
Profit-driven Task Assignment in Spatial Crowdsourcing

Jinfu Xia1 , Yan Zhao1∗ , Guanfeng Liu2 , Jiajie Xu1 , Min Zhang1 and Kai Zheng3†

1Institute of Artificial Intelligence, School of Computer Science and Technology, Soochow University
2Macquarie University

3University of Electronic Science and Technology of China
jfxia@stu.suda.edu.cn, zhaoyan@suda.edu.cn, guanfeng.liu@mq.edu.au,

{xujj, minzhang}@suda.edu.cn, zhengkai@uestc.edu.cn

Abstract

In Spatial Crowdsourcing (SC) systems, mobile
users are enabled to perform spatio-temporal tasks
by physically traveling to specified locations with
the SC platforms. SC platforms manage the sys-
tems and recruit mobile users to contribute to the
SC systems, whose commercial success depends on
the profit attained from the task requesters. In order
to maximize its profit, an SC platform needs an on-
line management mechanism to assign the tasks to
suitable workers. How to assign the tasks to work-
ers more cost-effectively with the spatio-temporal
constraints is one of the most difficult problems
in SC. To deal with this challenge, we propose a
novel Profit-driven Task Assignment (PTA) prob-
lem, which aims to maximize the profit of the plat-
form. Specifically, we first establish a task reward
pricing model with tasks’ temporal constraints (i.e.,
expected completion time and deadline). Then we
adopt an optimal algorithm based on tree decom-
position to achieve the optimal task assignment and
propose greedy algorithms to improve the compu-
tational efficiency. Finally, we conduct extensive
experiments using real and synthetic datasets, veri-
fying the practicability of our proposed methods.

1 Introduction
Recent years have witnessed a revolution in Spatial Crowd-
sourcing (SC), where people with mobile sensing facilities
can move as sensors and participate some location-based
tasks instantaneously [Deng et al., 2015; Tong et al., 2016a;
Tong et al., 2016b; Song et al., 2017; Li et al., 2015;
Zhao et al., 2017; Tong et al., 2018a; Tong et al., 2017;
Tong et al., 2018b]. A typical SC system consists of a
platform, task requesters and mobile workers. The role of
platform is to provide task assignment services to task re-
questers and encourage workers to contribute the system.
Most existing research in SC focuses on task assignment
with different optimization strategies [Cheng et al., 2015b;
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Cheng et al., 2015a; Zhao et al., 2019a]. Although task as-
signment has been studied for many years to improve the per-
formance of SC, problems have been long-standing remain,
which include how to optimize the profit for SC platform.

A primary driving force of the SC platform is its inherent
cost effectiveness. In other words, it is in the SC platform’s
interests to maximize the profit during task assignment. Al-
though several SC applications have been proposed, most of
them assume that the SC platform assigns tasks to mobile
workers voluntarily without considering the profit of SC sys-
tem [Jain et al., 2009; Cooper et al., 2011], which are often
difficult to engineer non-monetary incentive schemes for te-
dious and repetitive work [Singer and Mittal, 2013] and un-
realistic for commercial SC platform due to its profit-driven
nature. Moreover, workers are not willing to perform the as-
signed tasks without actual payments or credits as they have
various participation cost (e.g., mobile device battery energy
cost for sensing and data processing). Several profit-based
task assignment mechanisms have been developed in crowd-
sourcing system. For instance, considering the profit of plat-
form, Yang et al. [Yang et al., 2012] design incentive mecha-
nisms for mobile crowdsourcing systems based on two sys-
tem models (i.e., platform-centric and user-centric model),
but they mainly focus on improving the computational effi-
ciency instead of improving the profit. [Shah-Mansouri and
Wong, 2015] proposes a profit maximizing truthful auction
mechanism, in which the platform acts as an auctioneer and
workers act as sellers submitting their bids to the platform.
However, when assigning tasks, the above researches fail to
consider the spatio-temporal constraints, which play an es-
sential role in SC. Meanwhile, they improve the total profit
for the platform by designing different incentive mechanisms
instead of paying attention to task assignment process.

