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Abstract
The conventional methods for the next-item rec-
ommendation are generally based on RNN or one-
dimensional attention with time encoding. They
are either hard to preserve the long-term depen-
dencies between different interactions, or hard to
capture fine-grained user preferences. In this pa-
per, we propose a Double Most Relevant Atten-
tion Network (DMRAN) that contains two layers,
i.e., Item level Attention and Feature Level Self-
attention, which are to pick out the most relevant
items from the sequence of user’s historical behav-
iors, and extract the most relevant aspects of rele-
vant items, respectively. Then, we can capture the
fine-grained user preferences to better support the
next-item recommendation. Extensive experiments
on two real-world datasets illustrate that DMRAN
can improve the efficiency and effectiveness of the
recommendation compared with the state-of-the-art
methods.

1 Introduction
A user’s next choice is relevant to her previous behaviors
[Wang et al., 2018; Zhou et al., 2018; Zhu et al., 2018;
Zhu et al., 2017]. Then, a typical personalized recommenda-
tion process can be naturally divided into the following steps:
(1) modeling the users’ historical behaviors to capture the
potential co-occurrence relationship between different items;
and (2) exploiting the co-occurrence relationship to predict
the next item that a user is likely to interact with. Here, the
co-occurrence relationships are also called sequential patterns
or dependencies.

Recently, inspired by the success of the attention mech-
anism [Bahdanau et al., 2015], the related models equip-
ping RNN with an attention mechanism have been proposed
and achieved good results in recommendations [Chen et al.,
2018; Khattar et al., 2018]. In contrast to RNN, the attention
mechanism can maintain a variable-length memory, and thus
provides complementary information to the sequence patterns
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Figure 1: An example of the difference between the one-dimensional
attention and the multi-dimensional attention

modeled by RNN. In addition, it can reduce the online ser-
vice delay and the time cost of offline training. Some studies
[Wang et al., 2018; Zhou et al., 2018] adopt a structure that
is only composed of the attention mechanism, as the attention
computation is parallel compared to the sequential computa-
tion of RNN.

Intuitively, a user interacts with an item, may just like some
aspects of the item. For example, as shown in Figure 1, a user
may buy a piece of clothing because of its style, rather than
the brand. In other words, the impact of different features of
an item on the next choice is different.

However, the existing attention based recommendations
[Wang et al., 2018; Zhou et al., 2018; Chen et al., 2018;
Yu et al., 2019; Yu et al., 2018] do not consider such dif-
ferent preferences. Specifically, this attention-based pooling
can be formulated asCj =

∑n
i=1 aij ~vi , where aij is a scalar

and measures the dependency between itemi and itemj , or
the attention of itemi to itemj . ~vi is an abstract representa-
tion of the i-th item in user historical interaction sequence. In
one-dimensional attention, each dimensional in ~vi will mul-
tiply by the same value of aij , and thus, different abstract
features/aspects of an item are assigned the same weight.

To this end, we propose Double Most Relevant Attention
Network (DMRAN) to learn the sequential patterns for the
next-item recommendation. Specifically, different from pre-
vious approaches, like ATEM [Wang et al., 2018] and LARN
[Pei et al., 2017], this method encodes the time signal by con-
verting continuous temporal features into discrete features,
and then performs Item Level Attention and Feature Level
Self-attention. By Item Level Attention, the uncorrelated in-
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terference items in the sequence of the historical behaviors
are initially filtered out, and thus it can reduce the size of
the sequence. By Feature Level Self-attention, the different
features of an item can be given different weights, and thus
it can capture more fine-grained user preferences, which is a
multi-dimensional self-attention. The main contributions of
our work are summarized as follows:

• To the best of our knowledge, this is the first method
that adopts two different levels of attention mechanisms
simultaneously for recommendations, which can capture
more fine-grained user preferences and generate a high-
level representation of a user.

• Our DMRAN has the advantages of one-dimensional at-
tention and multi-dimensional self-attention at the same
time, i.e., the good efficiency and effectiveness.

• We perform extensive experiments on two real-world
datasets. The results show our model outperforms
the state-of-art methods in terms of Area Under Curve
(AUC) and the training time.

