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Abstract—With the popularity of GPS-enable smart devices
and the development of wireless network, Spatial Crowdsourcing
(SC), as a framework for assigning location-sensitive tasks to
moving workers, has received wide attention in recent years.
In real-world scenarios, some complex tasks exist that may not
be completed by a single worker. In this case, the tasks are
often assigned to multiple workers, which is called group task
assignment. However, the assignment of tasks that satisfy all
group members in an even way remains a challenge. To this
end, we propose a novel preference-aware group task assignment
framework that includes two components: Mutual Information-
based Preference Modeling (MIPM) and Preference-aware Group
Task Assignment (PGTA). Specifically, MIPM learns the prefer-
ences of worker groups by maximizing the mutual information
among workers based on the worker-task interaction data and
the group-task interaction data, where an attention mechanism is
used. PGTA adopts an optimal task assignment algorithm based
on tree decomposition to assign tasks to appropriate worker
groups, which aims to maximize the overall number of assigned
tasks while giving priority to the groups of workers that are
more interested in the tasks. Finally, extensive experiments are
conducted, verifying the effectiveness and practicality of the
proposed solutions.

Index Terms—preference, group task assignment, mutual in-
formation, spatial crowdsourcing

I. INTRODUCTION

With the continuous development of GPS-equipped smart
devices and wireless networks, Spatial Crowdsourcing (SC), a
recently proposed concept and framework, has attracted great
attention from both academia and industry communities. SC
platforms recruit a group of available workers to actually go
to a specific location to complete tasks, e.g., taking photos,
monitoring traffic conditions, etc. The way to allocate these
spatial tasks to workers is called task assignment.

Most of the existing studies focus on individual task as-
signment [1]–[5], which means that a task is assigned to
an individual worker. For example, Zheng et al. [6] take
workers’ rejection into consideration and design algorithms
to maximize workers’ acceptance in order to improve the
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system feasibility. The study [7] proposes a Flexible Two-
sided Online task Assignment (FTOA) problem, which aims
to guide idle workers to perform tasks by predicting the
spatiotemporal distributions of subsequent tasks and workers,
thereby increasing the total number of assigned worker-task
pairs. However, SC applications exist in which a single worker
cannot efficiently and independently perform a task, e.g.,
home improvement, major furniture installation, monitoring
the traffic condition in an area, or holding a barbecue party [8]–
[10], In such scenarios, each task needs to be assigned to
multiple workers, which is called group task assignment.

Several group task assignment approaches have been devel-
oped in SC. For example, Gao et al. [11] propose a Top-k
team recommendation problem in SC, called (TopkTR), and
also propose its variant (i.e., TopkTRL), which aim to rec-
ommend suitable crowdsourced teams for tasks. Considering
the cooperation of workers, Cheng et al. [8] propose a greedy
approach and a game-theoretic approach such that tasks can
be completed by multiple workers with high cooperation qual-
ities. However, the above studies are based on the assumption
that all workers in a worker group are willing to complete the
assigned tasks. However, in actual situations, some workers
may not be interested in the assigned tasks, which leads to
workers rejecting tasks or completing tasks with low quality.
Recently, Li et al. [12] propose a framework for group task
assignment based on worker groups’ preferences by taking
workers’ social impact into account. In this work we will go
further in this direction and use the mutual information among
workers to learn the group preference, and then optimize the
global task assignment based on group preference.

Next, we will use a motivation example to illustrate the
problem of group task assignment. In Figure 1, there are five
workers {w1, ..., w5}, and two tasks {s1, s2}. Each worker
has a current location and a reachable distance. Each task that
requires two workers to complete is associated with a location
in which it will be performed. Considering the spatio-temporal
constraints between workers and tasks (i.e., an assigned task
should be located in the reachable range of the corresponding
worker, and the worker should arrive at the location of the



assigned task before its deadline), s1 and s2 have three avail-
able worker groups, i.e., {{w1, w2}, {w2, w5}, {w1, w5}} and
{{w3, w5}, {w3, w4}, {w4, w5}}, respectively. Figure 1 also
shows the preference values of the two tasks for their available
worker groups. Without considering the group preference,
a general group task assignment problem is to maximize
the total number of assigned tasks, and we can get a task
assignment {(s1, {w1, w2}), (s2, {w3, w5})} that achieves the
optimal task assignment. However, the total preference value
of the task assignment is only 0.11, and the two assigned
worker groups have extremely low preferences for tasks s1
and s2. Under such an assignment, workers may refuse to
accept tasks or complete tasks with low quality.