Fig. 1 illustrates an example of profit-based task assign-
ment problem with five workers (indicated as {w1,...,w5})
and three tasks (shown as {s1, s2, s3}). Each worker is asso-
ciated with her current location and reachable distance range
(marked as w.r). Each task, published and expired at differ-
ent time instances, is labelled with its workload (s.wl) and
reward information (i.e., penalty rate s.pr and maximum re-
ward s.maxR). The problem is to assign tasks to the suitable
workers so as to maximize the total platform profit. In SC, it
is intuitive to assign the nearby tasks to workers without vi-
olating the spatio-temporal constraint, referred to as shortest
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Figure 1: Running example

distance priority algorithm. Therefore, we can obtain a task
assignment, {< s1, w2 >,< s2, w1 >,< s3, w3 >} (shown
in blue arrow lines in Fig. 1), with the platform profit of 5.7
(we assume the platform gets 80% of the reward as its profit).
However, this assignment algorithm leaves w4 and w5 unas-
signed, which may contribute more profit for SC platform.

To address these challenges, we propose a profit-based task
assignment framework that links the task assignment process
with its economic performance in profit. We first formulate
the Profit-driven Task Assignment (PTA) problem and show
it is NP-hard. Then we establish a reward pricing model with
the task’s temporal constraints, wherein the total reward is
directly associated with the payment of task requesters and
the processing time of the task. When it comes to task as-
signment, we introduce an exact tree-decomposition-based
algorithm that finds the optimal assignment result in terms
of the total platform profit. For the sake of efficiency, we pro-
pose a Greedy Task Assignment (GTA) algorithm that tries
to give priority to the tasks with the highest possible reward
per unit of work and assign the closest worker to this task un-
til it is finished before its expected completion time. Mean-
while, GTA with two Random Tuning Optimization strate-
gies (GTA-RTO) are developed to prune the non-promising
worker-task assignment pairs. The red arrow lines in Fig. 1
depict the task assignment by our GTA-RTO algorithm that
generates the profit of 8.72.

Our primary contributions can be summarized as follows:
1) We formulate a PTA problem in SC. To the best of our

knowledge, this is the first work that aims to maximize the
profit for SC platform during task assignment process.

2) We develop a reward pricing model by considering both
task’s expected completion time and task’s expiration time.

3) We develop both optimal and greedy task assignment
algorithms to address the proposed problem.

4) Extensive experiments are conducted to verify the effec-
tiveness and efficiency of the proposed methods.

2 Problem Statement
We define a set of preliminaries and formulate our PTA prob-
lem.

Definition 1 (Spatial Task) A spatial task, denoted by s =
< s.l, s.p, s.e, s.d, s.wl, s.maxR, s.pr >, is a task to be
performed at location s.l, published at time s.p, expected to
be finished at time s.e and will expire at deadline s.d. Each

task is also labelled with a required workload s.wl to finish
task s by a normal worker (we simply use the time required
to finish a task to denote s.wl). s.maxR is the maximum
reward the task requester can provide and s.pr is a penalty
rate, which establishes a correlation between completion time
and reward.
Definition 2 (Worker) A worker, denoted by w = < w.l,
w.r >, is a person who is able to perform tasks only if she
is paid. A worker is associated with her current location w.l
and her reachable circular range with w.l as the center and
w.r as the radius, in which w can accept assignment of tasks.
Definition 3 (Available Worker Set) Given a task s to be
assigned and a set of workers in the vicinity of s, the available
worker set for task s, denoted as AWS(s), should satisfy the
following two conditions: ∀w ∈ AWS(s),

1) tnow + t(w.l, s.l) < s.d, and
2) d(w.l, s.l) ≤ w.r, and
3)

∑
w∈AWS(s) w.wl(s) = s.wl,

where tnow is current time, t(a, b) is travel time from location
a to b, d(a, b) is travel distance from location a to b, and
w.wl(s)(> 0) is the workload assigned to w to finish s.
Definition 4 (Platform Profit) Given a task s to be assigned
and an available worker set AWS(s) for s, the profit of SC
platform can be computed as PAWS(s) = αRAWS(s), where
PAWS(s) and RAWS(s) (0 ≤ RAWS(s) ≤ s.maxR) are the
profit of SC platform to finish s and the reward of s (i.e., the
payment the task requirer provides) respectively when assign-
ing task s to workers in AWS(s), and α (0 < α < 1) is a
parameter controlling the earnings that SC platform obtains
from the task reward. The reward of s, RAWS(s), will be
elaborated in Section 3.

