamic graph G and its attribute dynamic graph GA

stations is 1 km. Fig. 1(b) shows the attribute dynamic graph
GA of G, the number added on each edge is the cost of taking
the subway between two connected stations.

Now consider the shortest temporal path from a to e in the
two graphs. In Fig. 1(a), the shortest temporal path is 〈a →
c, c→ e〉 with distance 2km. But when we constrain the travel
cost smaller than 6, in Fig. 1(b), 〈a→ c, c→ e〉 is an invalid
temporal path because the cost of it is 7. Instead, the shortest
temporal path is 〈a → d, d → f, f → e〉 with distance 3km,
and the cost of it is 4.

The discussion above leads to a new type of Multi-
Constrained Temporal Path (MCTP) discovery problem, which
is NP-Complete [7]. The existing methods for the temporal
path discovery [5], [8]–[11] need to enumerate all the possible
temporal paths that satisfy each of the constraints, or they
have to traverse all possible graph structures at all time
points, leading to expensive time cost [12], [13]. Therefore,
the existing methods are not applicable when dealing with
large-scale attribute dynamic graphs.

In order to devise an effective and efficient method to
solve the MCTP problem, inspired by Reinforcement Learning
(RL), we can compare the quality of temporal paths by using
a verifier, and provide the reward feedback to a learning
algorithm. Hence, we formulate the MCTP problem as a
Markov Decision Process (MDP), follow the RL paradigm to
tackle the problem [14], and adopt the idea of Monte Carlo
Tree Search (MCTS) to discover the required MCTP, which is



an effective way of solving NP-Complete problems [15], [16].
MCTS is a general-purpose planning algorithm that has

found great success in a number of seemingly unrelated
applications, ranging from Bayesian reinforcement learning
[17] to General-Game Playing [18]. It is often applied to
domains where it is difficult to incorporate expert knowledge.
The key idea of MCTS is to construct a search tree of states
evaluated by fast Monte Carlo simulations [19]. Then, the state
value is estimated as the mean outcome of the simulations.
Meanwhile, a search tree is maintained to guide the direction
of simulation, for which bandit algorithms can be employed
to balance exploration and exploitation [20].

However, in the MDP of the MCTP problem, if we consider
each temporal path as a state, as an ADG of a social network
may contain millions of edges, the state space of the ADG will
be large. Therefore there are two challenges of using MCTS to
solve the MCTP problem. (1) Since the mean state estimation
is likely to have high variance under large states and relatively
limited search time, the accuracy of state estimation can not
be effectively guaranteed, which can mislead building the
search tree and severely degrade performance of the algorithm.
(2) The rewards are sparse because positive rewards can be
received only at several temporal paths, for instance, when
the temporal path is an MCTP.

In this paper, we utilize the structure of ADGs and his-
tory experience (i.e., traversed temporal paths) to effectively
address these two challenges. First, RL-MCTS uses the state-
value function that modelled by properties of ADGs to make
evaluations of states. Integrating the state-value function with
MCTS, RL-MCTS can avoid the search of invalid states (i.e.,
temporal paths that can not bring the MCTP result), then
performs more searches on other states and improves the
accuracy of state estimation. Second, to address the sparse
reward, RL-MCTS utilizes the ADG structure to encode
history experience into vector representations, and saves them
into the replay memory, which is further used to model the
action-value function. Then RL-MCTS combines MCTS with
the action-value function to generate temporal paths that have
significantly more positive rewards than using the MCTS
alone.

Our contributions are summarized as follows.

1) We formulate the MCTP problem as a Markov Decision
Process (MDP), and propose a Reinforce Learning based
Monte Carlo Tree Search algorithm (RL-MCTS), which
searches a tree with a designed memory structure that
saves history searching results;

2) We design the state-value function and action-value
function to solve the challenges of the inaccuracy state
estimation and the sparse reward;

3) We conduct extensive experiments on ten real-world
attribute dynamic graphs. The experimental results il-
lustrate that on average, our algorithm can save 79.17%
execution time, and the average performance of MCTP
delivered by RL-MCTS is 8.92% better than the state-
of-the-art algorithms.

II. PRELIMINARIES

In this paper, we focus on the shortest temporal path
discovery with multiple constraints in ADGs. The notations
used in this paper are shown in Table I.

A. Attributed Dynamic Graph

An Attributed Dynamic Graph (ADG) is a graph GA =
(VN , E, f), where:
• VN is the set of nodes of GA;
• E is the set of edges of GA, an edge e ∈ E is a quintuple

(u, v, l, tp, t), where u, v ∈ VN , l is the length of e, tp
and t are the departure time point from u and the arrival
time point at v respectively, hence tp ≤ t;

• fj , j ∈ [1,K] is a series of K attribute functions that
assign every edge in E a non-negative value fj(e), i.e.,
fj : (u, v, l, tp, t) ∈ E → R+, let f represent the attribute
vector, f = [f1, f2, ..., fK ].

B. Temporal Path

A temporal path P in an ADG GA = (VN , E, f) is a
sequence of edges Pv1,vn(tn) = 〈e1, e2, ..., en−1〉, where:
• tn is the arrival time point from v1 to vn;
• (vi, vi+1, li, tpi, ti+1) ∈ E is the i-th edge on Pv1,vn(tn),
i ∈ [1, n− 1];

• ∀i ∈ [2, n− 1], ti ≤ tpi;
• Γj(Pv1,vn(tn)) =

∑n−1
i=1 fj(ei) is the j-th aggregated

attribute value of Pv1,vn(tn);
• |Pv1,vn(tn)| =

∑n−1
i=1 ln is the length of Pv1,vn(tn).