To tackle this issue, we propose a data-driven framework
that assigns tasks by considering the preference of worker
groups. The framework consists of a Mutual Information-
based Preference Modeling (MIPM) phase and a Preference-
aware Group Task Assignment (PGTA) phase. The first phase
aims to model the preferences of each worker group for
different task categories. More specifically, we first maximize
the mutual information between worker representations and
group representations to train a discriminator, which aims
to adjust preference representation vectors of workers and
worker groups. Then, we use an attention mechanism to
obtain highly relevant worker members in worker groups,
and set different weights for each worker, so as to improve
the preference representation vector of each worker group.
Finally, group preferences for different task categories are
obtained through a prediction layer. In the assignment phase,
we first obtain available worker groups of each task without
violating the spatio-temporal constraints. Then we use a tree-
decomposition algorithm to assign a suitable worker group
to each task while giving higher priorities to the worker
groups that are more interested in the tasks. When applying
our solutions in the example in Figure 1, a task assignment
{(s1, {w1, w5}), (s2, {w3, w4})} with a higher total preference
value of 0.91 is obtained.

The contributions of this paper can be summarized as
follows:

1) To the best of our knowledge, this is the first work in SC
that considers the mutual information-based preference among
workers.

2) We give a data-driven solution to learn workers’ group
preferences by maximizing the mutual information among
workers based on an attention mechanism.

3) We perform the task assignment based on group prefer-
ences by adopting a tree-decomposition algorithm.

4) Extensive experiments are conducted with a real-world
dataset, where the results confirm the effectiveness of our so-
lutions. Our proposed model can not only assign more worker
groups to complete tasks, but also has a high completion rate
for the assigned tasks.

The remainder of this paper is organized as follows. Section
II introduces the related work and Section III provides nota-
tions and the proposed problem. In Section IV-B , we propose
a mutual information-based approach for worker group prefer-
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ence modeling. The preference-based group task assignment
algorithms are then presented in Section IV-C, followed by
the experimental results in Section V. Finally, we conclude
the paper in Section VI.

II. RELATED WORK

Spatial crowdsourcing (SC) is a new framework that has
emerged in recent years, requiring workers with GPS devices
to physically travel to a specific location under certain re-
strictions to perform spatial tasks [2], [13]–[20]. Most of the
existing studies focus on task assignment. Based on the task
publishing models, Kazemi et al. [21] divides SC into worker
selection task (WST) mode and server assignment task (SAT)
mode. Most of the research in the two modes is devoted to
finding ways to achieve a certain goal of task assignment,
e.g., maximizing the number of assigned tasks [7], [21]–
[24], maximizing the coverage of worker skills required by
tasks [9], or maximizing the total profit of the platform [15],
[25]. However, many studies on task assignment in SC put
their focus on allocating individual workers to tasks without
considering cooperation among workers. For a complex task,
such as e.g., home improvement, major furniture installation,
and monitoring the traffic condition in an area, a single worker
may not be able to complete it independently.

In the task assignment problem of SC, compared with
the single task assignment, group task assignment is more
complex, and there are few researches in this field. The recent
study [11] proposes a Top-k team recommendation problem
in SC, where a method to recommend suitable crowdsourcing
teams for each task. Cheng et al. [8] consider that the com-
pletion of complex tasks requires the cooperation of workers,
and propose a greedy method and a game-theoretic method
to assign multiple workers with high cooperative qualities to
complete a task together. However, most previous studies on
group task assignment did not consider whether the workers
are interested in the task, which may lead to the workers’
rejection of performing the task or low-quality completion of
the task.

Recently, Li et al. [26] use a bipartite graph embedding
model and the attention mechanism to learn the social impact-
based preferences of the worker groups for different categories



of tasks, and assign tasks to the groups according to their pref-
erences. In the study [26], social networks between workers are
used to reduce the sparseness of group-task interaction data.
However, it is often difficult for us to obtain additional infor-
mation such as social networks among workers. Therefore, the
method of improving sparsity through additional information
is no longer applicable. Unlike the above studies, our proposed
approach does not dependent on the additional information,
which uses the historical task-performing data to maximize
the mutual information among workers in order to learn the
informative representation vectors of groups and further learn
the group preferences.

III. PROBLEM DEFINITION

In this section, we will briefly introduce a set of prelimi-
nary concepts and then give our problem statement. Table I
summarizes the main symbols used in the paper.