Note that we simply assume the profit of an SC platform
is in proportion to the reward (e.g., the profit is 20% of the
reward when α = 20%) and the remaining reward will be al-
located to workers. We just focus on the profit of SC platform
while ignoring the reward allocation mechanism of workers.
Definition 5 (Optimal Available Worker Set (OptAWS))
An available worker set, AWS(s), is optimal if every of
its proper subsets can only achieve a less-than-PAWS(s)

platform profit.
Definition 6 (Spatial Task Assignment) Given a set of
workers W and a set of tasks S, a spatial task assignment,
denoted by A, consists of a set of < task,AWS > pairs
in the form of < s1, AWS(s1) >, < s2, AWS(s2) >,. . . ,
< s|S|, AWS(s|S|) >, where

⋂|S|
i=1AWS(si) = ∅.

Let A.P denote the total profit of SC platform for task as-
signment A, i.e., A.P =

∑
<s,AWS(s)>∈A PAWS(s), and A

denote all possible ways of assignments. The PTA problem
can be formally stated as follows: given a worker set W and
a task set S, the PTA problem aims to find the global optimal
assignment Aopt, such that ∀Ai ∈ A, Ai.P ≤ Aopt.P . We
then prove the hardness of PTA problem.
Theorem 1 The PTA problem is NP-hard.

Theorem 1 can be proved by doing the reduction from the
0-1 knapsack problem, which is proven to be NP-hard [Vazi-
rani, 2013].
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3 Reward Pricing Model Construction
In order to design a cost-effective task assignment algorithm,
a reasonable reward pricing model has to be established firstly
to quantify the temporal constraints of tasks. In particular, we
consider a single task s and one of its available worker set,
where the the requester specifies the task’s expected comple-
tion time s.e, deadline s.d, maximum reward s.maxR and
penalty rate s.pr. The model focuses on the task comple-
tion time and reward (i.e., the requester’s real payment for the
task), which are directly associated with the platform profit.

Definition 7 (Task Completion Time) Given a task s and
an available worker set AWS(s), the task’s completion time
can be calculated as follows:

T (AWS(s)) = s.t0 +

∑
w∈AWS(s) (aw(s.l)− s.p) + s.wl

|AWS(s)|
,

where s.t0 (s.t0 ≥ s.p) is the assignment time, from
which we assign task s to worker set AWS(s), aw(s.l)
is the arrival time of w at task s, s.wl is the required
workload (i.e., the required time to complete task s) and∑

w∈AWS(s) (aw(s.l)−s.p)+s.wl

|AWS(s)| denotes the time beginning
from s.t0 and ending to the completion of task s.

With the two main time (i.e., s.e and s.d) and maximum
reward constraints, the mathematical model (shown in Fig. 2)
of the real reward can be expressed as followed:

RAWS(s) =
s.maxR, T (AWS(s)) ≤ s.e
s.maxR− s.pr∗
(T (AWS(s))− s.e), s.e < T (AWS(s)) ≤ s.d
0, T (AWS(s)) > s.d

where T (AWS(s)) is s’s completion time with AWS(s).

4 Task Assignment
4.1 Optimal Task Assignment (OTA)
It is easy to know that the global optimal result is the union
of one possible Optimal Available Worker Set (OptAWS) of
all tasks. In this section, we apply a tree-decomposition-
based algorithm [Zhao et al., 2017; Zhao et al., 2019b] to
achieve the optimal task assignment, which consists of fol-
lowing steps:

1) Find the reachable workers for each task. The reachable
worker subset for a task s, denoted as RWs, should satisfy

the following conditions: ∀w ∈ RWs, t(w.l, s.l) ≤ s.d and
d(w.l, s.l) ≤ w.r. The above two conditions guarantee that
w can reach s directly before it expires in her reachable range.