C. Feasible Temporal Path

Given an ADG GA = (VN , E, f), vs, vd ∈ VN de-
note the source node and the destination node respectively,
X = [λ1, λ2, ..., λK ] denotes the constraint vector on attribute
vector f , [tφ, tϕ] is the constraint of time interval. A temporal
path Pvs,vd(td) is the feasible temporal path, where:
• tps ≥ tφ, td ≤ tϕ;
• ∀j ∈ [1,K], Γj(Pvs,vd(td)) ≤ λj .

Definition 1. Multi-Constrained Shortest Temporal Path
(MC-STP) Given an ADG GA, a source node vs and a desti-
nation node vd in GA, a constraint vector X and a time interval
[tφ, tϕ]. Let P denote the set of feasible temporal paths. Multi-
Constrained Shortest Temporal Path (MC-STP) is to find the
temporal path P that meets |P | = min{|P ′| : P ′ ∈ P}.

D. Markov Decision Process for MCTP Discovery

Now we formulate MCTP discovery problem as a Markov
Decision Process (MDP), which is defined by the tuple
(S,A,R,P), where S is the set of states, in our algorithm,
let each temporal path P ∈ S denote a state. A is the set
of actions, for a state P , the action space of P (i.e., A(P ))
is the union of all edges that connected to the last edge of
P , and the departure time points of edges in A(P ) are later
than the arrival time point of P . Therefore, after tacking an
action from A(P ), the corresponding edge of the action will
be added to the end of P , then forming a new temporal path
P ′.R is the reward function, in the MDP for MCTP discovery,



TABLE I
TABLE OF NOTATION

Notation Meaning
GA Attributed dynamic graph
VN Set of nodes
E Set of edges

f = [f1, f2, ..., fK ] Series of K attribute functions
Pu,v(t) Temporal path starts from u, arrives v at t

Γj(Pu,v(t)) j-th aggregated attribute value of Pu,v(t)
|Pu,v(t)| Length of Pu,v(t)
[tφ, tϕ] Constraint of time interval

X = [λ1, λ2, ..., λK ] Constraint vector on f
S Set of states
A Set of actions
R Reward function
P State transition probability
D Replay memory
δ, µ Discount factors
V (P ) State-value function
Q(P, e) Action-value function
RV (P ) Average reward value of P
R̂D(P ) Approximate reward of P
N(P ) Number of traversal times of P
E(e) Vector representation of e
H(P ) Attribute vector representation of P
T(P ) Trajectory vector representation of P

d(Pi, Pj) Distance function

only terminal states get rewards. We define terminal states as
follows: if (1) the current state is a feasible temporal path; or
(2) the aggregated attribute values of the current state exceed
the constraints, i.e., ∃j ∈ [1,K], Γj(P ) > λj ; or (3) the
current state meets none of above two conditions and has
no actions to select (i.e., A(P ) = ∅), then the current MDP
reaches a terminal state and will receive a reward. Since the
length of MC-STP is unknown, we give +0.5 reward to the
first traversed feasible temporal path and set it’s length as a
base, then the rewards of the following feasible temporal paths
are set as E.q. 1.

R(P ) =
max(base, |P |) + base− |P |

2 max(base, |P |)
(1)

We can see the range of R(·) is (0, 1), and the feasible
temporal paths with shorter lengths have larger rewards. For
other terminal states which are not feasible temporal paths, the
rewards will be 0. The rewards are sparse because only feasible
temporal paths can receive positive rewards, and these tempo-
ral paths are rare in large-scale ADGs. P is the state transition
probability, since GA is known, the MDP transition probability
is deterministic, e.g., for a state Pvs,vc(tc), once an action
of A(Pvs,vc(tc)) is selected, i.e., an edge (vc, vn, lc, tpc, tn),
the next state Pvs,vn(tn) and its associated A(Pvs,vn(tn)) are
known.

For an MDP starting from v1 at t1, after taking a series of
actions, states of the MDP are transitioned, assuming the MDP
finally reaches the terminal state Pv1,vn(tn) and gets a reward
R(Pv1,vn(tn)). Then the MDP ends and can be denoted as:
〈(v1, t1), (v1, v2, l1, tp1, t2), Pv1,v2(t2), (v2, v3, l2, tp2, t3),

Pv1,v3(t3), . . . , Pv1,vn(tn),R(Pv1,vn(tn))〉.
Example 2: Fig. 2 shows the example of an MDP, start-
ing from the source node a, taking the action of edge

a [a,b,1,1,3] [b,d,1,4,7]

Pa,b(3) Pa,d(7)

[b,e,1,5,9]

[b,c,1,2,3]

Terminal
state

R

invalid action

Fig. 2. A markov decision process

(a, b, 1, 1, 3) and reaching the state Pa,b(3). There are three
edges connected to b. Since the departure time point of
(b, c, 1, 2, 3) (i.e., 2) is earlier than the arrival time point of
Pa,b(3), (b, c, 1, 2, 3) is an invalid action. Then A(Pa,b(3)) =
{(b, d, 1, 4, 7), (b, e, 1, 5, 9)}, Pa,b(3) takes the action of the
edge (b, d, 1, 4, 7) and transitions to the state Pa,d(7). Finally,
it reaches a terminal state and gets a reward R.