TABLE I
SUMMARY OF NOTATIONS

Notation Definition
s Spatial task
S A set of tasks
s.l Location of spatial task s
s.p Published time of spatial task s
s.e Expiration time of spatial task s
s.c Category of spatial task s
s.numW Number of workers that s requires to be assigned
w Worker
W A set of workers
w.l Current location of worker w
w.r Reachable radius of worker w
w.on Online time of worker w
w.off Offline time of worker w
w.speed Movement speed of worker w
AWS(s) Available worker set of task s
AWG(s) Available worker group of task s
A A spatial task assignment

Definition 1 (Spatial Task): A spatial task, denoted by s =
(l, p, e, c,numW ), has a location s.l, a publication time s.p, an
expiration time s.e, a category s.c, and a number s.numW that
is the number of workers required to be assigned to perform
s.

Definition 2 (Worker): A worker, denoted as w = (l, r, on,
off ), includes a location w.l, a reachable distance w.r, an
online time w.on , and an offline time w.off . The reachable
area of the worker is a circular area with w.l as the center
and w.r as the radius, where worker w can accept the task
assignment. A worker can be in an online or offline mode.
When a worker is ready for a task (from the online time
w.on to the next offline time w.off ), the worker is online.
In addition, a worker also has an offline time w.off , after
which the worker cannot accept the task.

In group task assignment scenarios, a task s requires
multiple workers to complete it cooperatively, which is also
consistent with the actual reality. Workers can only handle one
task at a specific time, which is reasonable in actual situations.

Definition 3 (Available Worker Set): The available worker
set for a task s, denoted as AWS (s), is a set of workers that
satisfy the following conditions: ∀w ∈ AWS (s):

1) worker w is in an online mode, i.e., w.on ≤ tnow ≤
w.off , and

2) task s is located in the reachable range of worker w, i.e.,
d(w.l, s.l) ≤ w.r, and

3) worker w can travel from the origin to the location of
task s directly before it expires, i.e., tnow + t(w.l, s.l) ≤ s.e,
and

4) worker w can travel from the origin to the location of task
s directly before the offline time of w, i.e., tnow+t(w.l, s.l) ≤
w.off ,

where tnow is the current time, d(w.l, s.l) is the travel
distance between location w.l and location s.l, and t(w.l, s.l)
is the travel time between location w.l and location s.l.

For the sake of simplicity, we assume all workers share
same speed,i.e., t(w.l, s.l) = d(w.l, s.l). Because the time the
worker arrives at the task is not directly related to whether the
speed is uniform, the algorithm we proposed can also handle
the situation where workers move at different speeds.

In Figure 1, task s1 is located in the reachable ranges
of the online workers w1, w2, and w5. Further, w1, w2,
and w5 can arrive at the location of task s1 before the
expiration time of s and their offline time. Therefore, we
can get an available worker set {w1, w2, w5} for task s1, i.e.,
AWS (s1 ) = {w1, w2, w5}.

Definition 4 (Available Worker Group): Given a task s and
its available worker set AWS (s), the available worker group
for task s, denoted as AWG(s), should satisfy the following
three conditions:

1) all the workers in AWG(s) are available workers for task
s, i.e., AWG(s) ⊂ AWS (s), and

2) the number of the workers in AWG(s) is s.numW , i.e.,
|AWG(s)| = s.numW , and

3) each worker in AWG(s) can arrive at the location of
s before the offtimes of others in AWG(s), i.e., ∀wi, wj ∈
AWG(s), tnow + t(wi.l, s.l) ≤ wj .off .

For task s1 in Figure 1, its available worker set is
{w1, w2, w5}. Assuming that s1.numW = 2, we can obtain
three available worker groups for s1, i.e., {w1, w2}, {w1, w5},
and {w2, w5}. In the rest of this paper, we will use the terms
worker group and group interchangeably.

Definition 5 (Spatial Task Assignment): Given a set of
workers W and a set of tasks S, a spatial task assignment
is denoted as A, which contains a set of pairs of a task
and an AWG for the task: (s1,AWG(s1 )), (s2,AWG(s2 )),...,
(s|S|,AWG(s|S |)), where AWG(si) ∩ AWG(sj ) = ∅, and
1 ≤ i 6= j ≤ |S|.

For example, {(s1, {w1, w2}), (s2, {w3, w4})} and {(s1,
{w1, w5}), (s2, {w3, w4})} are two spatial task assignments in
Figure 1.

Preference-aware Group Task Assignment (PGTA)
Problem Statement. Given a set of workers W and a set
of tasks S at the current time on a SC platform, our problem
aims to find an optimal task assignment Ao that maximizes the



number of assigned tasks (i.e., ∀Ai ∈ A (|Ai.S| ≤ |Ao.S|))
while taking the preferences of worker groups into account,
where Ai.S denotes the set of tasks that are assigned to all
the workers for Ai, and A denotes all the possible ways of
assignments.