2) Find OptAWSs for each task. Given the reachable
worker set for each task, we can utilize a dynamic program-
ming algorithm that iteratively expands the sets of tasks in
the ascending order of set size and find all OptAWSs in each
iteration. The process is omitted due to space limit.

3) Apply the tree-decomposition-based algorithm [Zhao et
al., 2017] to find the optimal task assignment with maximal
profits. In particular, we first use a tree-decomposition tech-
nique to separate all tasks into independent clusters (i.e., tasks
in different clusters do not share same available workers) and
organize them into a tree structure, such that the tasks in sib-
ling nodes of the tree do not share the same available workers.
Then the tree can be traversed in depth-first manner to find the
optimal assignment.

Consider the example in Fig. 1. With OTA algorithm, we
can get the profit of 8.72 for SC platform.

4.2 Greedy Task Assignment (GTA)
For the sake of efficiency, we propose a basic Greedy Task
Assignment (GTA) solution to solve the PTA problem by giv-
ing higher priorities to the tasks with higher reward per unit
of work and workers with less travel cost.

The procedure of GTA is shown in Algorithm 1, which
takes a worker set W and a task set S as input, and returns
a suitable task assignment set A, unassigned worker set W ′
and unassigned task set S′. We first sorts the tasks in S′ in
descending order according to their reward per unit of work
(line 2). Then for each task s in S′, we try to assign the first
arrival worker in W ′ to perform s until s can be completed in
expected time s.e (line 3-13). If there are no sufficient work-
ers to complete task s, s will be skipped and the workers will
not be assigned (line 7-8). The time complexity of GTA is
O(max{|S| · log |S|, |S| · |W | · log |W |}). GTA can obtain a
task assignment, {< s2, {w1, w2, w5} >,< s3, {w3, w4} >},
with the profit of 5.3 in Fig. 1.

4.3 GTA with Random Tuning Optimization
GTA is a polynomial-time greedy algorithm that finds a task
assignment set A with promising solutions. However, there
are some issues in GTA. First, GTA always tries to complete
a task in expected completion time while ignoring its penalty
rate, which is also related to the final profit. Moreover, GTA
assigns the closest workers without considering time utiliza-
tion ratio of workers. For instance, when a task is far away
from all the workers, assigning the closest workers to perform
this task may lead to a low profit for the whole platform.

To overcome these limitations, we improve GTA with Ran-
dom Tuning Optimization (GTA-RTO), which contains two
tuning strategies: coarse and fine tuning. Coarse tuning ran-
domly abandons the low-valuable tasks (e.g., tasks with low
time utilization ratio of workers) and fine tuning randomly
reassigns partial workers to find a better task assignment.

GTA-RTO is shown in Algorithm 2, which starts from a
pre-assignment by GTA (line 1). Then the current task assign-
ment A′(= A), unassigned worker set W ′ and unassigned
task set S′ enter in the tuning loop (line 3 - 12), wherein the



Algorithm 1 GTA
Input: W , S
Output: A, W ′, S′

1 A = ∅, W ′ = W , S′ = S;
2 sorting tasks in S′ according to s.maxR

s.wl in descending
order;

3 foreach s ∈ S′ do
4 Wassign = ∅;
5 sorting workers in W ′ according to their arrival

time in increasing order;
6 while s is not completed in expected time do
7 if W ′ is ∅ then
8 break;
9 w = closest worker in W ′;

10 Wassign = Wassign ∪ {w};
11 if s is completed then
12 A = A ∪ {< s,Wassign >};
13 S′ = S′ − {s}; W ′ = W ′ −Wassign;

14 return A, W ′, S′;

Algorithm 2 GTA-RTO
Input: W , S
Output: A

1 A′,W ′, S′ = GTA(W,S);
2 A = A′;
3 repeat
4 A′, W ′C , S′C = CT(A′);
5 W ′ = W ′ ∪W ′c; S′ = S′ ∪ S′C ;
6 A′, W ′P , S′P = FT(A′);
7 W ′ = W ′ ∪W ′c; S′ = S′ ∪ S′C ;
8 AG, W ′, S′ = GTA(W ′, S′);
9 A′ = A′ ∪AG;