2 Related Work
2.1 Sequential Recommendation
Recurrent Neural Networks (RNN) together with its vari-
ants LSTM and GRU have been widely applied in sequen-
tial recommendation, including session-based GRU [Hidasi
et al., 2016], dynamic recurrent model [Yu et al., 2016],
and hierarchical personalized RNN model [Quadrana et al.,
2017]. These RNN-based methods encode historical interac-
tion records into a latent state vector representing the prefer-
ences of a user. Although the state vector is able to capture
sequential patterns, it still suffers from several issues. For ex-
ample, it can hardly to be parallelized, and has low efficiency.
In addition, it can hardly to preserve long-term dependencies,
and emphasize the impact of the recent behaviors excessively.

Inspired by the capability of extracting local features and
good efficiency, CNN has been used in sequential recommen-
dation. Similar to the sentence embedding task [Vieira and
Moura, 2017], Caser [Tang and Wang, 2018] uses the 1-D
convolution layer and the max-over-time pooling layer to en-
code historical interactions into a vector to represent the pref-
erences of a user. However, in CNN, the fixed-size encoding
vector may not support both short and long sequences well.

2.2 Attention and Self-Attention
Attention has been widely used in, such as machine transla-
tion task [Bahdanau et al., 2015], and reading comprehen-
sion [Cui et al., 2017; Cheng et al., 2016], as it can preserve
the highly related elements by assigning different weights
for each element in a sequence. For the next-item recom-
mendation, the attention-based transaction embedding model
(ATEM) [Wang et al., 2018] can learn an attentive con-
text embedding that intensifies relevant items but downplays
those irrelevant to the next choice. Different from attention,
self-attention considers the inner-relations of a sequence, and
thus can learn the sequence patterns and internal dependen-
cies. Following the structure of Transformer [Vaswani et
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Figure 2: The architecture of DMRAN

al., 2017], ATRank [Zhou et al., 2018] transforms the inter-
action sequence into a new sequence via self-attention, and
has achieved good performance in the next-item recommen-
dation.

3 Problem Formulation
We first define notations used throughout the paper, and then
formalize the problem.

Let U =
{
u1, u2, . . . , u|U |

}
denote the set of users and

I =
{
i1, i2, . . . , i|I|

}
denote the set of items, where |U |

and |I| denote the number of elements in the set of User U
and Item I respectively. Our task focuses on personalized
recommendation, where we concern whether a user u ∈ U
had interacted with an item i ∈ I at relative time index t.
Hence each interaction record can be formulated as a tri-
tuple it(u) = 〈u, i, t〉. By sorting the interaction records in
ascending order according to the corresponding time signal,
we can form an interaction sequence for user u, denoted as
Su = (i1

(u), i2
(u), ...in

(u)), where n is the length of the in-
teraction sequence.

The task of personalized recommendation aims to rank all
items in a candidate set based on their probabilities that a user
will interacted with at the next time. Formally, the problem
can be defined as follows.

Input: The interaction sequences of all users, namely S ={
S1,S2, ...S|U |

}
.

Output: A personalized ranking model for recommenda-
tion, denoted as frec, which can output the k items that the
corresponding user is most likely to interact with at the next
time, when entering a user’s interaction sequence Su.

4 Double Most Relevant Attention Network
The overall architecture of DMRAN is shown in Figure 2.
Next, we discuss each of them in detail.

4.1 Input Embedding With Time Signals
Similar to discrete word symbols in natural language pro-
cessing [Mikolov et al., 2013], the original item IDs have
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very limited representation capacity. Therefore, our model
first employs a fully connected layer to embed item IDs (i.e.,
one-hot representations) into a continuous low-dimensional
space. Formally, let V ∈ Rde×|I| be a matrix consisting of
the item embedding, where de is the dimensionality of the
latent embedding spaces. In addition, to compensate for the
loss of temporal order information caused by abandoning the
sequence model RNN, following the ATRank [Zhou et al.,
2018], we split the time signals based on days into multi-
ple granularity, e.g., the continuous time signal in range of
[0, 1), [1, 2), [2, 4), . . . , [2k, 2(k+1)) can be mapped to the dis-
crete feature 0, 1, 2, . . . , (k+1), and then we can get a matrix
T ∈ Rde×(k+2) that includes the time signal embedding. It’s
worth noting that different behavior groups may have differ-
ent granularities of time slicing. Finally, we can encode the
behavior of a user it(u) = 〈u, i, t〉 as