III. REINFORCE LEARNING BASED MONTE CARLO TREE
SEARCH ALGORITHM (RL-MCTS)

In this section, we first define V (P ) and Q(P, e) as the
state-value function and the action-value function respectively.
The state-value function V (P ) uses properties and searching
results of states to evaluate P . The action-value function
Q(P, e) uses the replay memory that stores traversed temporal
paths to approximate the long-term reward of taking action e
at state P . Then we introduce the tree structure of RL-MCTS,
and discuss the details of RL-MCTS combined with the state-
value function and the action-value function.

A. State-Value Function

Now we introduce the state-value function V (P ) and how
to update it. The initial state value for a state Pvs,vc(tc) is set
as E.q. 2.

V (Pvs,vc(tc)) = 1−max{Γj(Pvs,vc(tc))

λj
: j ∈ [1,K]} (2)

Note that if V (Pvs,vc(tc)) < 0, Pvs,vc(tc) is not a feasible
temporal path. At the beginning of the searching process,
RL-MCTS prefers states with high state values (see Section
III-D for details), since the initial values of states with high
aggregated attribute values are close to 0, at first, most of these
states will be ignored.

For a completed MDP, only the terminal state will receive
a reward R(·). Similar to an RL method, TD(λ) [14], we use
a discount reward to update state values of the intermediate
states. When the MDP reaches a terminal state Pvs,vd(td) and
gets the reward R(Pvs,vd(td)), then:

(1) If Pvs,vd(td) is a feasible temporal path, each interme-
diate state Pvs,vi(ti) in the MDP will be updated by E.q. 3.

V (Pvs,vi(ti))← V (Pvs,vi(ti)) + δhR(Pvs,vd(td)) (3)

where δ ∈ (0, 1) is a discount factor, h is the number
of times from Pvs,vi(ti) transitions to the terminal state
Pvs,vd(td). For example, in the MDP, if Pvs,vi(ti) takes an



action (vi, vd, li, tpi, td) and transitions to Pvs,vd(td), then
h = 1. From E.q. 3 we can see the intermediate states that
near feasible temporal paths will get greater discount rewards.

(2) If the terminal state Pvs,vd(td) is not a feasible temporal
path, even R(Pvs,vd(td)) = 0, we give a small penalty to all
intermediate states in the MDP and update them as E.q. 4.

V (Pvs,vi(ti))← V (Pvs,vi(ti))− µh|V (Pvs,vd(td))| (4)

Because of the sparse reward, lots of terminal states’ re-
wards will be 0. Then we set a different discount factor µ that
smaller than δ. For a terminal state Pt that is not a feasible
temporal path, if A(Pt) = ∅ and the aggregated attribute
values of Pt do not exceed the constraints, V (Pt) will be a
non-negative value and smaller than 1, otherwise, V (Pt) will
be a small negative value. Therefore, the range of |V (Pt)| is
approximately the same with R(·).

In E.q. 3-E.q. 4, when the MDP is completed,
δhR(Pvs,vd(td)) and −µh|V (Pvs,vd(td))| can be regarded as
the reward of the intermediate state Pvs,vi(ti) in the MDP.
Therefore, in addition to define the rewards of terminal states
(i.e., E.q. 1), we also define the reward function of intermediate
states as E.q. 5.

R(Pvs,vi(ti)) =

{
δhR(Pvs,vd(td)) if R(Pvs,vd(td)) > 0

−µh|V (Pvs,vd(td))| else
(5)

where Pvs,vd(td) is the terminal state of the current MDP.
Since the initial value of V (P ) is determined by the

aggregated attribute values of P , V (P ) can not represent the
long-term reward of P . Then we use RV (P ) to characterize
the long-term reward of P and define RV (P ) as E.q. 6.

RV (Pvs,vi(ti)) =

∑N(Pvs,vi
(ti))

j=1 Rj(Pvs,vi(ti))
N(Pvs,vi(ti))

(6)

Here, N(Pvs,vi(ti)) is the number of times that Pvs,vi(ti)
has been traversed. We can see as N(P ) → ∞, RV (P ) will
be close to the true reward of P (i.e., E(R(P ))).

B. Action-Value Function

As RV (P ) characterizes the long-term reward of P , simi-
larly, we define action-value function Q(P, e) to represent the
long-term reward of action e at P . For a state Pvs,vc(tc) with
an action e = (vc, vn, lc, tpc, tn), as P is deterministic, the
next state will be Pvs,vn(tn). Intuitively, the action-value can
be defined as the difference between the true reward values of
the two states:

Q(Pvs,vc(tc), e) = E(R(Pvs,vn(tn)))− E(R(Pvs,vc(tc)))
(7)

If Q(Pvs,vc(tc), e) is a positive value, it means that selecting
the action e will transition the current state Pvs,vc(tc) to the
state that is approaching to the feasible shortest temporal path.
Conversely, if the value of Q(Pvs,vc(tc), e) is negative, it

indicates that the action selection of e may lead the current
state to a worse result.

From E.q. 6, we can use RV (P ) to replace E(R(P )). How-
ever, getting the stable value of RV (P ) requires traversing
most MDPs that contain P , which is unrealistic under large
states and limited search time. In addition, if P has not been
traversed, we cannot get its RV (P ). Then we use the history
experience, i.e., traversed temporal paths, to approximate long-
term rewards of states (denoted as approximate rewards)
and get the action value. In RL-MCTS, we encode states
into vector representations, use the replay memory to save
the vector representations of history experience. Then the
approximate reward of a state is calculated by its similarity
with vector representations that in the replay memory.