10 if A′.P > A.P then
11 A = A′;

12 until there is no improvement until n rounds;
13 return A;

Coarse Tuning (CT) algorithm and Fine Tuning (FT) algo-
rithm are invoked in order, followed by GTA. Specifically,
we first apply CT algorithm with A′ as input to generate an
unassigned worker set W ′C and an unassigned task set S′C as
well as a modified A′ (line 4). Then worker set W ′ and task
set S′ are updated (line 5). In the similar way, we update A′,
W ′ and S′ by invoking FT (line 6 - 7). GTA is invoked to
generate a task assignment AG based on W ′ and S′ (line 8).
Subsequently, a new task assignment is updated by the union
of A′ and AG. Once the profit of A′ is higher than that of A,
we replace A with A′ (line 9- 11). Algorithm 2 stops when
there is no improvement for n rounds, in which n can be spec-
ified by the SC platform.

Coarse Tuning (CT)
CT aims to abandon the low-valuable tasks. The possibility
PCT
s,W that task s with assigned worker set W will be aban-

Algorithm 3 CT
Input: A
Output: A′, W ′, S′

1 A′ = A,W ′ = ∅, S′ = ∅;
2 foreach task-worker pair < s,AWS(s) > ∈ A′ do
3 calculate pCT

s,AWS(s) based on Equation 1;
4 if pCT

s,AWS(s) < ζ then
5 A′ = A′− < s,AWS(s) >;
6 S′ = S′ ∪ s; W ′ = W ′ ∪AWS(s);

7 return A′, W ′, S′;

doned in CT is defined as follows:

PCT
s,W = pCT

m + pCT
t ∗

∑
w∈W aw(s.l)− s.p

(T (W )− s.p) ∗ |W |

+ pCT
r ∗ (1− R(s,W )

s.maxR
), (1)

where pCT
m + pCT

t + pCT
r = 1, T (W ) is the completion time

of task s with assigned worker set W , R(s,W ) is the final
reward of task s, and aw(s.l) is the time worker w arrives at
task s.

∑
w∈W aw(s.l)−s.p

(T (W )−s.p)∗|W | represents the travel time ratio of

workers to complete task s and R(s,W )
s.maxR is the rate of return.

pCT
m is the minimum possibility that a task can be abandoned.
pCT
t and pCT

r are the parameters controlling the contributions
of the time utilization ratio of workers and the rate of return.

CT algorithm is shown in Algorithm 3. The input variables
is task assignment set A. The output variables are a new task
assignment set A′, unassigned worker set W ′ and unassigned
task set S′. We first calculate the abandoned possibility of
each task s in A′ (line 3) and remove the task-worker pair
< s,AWS(s) > from A′ if the abandoned possibility (line 4
and 5) is less than a random number ζ (0 ≤ ζ ≤ 1).

Fine Tuning (FT)
In FT processing, no task will be completely abandoned and
only a small number of workers will be reassigned, ensuring
that tasks can be completed before deadline. The possibil-
ity PFT

s,w,W that worker w(∈ W ) assigned to task s will be
reassigned is defined as follows:

PFT
s,w,W = pFT

m + pFT
t ∗ aw(s.l)− s.p

T (W )− s.p
, (2)

where T (W ) is the completion time of task s with assigned
worker setW , and aw(s.l) is the time that workerw arrives at
task s. pFT

m is the minimum possibility that a worker will be
reassigned, pFT

t means how much the time utilization ratio of
worker w affects the possibility, and pFT

m + pFT
t = 1.

Algorithm 4 outlines the FT algorithm with same input and
output of CT algorithm. Firstly, we calculate the abandoned
possibility of each task s inA′ (line 4) and the reassigned pos-
sibility of each assigned worker w (line 5). Subsequently we
randomly remove one worker w from the current task assign-
ment by weights PFT

s,w,AWS(s) (i.e., a worker is more likely to
be removed with a higher weight) when the abandoned possi-
bility is less than a random number ζ (0 ≤ ζ ≤ 1) and s can
be finished without w (line 6 - 11).