uit = dense (Vi ⊕ Ti−t) (1)

where i-t is the result of tmapping; i and i-t index the ith and
(i-t)th column of V and T respectively; ⊕ is the concatena-
tion operator; dense() refers to a full connected layer. To
keep the notations simple, in the rest of this paper, we ignore
the subscript t and useui to replaceuit. Thus, the interaction
sequence Su can be encoded as a 2-D matrixH ∈ Rn×de .

H = (u1,u2, · · ·un) (2)

4.2 Item Level Attention
After the embedding, we will pick the informative items that
can reflect the user’s interests or relevant to the next choice
from the corresponding interaction sequence. Thus, one-
dimensional attention can be adopted, like ATEM [Wang et
al., 2018], where the items being more informative or rele-
vant to the next choice are given larger weights. Specifically,
the attention mechanism takes the interaction sequenceH as
input, and outputs a vector of weights a ∈ Rn:

e (uj) = ws2ReLU
(
Ws1uj

T
)

(3)

αj =
exp (e (uj))∑n
i=1 exp (e (ui))

(4)

a = (α1, α2, · · ·αn) (5)
where j ∈ {1, 2, ..., n}, Ws1 ∈ Rde×de , ws2 ∈ Rde , and the
attention score e (uj) is a scalar. E.q. 4 ensures the sum of the
computed weight αj equals 1.

Then we sum up the interaction sequence H according to
the weight provided by a to get a vectorm ∈ Rde :

m =
n∑
j=1

αjuj (6)

where m can be seen as an abstract representation of the
user’s interests. Inspired by the discovery of sentence embed-
ding task [Lin et al., 2017], this vectorm focuses on a special
set of related words or phrases, and only reflects an aspect of
the overall semantics of a sentence. Analogy to our task, the
vector representation m usually focuses a small proportion

items in the interaction sequence, and thus cannot cover all
interests of a user, especially for a long interaction sequence.
Thus, to represent the multifaceted and overall preferences of
a user, we perform multiple hops of attention and get multiple
and different vectors that focuses on different component of
the interaction sequence. For simplicity, the above process is
formalized:

A = softmax
(
Ws2ReLU

(
Ws1H

T
))

(7)

M = AH = (m1,m2, · · ·mr)
T (8)

where ws2 ∈ Rde is extended into Ws2 ∈ Rr×de ,
softmax() is performed along the second dimension of its
input, thus the vector a ∈ Rn becomes a weight matrix
A ∈ Rr×n, and the embedding vector m ∈ Rde becomes
a embedding matrix M ∈ Rr×de , where r is the number of
components that are expected to be extracted from the inter-
action sequence.

The above attention makes our model focus on the items
that can reflect the users’ multifaceted interests and can re-
duce the interference from the irrelevant items. Thus it can be
understood as a high level representation of one query “which
items are informative or relevant to the next choice?”.

4.3 Feature Level Self-attention
The affect of different features of an item to the next choice
is different and there are even some irrelevant features which
tends to overwhelm the influence of a few truly relevant ones.
Thus, to capture more fine-grained user preferences, we give
more attention on these relevant features, after picking out the
relevant items. Specifically, we propose a feature level self-
attention. Instead of computing a one-dimensional attention
scalar score for each element of a sequence, the feature level
self-attention computes a multi-dimensional alignment vector
for any two elements of a sequence.

Supposemi andmj are two vectors in embedding matrix
M , which represent two different components of the interac-
tion sequenceH respectively, so the attention f (mi,mj) ∈
Rde betweenmi andmj is:

f (mi,mj) =

Ws5 tanh(Ws4mi +Ws3mj + bs2) + bs1 (9)

where all the parameter matrices Ws3,Ws4,Ws5 ∈ Rde×de ,
the two bias terms bs1,bs2 ∈ Rde , and tanh() is a nonlinear
activation function.

Then, the alignment vector βij between mi to mj can be
computed by normalizing along each dimension by E.q. 10
and E.q. 11 as follows.