In ADGs, temporal paths contain two characteristics, at-
tribute features and trajectory features. Therefore, we encode
them into attribute vector representations and trajectory vector
representations respectively.
Attribute Vector Representation: For the attribute feature of
a state, since each attribute of the temporal path is independent
with others, we normalize aggregated attribute values and
take each attribute as a dimension of the attribute vector
representation. Then the attribute vector representation of a
state P can be defined as below:

H(P ) = B([|P |,Γ1(P ),Γ2(P ), · · · ,ΓK(P )]) (8)

where B(·) is a function to normalize all elements in the
attribute vector representation.
Trajectory Vector Representation: For the trajectory fea-
ture of a state, graph embedding techniques [21] such as
deepwalk [22], can be used to convert temporal paths into
a low dimensional space in which the structure information
is maximally preserved. Deepwalk optimizes embeddings to
encode the statics of random walks, however, using deepwalk
to encode states into vector representations requires a large
amount of temporal paths, and costs a lot of training time
because of the recurrent neural network (RNN) structure. Since
the ADG is known, we encode edges of the ADG into vector
representations as a pre-work. In the searching process, a state
trajectory vector representation is composed of its edge vector
representations.

Another problem is that deepwalk uses simple unbiased
random walks over the graph, which fails to leverage the
temporal and attribute information that is informative with
respect to edges’ positions in the ADG. In our algorithm, we
propose a strategy that biases random walks with the time
order and the edge length. Specifically, we label each edge of
an ADG with β:

β(vc, vi, lc, tpc, ti) =
1

lc
(9)

In the random walk process, when the walk arrives vc
at tc, we define the probability of the walk taking e =
(vc, vi, lc, tpc, ti) as the next step as:
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Pr(e) =
β(e)∑

ej∈C(vc,tc)
β(ej)

(10)

Here, C(vc, tc) is the edge set from vc to its neighbor nodes
which departure time points later than tc. With the improved
strategy, the walk prefers edges with short lengths and obeys
the chronological order.

Then we use the improved deepwalk to encode edges
of the ADG into vector representations, which denoted as
E(e). Then the trajectory feature of a state Pv1,vn(tn) =
〈e1, e2, . . . , en−1〉 can be represented as below:

T(Pv1,vn(tn)) = [E(e1), E(e2), . . . , E(en−1)] (11)

Distance Function: The similarity between two states con-
tains two parts, i.e., the similarity of attribute features and the
similarity of trajectory features respectively. For the sake of
simplicity, in the following discussion, let Pi and Pj denote
two different states Pvs,vi(ti) and Pvs,vj (tj) respectively. For
the first part, we use cosine distance to approximate the
difference between the two attribute vector representations of
Pi and Pj by E.q. 12.

datt(H(Pi),H(Pj)) = cos(H(Pi),H(Pj)) (12)

For the second part, since the trajectory vector represen-
tations of different states usually have different lengths, it
is often the case that two vector representations have the
approximately the same overall component shapes. But these
shapes do not line up in the sequence dimension. Fig. 3
shows this with a simple example. For two trajectory vec-
tor representations A = [a, . . . ,b, . . . , c1, . . . ,d1, . . .] and
B = [a, . . . , c2, . . . ,d2, . . .], c1 and c2, d1 and d2 are similar
edge vector representations. Although A selects the action of
b at the beginning of the searching, A and B have an overall
similar shape, which means the selection of b has little effect
on the searching result. Hence, A and B should have a high
degree of similarity. However, in this case, a distance measure
that assumes the i-th edge vector representation on A is
aligned with i-th edge vector representation on B will produce
a pessimistic dissimilarity. Dynamic Time Warping (DTW)
[23] is an effective way to measure the similarity between
two sequences under such a situation. We approximate the
difference between two trajectory vector representations by
DTW as E.q. 13.

dtraj(T(Pi),T(Pj)) = min
W(T(Pi),T(Pj))

√∑L
l=1 Wl(T(Pi),T(Pj))

L
(13)

W(T(Pi),T(Pj)) is the warping path [24] of T(Pi) and
T(Pj), which is a contiguous set of elements that defines
a mapping between two trajectory vector representations.
Each element Wl(T(Pi),T(Pj)) in W(T(Pi),T(Pj)) is the
euclidean distance between two elements in T(Pi) and T(Pj)
respectively. max(p, q) ≤ L < p+q−1, p and q are the length
of T(Pi) and T(Pj) respectively. There may exist more than
1 warping paths, and we choose the warping path which can
calculate the minimal function value.

The time complexity of general DTW [23] is O(n2), n is the
length of the shorter vector representation between two vector
representations. In RL-MCTS, we use the variant of DTW,
fast-DTW [25], which adopts some acceleration methods and
has the O(n) time complexity.