Algorithm 4 FT
Input: A
Output: A′, W ′, S′

1 A′ = A,W ′ = ∅, S′ = ∅;
2 foreach task-worker pair < s,AWS(s) > ∈ A′ do
3 A′ = A′− < s,AWS(s) >;
4 calculate pCT

s,AWS(s) based on Equation 1;
5 calculate PFT

s,w,AWS(s) for each worker
w ∈ AWS(s) based on Equation 2;

6 while pCT
s,AWS(s) < ζ do

7 random choose a worker w by weights
PFT
s,w,AWS(s);

8 if s cannot be completed without w then
9 break;

10 AWS(s) = AWS(s)− {w};
11 W ′ = W ′ ∪ {w};
12 A′ = A′∪ < s,AWS(s) >;
13 return A′, W ′, S′;

Taking the case in Fig. 1, we employ GTA-RTO algo-
rithm to get the task assignment, i.e., {< s1, {w2, w5} >,
< s2, {w1} >, < s3, {w3, w4} >}, with profit of 8.72,
which is same with the profit generated by the OTA algo-
rithm. That demonstrates the superiority of our GTA-RTO
algorithm, which can obtain a near optimal result.

5 Experiment
5.1 Experimental Setup
We perform experiments on two datasets, gMission and syn-
thetic dataset. gMission is an open source SC platform [Chen
et al., 2014], where each task is associated with its publish
time, location and reward. Since gMission data is not as-
sociated with an expected completion time and penalty rate,
we generate the attributes following uniform distribution. For
synthetic dataset, based on the observation from real dataset,
the location and the publish time of a task follow uniform
distribution, and its maximum reward follows Gaussian dis-
tribution.

We evaluate performance of the following algorithms: 1)
OTA: Optimal Task Assignment; 2) GTA: basic Greedy Task
Assignment; 3) GTA + CT: GTA with Coarse Tuning; 4)
GTA + FT: GTA with Fine Tuning; 5) GTA-RTO: GTA with
Random Tuning Optimization (including coarse and fine tun-
ing); 6) k-MTA: Maximum Task Assignment [Kazemi and
Shahabi, 2012] with Minimum Cost Maximum Flow tech-
nique. In MTA, the weight between the worker (w) vertex
and task (s) vertex is set as 1

d(w.l,s.l) , and capacity between
the task vertex and the fictitious destination vertex is set to
k (k = 1, 2, 3). Two metrics are compared among the algo-
rithms: Profit-gaining Ratio (PR, the ratio between the real
and optimal total platform profit) and CPU time for finding
the task assignment. All the algorithms are implemented on
an Intel Core i5-2400 CPU @ 3.10G HZ with 8 GB RAM.
The default values of all parameters are summarized in Tab. 1.

Parameter Default value

Number of tasks 500 (gMission), 5000 (synthetic)
Number of workers 500 (gMission), 5000 (synthetic)
Early stop round n 10
Parameters in CT pCT

m = 0.2, pCT
t = 0.4, pCT

r = 0.4
Parameters in FT pFT

m = 0.4, pFT
t = 0.6

Table 1: Experiment parameters

5.2 Experimental Results
Effect of |S|. We first study the effect of |S|. In Fig. 3a
and 4a, naturally OTA achieves the highest profit-gaining ra-
tio (i.e., PR = 1), followed by GTA-RTO, GTA+FT, GTA+CT,
GTA and k-MTA. GTA-RTO can improve the total profit by
up to 25.56% when comparing with GTA. While the profits
generated by all the MTA methods decline with the growth
of |S|. In Fig. 3b, 3c, 4b and 4c, although the CPU cost of
all methods increases as |S| increases, the GTA related ap-
proaches perform better than the MTA approaches. OTA de-
teriorates much faster and cannot even return a result within
tolerated time when |S| > 400 in gMission dataset and
|S| > 7000 in synthetic dataset.

Effect of |W |. In Fig. 5a and 6a, GTA-RTO performs better
than all the other greedy methods and MTA algorithms when
|W | varies. Fig. 5b, 5c, 6b and 6c depict that all greedy meth-
ods run faster than OTA and MTA, showing the superiority of
the greedy methods.