IV. FRAMEWORK

In this section, we will explain the details of our proposed
group task assignment framework. In reality, the groups in
group task assignment are often contingent, so the group-task
interaction data is often sparse. To overcome this problem, we
use mutual information maximization to capture the internal
information of workers and groups. At the same time, because
different workers play different roles in different groups, their
influence is also different. Therefore, we use an attention
mechanism to learn the weight of each worker in a group.
Finally, we learn the preferences of the worker groups for
tasks, and adopt a tree-decomposition algorithm to obtain the
optimal solution.

A. Framework Overview
As shown in Figure 2, the group task assignment framework

is mainly composed of two parts: 1) Mutual Information-
based Preference Modeling (MIPM) for worker groups, 2)
Preference-based Group Task Assignment (PGTA).

In the MIPM part, we use a method of maximizing mutual
information and an attention mechanism on worker-task inter-
action data and group-task interaction data to model worker
groups’ preferences. Considering that the preferences of work-
ers and groups are closely related, for each group, we contrast
the representations of the group members against those of non-
members (that do not belong to the group) with similar task-
performing history, and maximize the worker-group mutual
information to train a discriminator to regularize representation
vectors of workers and groups. In order to overcome the
sparsity of the group-task interaction data, we propose a
group-adaptive preference weighting technique. According to
the discriminator, we obtain highly relevant worker members
in each group and set different weights for each worker,
so as to use the workers’ personal preferences to improve
group preference representation vectors. Finally, the group
preferences for different task categories are obtained through
a prediction layer.

In the PGTA part, given workers and tasks to be assigned,
we first obtain the set of available workers AWG(s) for each
task s by considering the spatio-temporal restrictions (i.e.,
the reachable radius of the workers, the available time of
the workers, and the expiration time of the tasks). Then we
employ the optimal task assignment algorithm based on tree
decomposition to assign tasks to the appropriate worker groups
to maximize the total number of assigned tasks while giving
higher priorities to worker groups with higher preferences on
tasks.

B. Mutual Information-based Preference Modeling
In this section, we will introduce how to use historical

interaction data to model worker groups’ preferences. The
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Fig. 2. Framework Overview

main problem facing group preference modeling is the sparsity
of the group-task interaction data. We use mutual information
maximization for contrastive representation learning and uti-
lize a group-adaptive preference weighting technique to relief
the data sparsity. By aggregating the representation vectors of
each group member, we can obtain the representation vectors
of the worker groups. Then the representation vectors of the
worker groups can be used to calculate the preferences of each
worker group for all task categories, which will be used in the
task assignment phase.

1) Worker and Group Representation Learning: We use
W to represent the set of workers, C to represent the set of
task categories, and G to represent the set of worker groups.
Further, XWC represents the interaction matrix formed by
the interaction data of the worker-task category, and XGC

represents the interaction matrix formed by the interaction data
of the group-task category. We use wi and cj to denote the
latent representation vectors of worker wi and task category cj ,
respectively, where the worker representation vector denotes
the worker’s personal preference (stored in the worker-task
category interaction matrix XWC).

Worker Representation Learning. In order to obtain a
latent representation vector that can represent each worker’s
personal preference, we use a multi-layer perceptron with two



fully connected layers, shown as follows:

w = fe(w,Xw) = σ(KT
2 (σ(K

T
1 xw + b1)) + b2) ∀w ∈W

(1)
where w denotes the worker’ preference representation vector
of worker w, fe is a preference encoding function, Xw denotes
the worker-task category interaction matrix, and xw is is the
row corresponding to worker w in the matrix. We use a
nonlinear activation function σ(x) == − 1

1+exp(−x) to encode
the preference, where KT

1 and KT
2 are two learnable weight

matrices, and b1 and b2 are bias matrices.
Group Representation Learning. Since the preference of

the worker group depends on the preference of each group
member, in order to better obtain the representation vector of
the worker group, we use an attention mechanism [27]. The
attention mechanism can learn the contribution of different
group members to the group decision, as a result of which
each group member’s preference representation vector can be
weighted. The equation is as follows:

gi =
∑

wj∈gi

α(j, i)Kaggwj (2)

α(j, i) = − exp(hTKaggwj)∑
wk∈gi exp(h

TKaggwk)
(3)

where gi and wi denote the representation vectors of the
worker group gi and worker wj , respectively. Next, α(j, i)
is a learnable parameter representing the weight of worker
wj in the worker group gi, which can be calculated in
Equation 3, where hT represents the hidden layer parameters
of the attention network. A larger α(j, i) means that worker
wj can contribute more to the group decision.