Then the distance function can be defined as E.q. 14.

d(Pi, Pj) =α× datt(H(Pi),H(Pj))

+ γ(1− α)× dtraj(T(Pi),T(Pj))
(14)

where α is a constant to balance two functions, γ is used to
keep the range of the two distance functions consistent.
Replay Memory: Now we introduce the replay memory D
and how it works. Each entry of D corresponds to a state
Pvs,vc(tc) (here we use Pc to represent Pvs,vc(tc)), it contains
the tuple {H(Pc),T(Pc),RV (Pc), N(Pc)} of Pc. Specifically,
RL-MCTS only stores tuples of states that in the last M MDPs,
the constant M can be seen as the size of D. As different
MDPs may contain the same states, if Pc has already been
stored in the memory, we only update RV (Pc) and N(Pc)
at the corresponding entry. In addition, we set a threshold θ
and ensure |RV (·)| ≥ θ for all tuples in D because the state
that the average reward is close to 0 has little effect on the
approximate result.

However, directly using continuous states of an MDP to
approximate the long-term reward of a state is inefficient,
due to the strong correlation between these consecutive states.
Therefore, every evaluation RL-MCTS randomly picks ND
tuples from D to break these correlations, which also increases
the randomness of our algorithm as the approximate rewards
of a specific state are not always consistent. Then, given a state
Pc, after sampling ND tuples of states from D randomly, RL-
MCTS finds the top m similar states based on the distance
function as E.q. 14. The approximate reward of Pc is then
computed by E.q. 15.

R̂D(Pc) =

m∑
i=1

ωi(Pc)RV (Pi) (15)

where Pi is the i-th similar state of Pc, and ωi(Pc) is the
weight of Pi that is calculated by E.q. 16.

ωi(Pc) =
N(Pi) exp(−d(Pi, Pc))∑m
j=1N(Pj) exp(−d(Pj , Pc))

(16)

From E.q. 6, we can see if state Pj has a larger N(Pj)
value, RV (Pj) is closer to the true reward value of Pj . In
addition, it is known that exp(x) is close to x+ 1 for a small



x. Then RL-MCTS gives higher weights to the similar states
that have more traversal times and higher similarities.
Weight Function: RL-MCTS combines the approximate re-
ward value R̂D(·) with the average reward value RV (·) to
calculate the action-value, and assigns different weights to
R̂D(·) and RV (·) respectively, as we mentioned before, the
traversal time of getting the true reward value of a state Pi
(denoted as Nt(Pi)) is proportional to the number of MDPs
that contain Pi, in other words, Nt(Pi) ∝ |A(Pi)|. Then we
define the weight function τ(Pi) of the approximate reward
R̂D(Pi) as E.q. 17.

τ(Pi) =
1

log|A(Pi)| |A(Pi)|(1 +N(Pi))
(17)

Then combining with the replay memory and E.q. 17, the
action-value function can be defined as E.q. 18.

Q(Pi, e) =τ(Pj)R̂D(Pj) + (1− τ(Pj))RV (Pj)

− (τ(Pi)R̂D(Pi) + (1− τ(Pi))RV (Pi))
(18)

Here Pj is transitioned from Pi after tacking the action
e. At first, Pj has not been traversed and N(Pj) = 0, then
τ(Pj) = 1, RL-MCTS uses R̂D(Pj) to calculate the action
value. When N(Pj) ≈ |A(Pj)|, τ(Pj) ≈ 0.5. As there may
exist duplicate action selections and Nt(P ) is much larger than
|A(P )|, in E.q. 17 we use the log function to ensure that τ(P )
becomes small when N(P ) is large enough.

By applying these approximations, our action-value function
becomes a special case of kernel based methods, such as
Locally Weighted Regression and Kernel Regression [26],
where the kernel function can be defined by ki(Pc) =
exp(−d(Pi, Pc))/

∑m
j=1 exp(−d(Pj , Pc)).

C. Tree Structure

Now we introduce the tree structure of RL-MCTS. Each
node in the tree represents a state, while the tree’s edges
correspond to actions. MCTS grows the tree structure iter-
atively. With each iteration, the tree structure is traversed
and expanded. In a tree structure, a root node represents the
starting state, i.e., the source node vs with the constraint of
departure time point tφ; a child node represents the state
transitioned from its ancestor’s state after tacking an action
from A, the edge between them indicates the corresponding
action; a leaf node represents a terminal state or a new
expanded state that has not been traversed. Each node of
the tree structure stores the set of statistics of a state Pi:
{V (Pi), N(Pi),RV (Pi), R̂D(Pi)}. In this way, an MDP can
be regarded as an iteration of MCTS, which starts from the
root node, selects child nodes recursively, and finally reaches
a leaf node that represents a terminal state.

D. UCT Function

We now discuss how to combine V (·) and Q(·) to select
actions in the tree search of RL-MCTS. An important problem
of monte carlo tree search is to balance the exploration
versus exploitation. The exploration approach promotes the

exploration of unexplored areas (i.e., leaf nodes that represent
untraversed states) in the tree structure, this means that the
exploration will expand the tree’s breath more than its depth.
Exploitation tends to stick to actions that have the greatest
estimated value (i.e., the maximal action value of E.q. 18),
this approach is greedy and will extend the tree’s depth more
than its breath. The balance of exploration and exploitation can
ensure our algorithm does not overlook any potential feasible
temporal paths, thus avoiding the ineffectiveness of the search
under large states.