Effect of pCT
m . In this part we evaluate the effect of pCT

m ,
a parameter in coarse tuning representing the basic proba-
bility when abandoning tasks. In Fig. 7a and 8a, GTA-RTO
achieves the highest profit among the greedy methods espe-
cially when pCT

m is a middle value, which reminds us that too
conservative and too aggressive strategies are not suitable.
In Fig. 7b and 8b, the CPU cost of coarse tuning increases
when pCT

m increases since a more radical exploration strategy
is more likely to make more workers reassigned. Besides, the
performance of GTA and GTA+FT k.pdf stable in Fig. 7 and 8
since only coarse tuning is affected by pCT

m . Due to the sim-
ilar results of gMission and synthetic dataset, we only report
the results of synthetic dataset in the subsequent experiments.

Effect of pFT
m . We also evaluate the effect of pFT

m , a basic
probability parameter in fine tuning. In Fig. 9a, compared
with the greedy approaches, GTA-RTO can obtain the high-
est profit. The CPU cost of fine tuning increases when pFT

m
increases (see Fig. 9b) with the same reason of the effect of
pCT
m . Moreover, the performance of GTA and GTA+CT does

not change in Fig. 9 since only fine tuning is affected by pFT
m .

Effect of n. Finally we study the effect of n, a parameter in
GTA-RTO determining the termination condition. GTA-RTO
will keep searching until the total profit stops improving for
n iterations. In Fig. 10a, the profit of GTA increases when n
grows since a higher n leads to a higher possibility to find a
better result. Obviously, the CPU cost of GTA increases in
Fig. 10b as n getting enlarged, since a higher n means more
iterations during searching process.
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Figure 3: Effect of |S| on gMission dataset
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Figure 4: Effect of |S| on synthetic dataset
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Figure 5: Effect of |W | on gMission dataset
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Figure 6: Effect of |W | on synthetic dataset

Cost and profit analysis. We compute the reward loss s.rl
(caused by overtime) for each task, i.e., s.rl = (s.tc− s.e)×
s.pr (when s.tc > s.e), where s.tc is task’s completion time,
and further get the average reward loss, r̄l. For the task s
that cannot obtain maximum reward from the requester, the
reward loss shows a linearly growth trend with the increas-
ing s.tc, matching the task reward pricing model. GTA with a
low r̄l can only assign a small number of tasks and MTA with
a high r̄l makes more tasks assigned, each of which gener-
ates a low platform profit. However, OTA and GTA-RTO can
achieve a high profit by trading off various factors compre-
hensively.

Summary of our empirical study. Our empirical study can
be summarize as follows: 1) OTA achieves the maximum
profit but sacrifices a great deal of efficiency; 2) GTA-RTO
achieves good balance between efficiency and effectiveness.
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Figure 7: Effect of pCT
m on gMission dataset
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Figure 8: Effect of pCT
m on synthetic dataset
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Figure 9: Effect of pFT
m on synthetic dataset
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Figure 10: Effect of n on synthetic dataset

6 Conclusions
In this paper we study a novel SC problem, called Profit-
driven Task Assignment (PTA), to find the optimal task as-
signment with maximal profit for SC platform. In order to
achieve high effectiveness and efficiency, we addressed a few
challenges by designing a reward pricing model to quantify
the relationship between the task reward and its completion
time, and developing optimal and efficient algorithms to as-
sign tasks. To the best of our knowledge, it is the first work
in SC that maximizes the profit from the point of SC plat-
form when assigning tasks. Extensive empirical study based
on both real and synthetic datasets confirms the superiority of
our proposed algorithms.
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Zoran Popović, et al. Analysis of social gameplay macros
in the foldit cookbook. In FDG, pages 9–14, 2011.

[Deng et al., 2015] Dingxiong Deng, Cyrus Shahabi, and
Linhong Zhu. Task matching and scheduling for multi-
ple workers in spatial crowdsourcing. In SIGSPATIAL,
page 21, 2015.