2) Contrastive Representation Learning: We notice that
group activities often reflect the following two phenomena:
(1) the difference between different groups; (2) the connection
between members in a group. To capture these features, we
contrast the representation vectors of the members in a group
against those of non-members (that do not belong to the
group) with similar task-performing history, so as to effectively
adjust the latent representation vectors of workers and groups.
Moreover, inspired by the success of the Mutual Information
(MI) for measuring the dependence between variables [28],
we utilize MI for the contrastive representation learning. With
MI, we can learn useful information only from the data itself
without using additional data, which can reduce data sparsity
to some extent.

The MINE framework [29] verifies the flexibility and ef-
fectiveness of maximizing MI methods using discriminator
networks (i.e., classifiers), which can accurately distinguish
between positive samples taken from a joint distribution and
negative samples taken from a marg inal distribution. Through
such a contrast method, using a scoring function can increase
the score of positive cases and reduce the score of negative
cases.

More specifically, we maximize the mutual information
between workers and groups, i.e., the mutual information

between the representation vector of the group members
(obtained by Equation 1) and the representation vector of
the group (obtained by Equation 2), by training a contrast
discriminator network D : RF × RF 7→ R+, where D(w,g)
represents a score function of the worker-group pair. For the
members in group g, the higher the corresponding score.

Similar to the previous work [30], we use a simple bi-
linear function to calculate the score of the worker-group
representation pair, i.e., D(w,g) = σ(wTWg), where σ(·)
is a non-linear function and W is a learnable score matrix.
The positive sample (w,g) in the network D represents the
latent preference representation vector of the worker-group
pair (w, g), where w ∈ g. The negative example is denoted
as (w̃,g), where g represents the representation vector of the
worker group, and w̃ is the representation vector of the non-
members that do not belong to the group, where the non-
members are sampled from the negative sampling distribu-
tion Pn(w̃|g). We train the discriminator D using a noise-
contrast target, and calculate a binary cross-entropy (BCE)
loss function between the positive and negative samples, where
the positive and negative samples are sampled in the joint
probability distribution and marginal probability distribution
respectively. The optimization goal are shown in the following.

OMI = − 1

|G|
∑
g∈G

1

µg

[∑
w∈g

logD(w,g)

+

Mg∑
i=1

Ew̃∼Pn
log(1−D(w̃,g))

] (4)

where G denote all the worker groups, and µg represents the
sum of the number of workers in group g and the number of
workers negatively sampled from g, i.e., µg = |g|+|Mg|. Next,
D(w,g) denotes the score between worker w and group g,
and Ew̃∼Pn

log(1−D(w̃,g)) is the mathematical expectation
of log(1 − D(w̃,g)). The objective function is based on the
Jensen-Shannon (JS) divergence between the joint distribution
and the marginal distribution, thereby effectively maximizing
the mutual information between the worker representation
vector w and the worker group representation vector g [30].
We do not use the random sampling in the negative sampling
of workers, but prioritize the sampling of non-members who
have performed the tasks with category xg (xg represents
the row corresponding to worker group g in the group-task
interaction data XGC ). When training the discriminator, by
contrasting group members against non-members with similar
task execution histories, we can learn the discriminative char-
acteristics shared by group members, thereby improving the
representation vectors of workers and groups. We define the
negative sampling distribution as follows:

Pn(w̃|g) ∝ ηI(XT
w̃ · xg > 0) + (1− η) 1

|W |
(5)

where I is an indicator function, and η controls the sampling
ratio.



3) Group-adaptive Preference Weighting: In this section,
we describe the group adaptive preference weighting strategy,
which overcomes the sparsity of interactive data by giving
the relevant group members higher priority. First, we define
the loss functions of workers and groups. In the group-task
category interaction data XGC , we use a polynomial likeli-
hood equation to optimize the group loss function to obtain
the group representation vector g. The group representation
vector g is used as the input of a fully connected layer, and
then a softmax function is used to regularize the output of
the fully connected layer and generates the probability vector
π(g) for the task category C. The loss function measures the
KL distance between the regularized task-performing history
and the predicted probability that the task assigned to the
corresponding worker group, so the objective function of the
group is as follows:

Ogroup = −
∑
g∈G

1

|xg|
∑
i∈C

xgilogπi(g) (6)

where π(g) = softmax (KCg), and KC represents the weight
matrix of the prediction layer. Similarly, based on the poly-
nomial likelihood equation, using the worker-task interaction
data XWC to adjust the worker representation vector w, the
worker’s objective function is calculated as follows:

Oworker = −
∑
w∈W

1

|xw|
∑
i∈C

xwilogπi(w) (7)

Equation 7 is to predict the preferences of all the groups that
worker w belongs to based on w’s representation vector w,
which will lead to the overfitting problem since the group-
task interaction data is very sparse, and lack of flexibility
in applying preferences among different groups of workers.
In order to overcome this problem, we identify the group
members who are highly relevant to the group based on
contextual information, and then use the personal preferences
of the group members to improve the representation vector of
the group. In order to measure the contextual relevance, we
introduce the group-adaptive preference weighting for each
group member. Specifically, in the previous section, after
maximizing the mutual information, the discriminator D can
obtain the score, D(w,g), which can quantify the contextual
information of each worker-group pair (w, g). It means that for
workers with more information will have higher scores. We use
the discriminator score as the group adaptive preference weight
of group member w ∈ g. Then for each group member, we use
the weight D(w,g) to adjust the worker group representation
vector g. Equation 8 shows the objective function of the group-
adaptive preference weighting technique.

OWG = −
∑
g∈G

1

|xg|
∑
i∈C

∑
w∈g
D(w,g)xwilogπi(g) (8)

Then the objective function of the whole MIPM model is the
sum of the three objective functions including the MI maxi-
mization objective function (cf. Equation 5), the worker group
objective function (cf. Equation 6), and the group adaptive

preference weight user objective function (cf. Equation 8),
shown in Equation 9. We use a standard stochastic gradient
descent(SGD) strategy to minimize the objective function [31].

O = OMI +Ogroup + λOWG (9)

By optimizing the above objective function, we can obtain
the group representation vectors, and then obtain the group
preferences for different task categories through the prediction
layer, which will be introduced in Section IV-C1.

C. Preference-based Group Task Assignment

In this section, we first obtain the available worker group
sets for each task, and then we calculate the group preferences
for different task categories, based on which we adopt a tree-
decomposition algorithm [5], [32] to assign tasks to appropri-
ate worker groups.

1) Finding Available Worker Group Sets and Calculating
Group Preferences: According to Definitions 3 and 4, we can
obtain the available worker groups for each task s, denoted
as AWG(s) = {AWG1(s),AWG2(s), ...,AWG |AWG(s)|(s)},
where |AWG(s)| denotes the number of groups in AWG(s).

In the MIPM phase, for the worker group g, we can obtain
its representation vector g. Next, we input the representation
vector of this worker group into a prediction layer to obtain the
group preferences for different task categories. The prediction
layer is shown in Equation 10.

π(g) = softmax (KCg) (10)

where KC represents the weight matrix of the prediction layer.
In the previous section, we define the worker worker objective
function Oworker to regularizes the worker representations
with worker-task category interactions XW C , thus facilitating
joint training with shared encoder fe and predictor layers [33].
The calculated preferences of each worker group will be used
in the next phase.

2) Assigning Tasks based on Group Preference: In order
to assign suitable worker groups to tasks, we use an optimal
assignment algorithm based on tree decomposition [5], [32].
More specifically, we first construct a task dependency graph
G(V,E) for all the tasks, where each vertex represents a
task (i.e., v ∈ V if and only if sv ∈ S). If tasks su and
sv have the common available workers, then an edge e(u, v)
is added between vertices u and v. We use the Maximum
Cardinality Search (MCS) algorithm to separate all tasks of
the task dependency graph into clusters, each of which is a
maximal clique. Then we use the recursive tree construction
(RTC) algorithm to organize these clusters into a balanced
tree structure, where the sibling nodes in the balanced tree
do not share the common available workers. After getting the
tree, we use the depth-first search method to independently
solve the optimal assignment sub-problem on each sibling
node to find the global optimal assignment. During the search
process, we assign tasks to the available worker groups with
high preferences, i.e., we choose the group with the highest
preference for the current task when encountering different
worker groups.



V. EXPERIMENT

A. Dataset

Our experiment uses the check-in dataset from Twitter,
which provides check-in data in the United States from
September 2010 to January 2011 except Hawaii and Alaska,
including 62462 locations and 61412 user locations. The
dataset is used widely in the experimental evaluation of SC
platforms [34]–[36]. Since the dataset lacks the corresponding
category information of the venue, we use FourSquare’s API1

to generate its category information. Since the dataset lacks
information about the geographic location of workers and
tasks, for each worker and task, we take the average value of
the corresponding check-in location as its location information.
For each check-in, we simulate that the user is the worker,
and the venue accessed by the user is the task performed by
the worker. The release time of the task is set to the earliest
check-in time of the task in a day. Because the dataset does not
contain explicit worker group information, we set the distance
to be within a certain range (10km in the experiment), and
workers visiting the same category of tasks within a certain
period of time (1 hour in the experiment) are regarded as a
worker group. We use the category information of the venue in
18 kinds of check-ins to simulate the category information of
the task. A check-in record means that the worker has accepted
and completed the task.