Specifically, on each MCTS iteration, an MDP is rolled out
by selecting actions according to the proposed variant of UCT
[27] from the root node (defined in E.q. 19).

ea = arg max
ej
{c× V (Pj)∑|A(Pi)|

k=1 V (Pk)

√
ln(N(Pi))

1 +N(Pj)
+Q(Pi, ej)}

(19)
where c is the constant that control the level of exploration, Pi
is the current state that needs to select an action from A(Pi),
Pj is the transitioned state after taking ej from Pi, ej ∈ A(Pi),
Pk is the state transitioned from Pi that carries out the k-th
action from A(Pi). Overall, UCT initially prefers actions that
can transition to the states with high values of V (Pj) and low
visit counts N(Pj), but then asymptotically prefers actions
with high values of Q(Pi, ej).

E. Details of MCTS

Now we elaborate on how MCTS is used to guide our
searching process. Each iteration of MCTS can be divided
into four steps: selection, expansion, simulation and back-
propagation. These four steps are iteratively applied until the
maximum number of iterations (i.e., I) is reached. The four
steps are discussed below and the corresponding pseudo-code
is shown in Algorithm 1.

Step 1: Selection. In the selection step, starting from the
root node, MCTS traverses the current tree structure using
a tree policy. A tree policy uses an evaluation function
(i.e., UCT function) that prioritize actions with the greatest
estimated values. When the traversal reaches a leaf node, if
the leaf node is a terminal state, then MCTS transitions to the
backpropagation step, otherwise, it means the leaf node is a
new expanded state that has children left to be added, then
MCTS transitions to the expansion step. In Fig. 4, starting
from the root node A, the tree policy must make a decision
among B, C and D, suppose the edge (A → B) has the
maximum UCT value, MCTS will then choose (A→ B) and
reach B. Since B is a leaf node with children yet to be added,
so now MCTS will transition into the expansion step.

Step 2: Expansion. In the expansion step, for the expanded
node reached in the selection step, MCTS selects all valid
actions of the expanded node, and adds states transitioned
from these actions into the tree structure as child nodes of
the expanded node, then initializes {V (·), N(·) = 0,RV (·) =
0, R̂D(·)} of these child nodes, here V (·) and R̂D(·) are
calculated by E.q. 2 and E.q. 15 respectively, then MCTS



Algorithm 1: RL-MCTS
Input: ADG GA; Source node vs, Destination node vd;

Time interval [tφ, tϕ]; Constraint vector X ;
Number of iterations I; Replay memory D;

for iteration it in [1..I] do
Set vs as the root node of tree structure; set the

current state Pvs,vc(tc); vc ← vs, tc ← tφ;
while tc ≤ tϕ do

if Pvs,vc(tc) is unexplored then
Mark Pvs,vc(tc) explored;
if A(Pvs,vc(tc)) is ∅ then

Break;
for each edge
ei = (vc, vi, lc, tpc, ti) ∈ A(Pvs,vc(tc)) do

Add Pvs,vi(ti) as the child of Pvs,vc(tc);
Initial {V,N,RV , R̂D} of Pvs,vi(ti);
Mark Pvs,vi(ti) unexplored;

else
Select the action ea = (vc, va, lc, tpc, ta) with

the maximum UCT value;
Add the transitioned state Pvs,va(ta) into a

state list;
Update Pvs,vc(tc)← Pvs,va(ta);
if Pvs,vc(tc) is a terminal state then

Break;

Compute the reward value R(Pvs,vc(tc));
Delete tuples of earliest iteration in D;
for each state Pvs,vi(ti) in the state list do

Update {V,N,RV , R̂D} of Pvs,vi(ti) in the tree
structure;

Add {H,T,RV , N} of Pvs,vi(ti) into D;

moves to the simulation step. Otherwise, if there is no valid
actions of the expanded node, it means the expanded node is a
terminal state, then MCTS transitions to the backpropagation
step. In Fig. 4, the algorithm is currently at the expanded node
B, and has two valid actions, A(B) = {B → E,B → F}, so
there are two child nodes added onto B indicated by E and
F , then MCTS transitions to the simulation step.

Step 3: Simulation. Since the child nodes of the current
expanded node have been added to the tree structure, MCTS
can continue to traverse the tree structure. Therefore, In this
step, MCTS performs selection and expansion repeatedly until
reaches a terminal state and gets a reward, then transitions to
the backpropagation step. In Fig. 4, the child nodes of B have
been added into the tree structure, then MCTS performs above
two steps repeatedly until reaches the terminal state H , and
gets the reward R, then transitions to the backpropagation step.

Step 4: Backpropagation. Now that the MCTS has reached
the leaf node of a terminal state and got the corresponding
reward, the rest of the tree structure must be updated. Starting
at the node of the terminal state, the algorithm traverses back to
the root node. During the traversal, the statistics stored in each
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Fig. 4. A brief illustration of MCTS process

TABLE II
DATASET

Dataset |VN | |E| |davg| |dmax| π |T |
Arxiv 28K 4597K 327.3 11K 262 2K
Elec 7K 104K 29.1 1K 15 101K
Enron 87K 1148K 26.3 38K 1074 213K
Facebook 47K 877K 37.3 2K 21 737K
Epinions 132K 841K 12.8 3K 13 0.9K
Slash 51K 141K 5.5 3K 17 90K
Digg 280K 1732K 12.4 12K 25 83K
Conflict 118K 2918K 49.4 136K 562 274K
Youtube 3223K 9375K 9.9 5K 327 921K
Opsahl 2K 60K 63.1 1K 98 58K

node of the traversal (i.e., {V (Pi), N(Pi),RV (Pi), R̂D(Pi)})
are incremented (except the root node), V (Pi) is updated by
E.q. 3 or E.q. 4, R̂D(Pi) is updated by E.q. 15, N(Pi) and
RV (Pi) are updated as below:

N(Pi)← N(Pi) + 1

RV (Pi)← RV (Pi) +
R(Pi)−RV (Pi)

N(Pi)

Here R(Pi) is calculated by E.q. 5, then we use R(Pi) to
update the average reward value of Pi.