[βij ]k =
exp

(
[f (mi,mj)]k

)∑r
t=1 exp ([f (mi,mt)]k)

(10)

βij = ([βij ]1 , [βij ]2 , · · · [βij ]de) (11)

where k ∈ {1, 2, ...de}, [∗]k indexes the kth dimension of the
vector ∗, and a large [βij ]k means that the kth abstract fea-
ture ofmj is strongly relevant withmi. Finally, the output of
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this attention mechanism is still a matrix and its shape is con-
sistent with the corresponding M , denoted as M̂ ∈ Rr×de :

m̂i =
r∑
j=1

βij ◦mj (12)

M̂ = (m̂1, m̂2, · · · m̂r)
T (13)

Following the definition of Hadamard product1, we use ”◦” to
represent the element-wise product between two vectors with
the same shape.

To sum up, the feature level self-attention computes a
weight vector for each element. The more the relevant fea-
tures of an item, the larger the weight. This can model more
detailed dependencies between two interactions and capture
more fine-grained user preferences. The above process can
be viewed as another query “which features are the relevant
ones over the relevant items?”.

4.4 Downstream Application Network
After obtaining the matrix M̂ and matrixM , we need to sort
the candidate set Cu, according to the similarity between the
user’s interests and the corresponding item. The similarity
is usually expressed by a score of scalar, and the higher the
score, the higher the similarity [Zhou et al., 2018; Ying et al.,
2018]. Specifically, following ATRank [Zhou et al., 2018],
we employ vanilla attention and inner product to compute the
corresponding preference score scorec of the candidate item
c ∈ Cu, as follows:

h = fvanilla(M , ic) (14)

ĥ = fvanilla(M̂ , ic) (15)

hc = ffusion(h, ĥ) (16)

scorec = hcic (17)

where ic is the embedding of the candidate item c; the func-
tion fvanilla() represents the execution process of vanilla at-
tention [Vaswani et al., 2017; Zhou et al., 2018] that maps
the matrixM or M̂ to a vector h ∈ Rde or ĥ ∈ Rde through
the embedding ic, and the h or ĥ can be understood as a
overlap between the candidate item c and the user’s interests.
For flexibility and simplicity, the function fvanilla() can be
replaced by a mean operation along the second dimension of
the matrix M̂ orM in some scenarios; the function ffusion()
refers to the fusion operation by a dimension-wise fusion gate
[Shen et al., 2018].

4.5 Optimizing The Framework
Based on the above steps, we have built up the personalized
recommendation model frec. Then we consider how to train
this model.

Given the interaction sequence Su of user u, we take the
first (t-1) items and the tth item from it, denoted Sc and

1https://en.wikipedia.org/wiki/Hadamard product (matrices)

it, respectively. Then, we can construct such set Du =
{(Sc, it) | t = 2, 3, ..., n}. Recall our task is to predict the
most likely item which will be interacted by the user at the
next time, for the corpus S =

{
S1,S2, ...S|U |

}
, a natural

optimization objective to maximize is:

maximize L =
∏

Su∈S

∏
(Sc,it)∈Du

P (it | Sc) (18)

P (it | Sc) =
exp(scoreit)∑
j∈I exp(scorej)

(19)

With this definition, achieving the goal defined in E.q. 18
will force the item it to be the one that the user is most
likely to interact at the next time. Nevertheless, optimis-
ing the objective function is non-trivial since each evalu-
ation of the softmax function needs to traverse all items,
leading to expensive time cost. To reduce the complex-
ity, we employ the idea of negative sampling, which ap-
proximates the costly denominator term of softmax with
some sampled negative instances [Mikolov et al., 2013;
Yin et al., 2018].

Let NSu
(Sc) denote the negative instance for Sc, where

NSu
(Sc) /∈ Sc, we can then approximate the conditional

probability P (it | Sc) defined in E.q. 19 as:

P (it, NSu (Sc) | Sc) =
∏

z∈{it,NSu (Sc)}

P (z | Sc) (20)

where the probability P (z | Sc) is defined as:

P (z | Sc) =

{
σ (scorez) , if z = it
1− σ (scorez) , if z = NSu (Sc)

(21)

where σ denotes the sigmoid function 1/ (1 + e−x). By
replacing P (it | Sc) in E.q. 19 with the definition of
P (it, NSu (Sc) | Sc), we can get the approximated objec-
tive function to be optimized. Namely, the probability that
the ground-truth sample appears as the next should be max-
imized, whereas the probability that the negative sample ap-
pears as the next should be minimized.