TABLE II
EXPERIMENT PARAMETERS

Parameter Default value
Valid time of tasks, e− p 2.5 h
Available time of workers, off − on 3 h
Reachable radius of workers, r 10 km
Number of workers for each group, numW 2
Number of tasks, |S| 1000
Number of workers, |W | 3000

B. Baselines

In this experiment, we verify the efficiency and effectiveness
of our model by comparing the following methods:

1) OGTA: Optimal Group Task Assignment based on tree
decomposition without considering worker group preference.

2) AVG-OGTA: The OGTA algorithm with worker groups’
preferences calculated by the Average Preference Calculation
(AVG) method. In the AVG method, the average preference
of each worker group g can be calculated by

Nc
g

Ng
, where

N c
g denotes the number of task categories c performed by

the worker group g, and Ng denotes the number of all tasks
performed by the worker group g.

3) SIP-OGTA: The OGTA algorithm with worker groups’
social impact-based preference calculated by the SIP method.
SIP is a social impact-based preference (SIP) modeling algo-
rithm [12].

1https://developer.foursquare.com/

4) MIPM-GGTA: The Greedy Group Task Assignment
(GGTA) algorithm with worker groups’ preferences calcu-
lated by the Mutual Information-based Preference Modeling
(MIPM).

5) MIPM-OGTA: The OGTA algorithm with the Mutual
Information-based Preference Modeling (MIPM). That is the
algorithm proposed in our paper.

C. Experimental Setup

In order to verify the efficiency and effectiveness of base-
lines, three metrics including the CPU time, Assignment
Success Rate (ASR), and the number of task assignments are
compared among the baselines. The CPU time is the time cost
of task assignment at a certain moment. ASR is the ratio of
the number of successful assignments of all worker groups
to the total number of assignments in a time instance. In our
experiment, once a certain period of time (that is set to 1 hour
in our experiments) when all members of a group actually
perform (check in) tasks (locations) with the same category
which are close to each other (e.g., in our experiment, the
distance between tasks is required to be no more than 10 km),
the assignment of this task can be considered as a successful
assignment.

The default values of all parameters used in our experiments
are shown in Table II. All algorithms are implemented on
Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz with 32 GB
RAM.

D. Experiment Results

Effect of e − p. First, we evaluate the effect of tasks’ valid
time e− p on the performance of group task assignments (see
Figure 3). It can be seen that the CPU time of all algorithms
shows an increasing trend as the valid time of tasks increases.
This is because as the valid time of tasks increases, there will
be more groups of available workers, which leads to larger
search space. The CPU time of OGTA-related algorithms (i.e.,
MIPM-OGTA, SIP-OGTA, AVG-OGTA, and OGTA) shows
similar trends because these algorithms all use the optimal
task assignment algorithms based on tree decomposition and
have similar time complexity. As expected (see Figure 3(b)),
in terms of the success rate of task assignment, preference-
based task assignment algorithms (i.e., MIPM-GGTA, MIPM-
OGTA, SIP-OGTA, and AVG-OGTA) all increase when the
tasks’ valid time gets larger. The reason behind the im-
provement is that as e − p increases, the worker group will
have more opportunities to be assigned tasks of interest,
thereby improving the quality of task completion. The ASR
values of MIPM-OGTA and MIPM-GGTA are higher than
than those of AVG-OGTA and SIP-OGTA, which shows the
advantage of mutual information-based preference modeling.
As shown in Figure 3(c), the MIPM-GGTA algorithm has the
least number of task assignments, while the OGTA-related
algorithms (i.e., MIPM-OGTA, SIP-OGTA, AVG-OGTA, and
OGTA) can generate more task assignments, which shows
the superiority of the optimal task assignment algorithm.
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Therefore, it can be seen from Figure 3 that the MIPM-
OGTA algorithm guarantees both the success rate of task
assignment and the number of tasks assigned, which shows
the effectiveness of the algorithms proposed in this paper.