In addition, since the replay memory D only stores last M
MDPs, the algorithm deletes all tuples of the earliest MDP that
stored in D, and puts {H(·),T(·),RV (·), N(·)} of all states
that in the traversal into D. In Fig. 4 we can see only nodes of
the MDP are updated, i.e., {B,E, · · · , H}. This step ensures
that the statistics of each node accurately reflect searching
results performed in the tree structure.

RL-MCTS performs the above four steps for I iterations.
So its time complexity is O(I × (selection + expansion +
simulation+ backpropagation)). Let F denote the depth of
the tree structure, U denote the average number of child nodes
at each layer of the tree structure. ND is the number of entries
in D that is used to evaluate the action value. The Selection
step has the time complexity of O(U), the Expansion step has
the time complexity of O(UND), and the Simulation step has
the time complexity of O(UND), and the Backpropagation
step has the time complexity of O(FND). Therefore, the time
complexity of RL-MCTS is O((U + F )IND).



TABLE III
PARAMETER SETTINGS

Parameters Settings
Number of iterations 1000, 2000, 3000, 4000, 5000
Number of attributes 5, 10, 15, 20, 25

Number of entries to approximate (ND) 100, 500, 1000

TABLE IV
THE COMPARISON OF THE PERFORMANCE OF TPA, MCTS, AND

RL-MCTS

Comparison TPA MCTS RL-MCTS
The average path length 163.0400 318.9970 148.4890

The query processing time (Sec) 200.8863 21.7056 41.8482

IV. EXPERIMENTS

A. Experiment Settings

• We conducted experiments on ten large-scale real-
world attribute dynamic graphs available at konect.uni-
koblenz.de. These datasets have been widely used in the
literature for the studies of dynamic graphs. The details
of these datasets are shown in Table II, including the
number of nodes and edges, the average degree (davg)
and the maximal degree (dmax), the maximal number of
the edges between two nodes (π), and the number of time
points (|T |) included in each of the attribute dynamic
graphs.

• The time interval is set as {[0, 15 |T |], [0, 25 |T |], [0, 35 |T |],
[0, 45 |T |], [0, |T |]}, to investigate the algorithm perfor-
mance under different [tφ, tϕ].

• For each ADG, we selected 10 pairs of nodes which have
the highest temporal in-degree and out-degree as a source
node and a destination node respectively.

• The discount factors in state-value function (E.q. 3-E.q. 4)
are set to δ = 0.95 and µ = 0.9. When encoding edges of
ADGs, the parameters of deepwalk are consistent with the
settings in [22]. The parameter of distance function (E.q.
14) is set to α = 0.5 and the constant of UCT function
(E.q. 19) is set to c = 0.5. In the configuration of replay
memory, the number of MDP stored in the memory is set
to M = 300, the threshold is set to θ = 0.001, the number
of similar states that is used to make approximation (E.q.
15) is set to m = 50. Table III is the variation of mainly
parameters.

• The length of each edge is set randomly within the range
[0− 100]. In general, temporal paths consisting of fewer
edges have shorter path lengths and smaller aggregated at-
tribute values, however, these paths typically contain less
information and therefore cannot extract valid features. In
order to ensure temporal paths contain sufficient features,
in the experiment, we limited the minimum number of
edges that each temporal path contains (denoted as Nm),
Nm is set as {5, 10, 15, 20, 25}, to evaluate the effective-
ness of using the memory replay. Accordingly, for the
constraint vector X , the constraint on j-th attribute is set
as λj = { 15Nmf

a
j ,

2
5Nmf

a
j ,

3
5Nmf

a
j ,

4
5Nmf

a
j , Nmf

a
j }.
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Fig. 6. The average path length based on different iterations and time intervals

faj is the average value of j-th attribute function in an
ADG.

B. Implementation

In the following experiments, we will compare our RL-
MCTS with the basic Monte Carlo Tree Search algorithm
(MCTS), and the state-of-the-art temporal path discovery
method, TPA [13]. The performance was investigated by the
execution time, and the length of the delivered temporal path.

All TPA, MCTS, and RL-MCTS algorithms are imple-
mented using Matlab R2019a running on a PC with Intel Core
i7-7700K 4.2GHz CPU, 16GB RAM, Windows 10 operating
system and MySql 5.7 database, all the experimental results
are averaged based on five independent runs, and each run the
settings of different combinations of all parameters.

C. Experimental Results and Analysis

Exp-1: Effectiveness. In order to investigate the effectiveness
of RL-MCTS, we compare the lengths of the searching results
based on different datasets and parameters. In addition, we in-
vestigate the effectiveness of our replay memory by comparing
the searching results based on different number of ND.