[Jain et al., 2009] Shaili Jain, Yiling Chen, and David C.
Parkes. Designing incentives for online question and an-
swer forums. In EC, pages 129–138, 2009.

[Kazemi and Shahabi, 2012] Leyla Kazemi and Cyrus Sha-
habi. Geocrowd: Enabling query answering with spatial
crowdsourcing. In SIGSPATIAL, pages 189–198, 2012.

[Li et al., 2015] Yu Li, Manlung Yiu, and Wenjian Xu. Ori-
ented online route recommendation for spatial crowd-
sourcing task workers. SSTD, pages 137–156, 2015.

[Shah-Mansouri and Wong, 2015] Hamed Shah-Mansouri
and Vincent W. S. Wong. Profit maximization in mobile
crowdsourcing: A truthful auction mechanism. In ICC,
pages 3216–3221, 2015.

[Singer and Mittal, 2013] Yaron Singer and Manas Mittal.
Pricing mechanisms for crowdsourcing markets. In WWW,
pages 1157–1166, 2013.

[Song et al., 2017] Tianshu Song, Yongxin Tong, Libin
Wang, Jieying She, Bin Yao, Lei Chen, and Ke Xu.
Trichromatic online matching in real-time spatial crowd-
sourcing. In ICDE, pages 1009–1020, 2017.

[Tong et al., 2016a] Yongxin Tong, Jieying She, Bolin Ding,
Lei Chen, Tianyu Wo, and Ke Xu. Online minimum
matching in real-time spatial data: Experiments and anal-
ysis. VLDB, 9(12):1053–1064, 2016.

[Tong et al., 2016b] Yongxin Tong, Jieying She, Bolin Ding,
and Libin Wang. Online mobile micro-task allocation in
spatial crowdsourcing. In ICDE, pages 49–60, 2016.

[Tong et al., 2017] Yongxin Tong, Libin Wang, Zimu Zhou,
Bolin Ding, Lei Chen, Jieping Ye, and Ke Xu. Flexible
online task assignment in real-time spatial data. VLDB,
10(11):1334–1345, 2017.

[Tong et al., 2018a] Yongxin Tong, Libin Wang, Zimu Zhou,
Lei Chen, Bowen Du, and Jieping Ye. Dynamic pricing in

spatial crowdsourcing: A matching-based approach. In
SIGMOD, pages 773–788, 2018.

[Tong et al., 2018b] Yongxin Tong, Yuxiang Zeng, Zimu
Zhou, Lei Chen, Jieping Ye, and Ke Xu. A unified ap-
proach to route planning for shared mobility. VLDB,
11(11):1633–1646, 2018.

[Vazirani, 2013] Vijay V Vazirani. Approximation algo-
rithms. Springer Science & Business Media, 2013.

[Yang et al., 2012] Dejun Yang, Guoliang Xue, Fang Xi, and
Tang Jian. Crowdsourcing to smartphones: incentive
mechanism design for mobile phone sensing. In Mobi-
Com, pages 173–184, 2012.

[Zhao et al., 2017] Yan Zhao, Yang Li, Yu Wang, Han Su,
and Kai Zheng. Destination-aware task assignment in spa-
tial crowdsourcing. In CIKM, pages 297–306, 2017.

[Zhao et al., 2019a] Yan Zhao, Jinfu Xia, Guanfeng Liu,
Han Su, Defu Lian, Shuo Shang, and Kai Zheng.
Preference-aware task assignment in spatial crowdsourc-
ing. In AAAI, pages 80–87, 2019.

[Zhao et al., 2019b] Yan Zhao, Kai Zheng, Yang Li, Han Su,
Jiajun Liu, and Xiaofang Zhou. Destination-aware task
assignment in spatial crowdsourcing: A worker decompo-
sition approach. TKDE, pages 219–233, 2019.


	Introduction
	Problem Statement
	Reward Pricing Model Construction
	Task Assignment
	Optimal Task Assignment (OTA)
	Greedy Task Assignment (GTA)
	GTA with Random Tuning Optimization
	Coarse Tuning (CT)
	Fine Tuning (FT)


	Experiment
	Experimental Setup
	Experimental Results

	Conclusions