Effect of off − on . Next, we study how the available time
of workers affects the performance of group task assignment.
As shown in Figure 4(a), as the available time of workers
increases, the CPU time of all algorithms also gradually
increases. This is because the group of available workers for
each task also increases, resulting in a larger search space.
In terms of the success rate of task assignment, as shown
in 4(b), the larger the off−on, the ASR values of preference-
based algorithms show an increasing trend. The reason behind
it is similar to that of e − p, i.e., an SC platform has a
higher probability to assign tasks to workers who are interested
in it. The MIPM-OGTA and MIPM-GGTA algorithms have
similar task assignment success rates, while the number of

tasks assigned by MIPM-OGTA is significantly higher than
that of the MIPM-GGTA algorithm (see Figure 4(c)). This is
because the optimal task assignment algorithm outperforms the
greedy task assignment algorithm in terms of the number of
assigned tasks. In addition, the number of tasks assigned to all
algorithms gradually increases as the available time of workers
increases since that the available worker groups corresponding
to each task also increase.

Effect of r. In this part of the experiment, we further eval-
uate the effect of the reachable distance r of workers. It can
be seen from Figure 5(a) that when r increases, the CPU time
of all OGTA algorithms shows a similar growth trend. The
reasons behind this are the following: 1) all methods are based
on the tree-decomposition-based optimal task assignment; 2)
when the reachable distance of workers increases, the number
of the available worker groups for each task also increases,
resulting in a larger search space. The MIPM-GGTA algorithm
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still consumes the least CPU time, but its performance in
the number of task assignments is obviously not as good as
other OGTA-related algorithms (see Figure 5(c)). In addition,
as shown in Figure 5(b), with r increasing, the ASR value
also increases. This is because the group of workers can be
assigned their favorite tasks with a greater probability.

Effect of numW . Figure 6 shows the effect of the number
of workers in each group on task assignment performance. It
can be seen from Figure 6(a) that as numW increases, the
number of available workers for each task decreases, reducing
the search space in the task assignment process, so the CPU
time shows a downward trend. Since the number available
worker groups corresponding to each task decreases with the
increase of numW , the task is less likely to be assigned to
a suitable group where workers are interested in this task.
As a result, the ASR value shows a downward trend (see
Figure 6(b)). In addition, as shown in Figure 6(c), the OGTA-

related algorithms perform similarly in terms of the number
of tasks assigned, and the MIPM-GGTA algorithm assigns the
fewest tasks.

Effect of |S|. We study the scalability of the algorithms
by changing the size of the number of tasks |S|. It can be
seen from Figure 7(a) that the CPU time is increasing. At
the same time, we can conclude that the CPU time of the
OGTA-related algorithms is higher than that of the GGTA-
related algorithms. This is because as the number of tasks
increases, the OGTA-related algorithms will cause additional
tree construction, and searching these trees costs more CPU
time. The total number of tasks assigned by MIPM-GGTA
is less than those of OGTA-related algorithms (i.e., MIPM-
OGTA, SIP-OGTA, AVG-OGTA, and OGTA). In addition,
MIPM-OGTA performs better in terms of assignment success
rate and task assignment number (see Figures 7(b) and 7(c).
With the increase of |S|, a worker group can access the



tasks that they are more interested in, so the ASR value
increases. Moreover, each task corresponds to more available
worker groups, so the number of assignments for the task also
increases.

Effect of |W |. In the final set of experiments, we evaluate
the effect of our proposed algorithms on group task assignment
performance. As shown in the Figure 8(a), the larger the |W |,
the longer the CPU time. This is because more and more
available workers need to be assigned, which leads to longer
time overhead. The reason behind it is similar to the effect
of |S|, that is, more workers will cause more decomposition
and search of the tree in the OGTA procedure, which will
consume more CPU time. From the task assignment success
rate in Figure 8(b), all preference-based algorithms show an
increasing trend with the increase of |W |, and the number
of task assignments is also increasing (see Figure 8(c)). In
summary, it can be seen that MIPM-OGTA performs well in
terms of the number of assigned tasks and the success rate of
task assignment.

VI. CONCLUSION

In this paper we propose and offer solutions to a SC
problem called Preference-aware Group Task Assignment
(PGTA), which aims to find the optimal task assignment with
maximal number of assigned tasks while considering worker
groups’ preferences. In order to relief the data sparsity, we
give a Mutual Information-based Preference Modeling method,
which learns the group preferences by maximizing the mutual
information among workers and using an attention mechanism
to model the contributions of different group members. Based
on these group preferences, a tree-decomposition approach is
adopted to achieve the optimal task assignment. To the best
of our knowledge, this is the first study in SC that considers
group preferences by exploring the mutual information among
workers. An empirical study based on a real dataset confirms
the superiority of our proposed algorithms.
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