Results: Fig. 5-7 depict the average path length delivered
by TPA, MCTS and RL-MCTS in different datasets. From
these figures, we can see that (1) in those datasets with more
than 100K nodes, RL-MCTS can return shorter average path
lengths than those of TPA. Overall, in all ADGs, the average
path length delivered by RL-MCTS is 8.92% less than that of
TPA; (2) in all cases, RL-MCTS can always deliver shorter
average path lengths than those of MCTS. The average path
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length delivered by RL-MCTS is 53.45% less than that of
MCTS; (3) with the increase of iterations and the range of
time interval, the path length delivered by all three methods
decreases, and RL-MCTS can get shorter path lengths than
TPA over more iterations or shorter range of time intervals;
(4) with the increase of Nm and number of attributes, the path
length delivered by all methods increases, and RL-MCTS can
get shorter path lengths than TPA; (5) with the increase of
ND, RL-MCTS with a larger ND can get better results.

Analysis: The experimental results illustrate that (1) RL-
MCTS can avoid the tree search via a sub path that has larger
attribute values and longer path length to satisfy the con-
straints, rather than greedy optimizing the objectives in TPA,
thus RL-MCTS has a higher probability to deliver a better
result than TPA; (2) RL-MCTS can use history experience to
speed up the searching process by ignoring a large number
of states that are unlikely to bring feasible temporal paths,
while MCTS needs to take more iterations to get the stable
state estimations, and MCTS may converge to the near optimal
results, then RL-MCTS can get better results than MCTS;
(3) in short range of time intervals, RL-MCTS can discover
feasible temporal paths that TPA lost due to the greedy
strategy, then RL-MCTS can get shorter paths than TPA; (4)
with the increase of Nm and the number of attributes, the states
in the searching process will contain more information, then
RL-MCTS can use replay memory to contract valid features
of states, make more accurate estimations of state values and
state action values; (5) with the increase of ND, RL-MCTS
can have more states to be used in the action value estimation,
which can improve its performance in the shortest temporal

path discovery.
Exp-2: Efficiency. This experiment is to investigate the ef-
ficiency of our RL-MCTS by comparing the average query
processing time of TPA, MCTS and RL-MCTS based on the
different datasets.

Results: Fig. 8 depicts the average query processing time
of TPA, MCTS and RL-MCTS on different datasets. From the
figure, we can see that (1) in all the cases, TPA costs more
query processing time than others, especially on larger scale
ADGs; (2) in all cases, the query processing time of RL-MCTS
is less than that of TPA and more than that of MCTS; (3) on
average, RL-MCTS can save 79.17% query processing time
compared with TPA, and cost 48.13% more time compared
with MCTS. The statistics are shown in Table IV.

Analysis: The experimental results illustrate that (1) RL-
MCTS and MCTS access only part of nodes that connected
with the destination node and have higher probabilities to
possessing feasible temporal paths, while TPA needs to visit all
nodes connected with the destination node, leading too much
query processing time; (2) due to the replay memory, RL-
MCTS has to perform updates of states and make estimations
of actions in the searching process, therefore every iteration
of RL-MCTS costs more time than MCTS.

V. RELATED WORK

In the literature, there are many studies of the path problem
in dynamic graphs, which can be categorised into either the
path problem in the continuous time model or the path problem
in the discrete time model.

In the continuous time model, an edge between two nodes
always exists, and a continuous edge-delay function is as-
sociated with each edge in a dynamic graph. Ding et al.,
[28] apply a more precise refinement approach that expands
the time interval step by step. To improve the efficiency
of the path queries, some studies build different kinds of
indices, such as time-dependent CH [29] and time-dependent
SHARC [30]. Furthermore, by considering the waiting time
at the starting point, Yang et al., [31] propose an algorithm
to find a cost-optimal path with a time constraint by using
the iteration method, and Li et al., [32] further consider the
waiting time at each of the intermediate vertices in a path
query. These methods can be used to solve the path problem in
the continuous time model, but suffer from high computational
complexity when adopted to the scenario where the connection
between two nodes exists at some specific time points [33].

In the discrete time model, the departure time points of an
edge in a dynamic graph are discrete. In such a model, Xuan
et al., [12] propose the algorithm for searching the shortest,
the fastest, and the earliest arrival path in dynamic graphs.
Based on this work, in addition to the three paths, Wu et al.,
[5], [11], propose a one-pass algorithm for the latest departure
path [12]. After that, some methods have been proposed to
improve the efficiency of path discovery by using indexing
techniques [34], [35]. Moreover, some studies consider the
waiting time in path discovery. Dean et al., [36] investigate
different waiting policies and demonstrate how to accelerate



the dynamic programming to efficiently address the minimum
cost path problem under these policies.

However, these methods do not consider the multiple con-
straints on the attributes of edges in an attributed dynamic
graph. Such a constrained path is popular and fundamental
in many dynamic graph-based applications. Therefore, these
methods cannot support the NP-Complete MCTP that exists
in many real applications.

Recently, based on the one-pass algorithm for the discrete
time model, Zhao et al., [13] proposes a two-pass approxima-
tion algorithm (TPA) for MCTP, which uses a greedy optimiza-
tion strategy that cannot guarantee the algorithm performance,
and TPA has to traverse the graph more than once, which costs
much time when the dynamic graph is large.

VI. CONCLUSION AND REMARKS

In this paper, we have proposed a new Reinforcement
Learning Based Monte Carlo Tree Search algorithm, RL-
MCTS, to support Multi-Constrained Temporal Path (MCTP)
discovery that is a cornerstone for many dynamic graph-based
applications. The experiments conducted on ten real-world
large-scale social graphs have demonstrated the superiority
of our proposed approaches in terms of effectiveness and
efficiency.
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