Finally, the objective function can be defined as:

minimize LΘ = − log(L) + λ1‖Θuv‖2 + λ2‖Θa‖2

+ λ3

∥∥(AAT − I
)∥∥2

(22)

where Θ is the set of model parameters; Θuv = {U,V } is the
set of embedding of users and items; Θa is the set of weight in
model; the last item

∥∥(AAT − I
)∥∥2

is to punish redundancy
between different vectors [Lin et al., 2017], and thus can
learn multifaceted interests of a user.

5 Experiment
We aim to answer the following questions in our experiments:
Q1. How does DMRAN perform in terms of efficiency and

effectiveness, compared to the state-of-the-art methods?
Q2. How do Item Level Attention (ILA) and Feature Level

Self-attention (FLSA) affect the performance of DM-
RAN?

Q3. How does the key hyper-parameter r (i.e., the number of
rows in matrixM ) affect the performance of DMRAN?
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Dataset #Users #Items #Samples #Categories
Amazon Electronic 192,403 63,001 1,689,188 801
Amazon Clothing 39,387 23,033 278,677 -

Table 1: The details of the two datasets

5.1 Experimental Settings
Dataset
We perform experiments on two real-world datasets. The de-
tails of them are shown in Table. 1.

The Amazon datasets [McAuley et al., 2015] accumu-
late user behavior log, and we adopt its two subsets:
Electronics, and Clothing. For the interaction sequence
(i1

(u), i2
(u), ...in

(u)) for user u, we use the first k interaction
behaviors (i1

(u), i2
(u), ...ik

(u)) to predict the (k + 1)
th be-

havior ik+1
(u) in the training set, where k = 1, 2, . . . , n − 2,

and we use the first (n−1) behaviors (i1
(u), i2

(u), ...in−1
(u))

to predict the last one in(u) in the test set U t. In addition, in
our experiments, like ATRank, the category information of
each item is considered in Amazon Electronic dataset.

Evaluation Metrics
Same as ATRank [Zhou et al., 2018], our model is a ranking
framework which aims to further sort the candidate set deliv-
ered by a candidate generation model. Therefore, we adopt
the AUC metric shown in E.q. 23 to investigate how the pos-
itive samples being ranked over negative samples, which has
been widely used in evaluating the performance of ranking
frameworks in recommendations [Covington et al., 2016].

AUC =
1

|Ut|
∑

u∈Ut

1∣∣∣I+
u

∣∣∣ ∣∣∣I−
u

∣∣∣
∑

i∈I
+
u

∑
j∈I

−
u

δ (pu,i > pu,j) (23)

where I+u denotes the positive samples set for user u, and I−u
denotes the corresponding negative samples set. pu,i is the
predicted probability that a user u chooses item i in the test
set U t, it can be calculated by E.q. 19. δ(·) is an indicator
function which returns 1 if pu,i > pu,j , and 0 otherwise. Note
that, the higher the value of AUC, the better the quality of the
recommendation.

Baselines
We compare DMRAN with the following baseline meth-
ods, including one classic recommendation method (i.e.,
BPR-MF), three NN-based methods (i.e., Bi-LSTM, Bi-
LSTM+Attention, and CNN+Pooling), and one attention-
based method (i.e., ATRank), that is the most promising rec-
ommendation method.

• BPR-MF [Rendle et al., 2009]: This method optimizes
the matrix factorization (MF) model with a pairwise
ranking-aware objective and aims to maximize the dif-
ference between positive and negative items. BPR-MF
does not model the time signals.
• Bi-LSTM [Zhang et al., 2014]: This method imple-

ments an improved version of the Bi-LSTM network
for the next-item recommendation and employs ranking-
based loss functions for learning the model.
• Bi-LSTM+Attention: A vanilla attention [Vaswani et

al., 2017] is add on the top of the Bi-LSTM method.

Amazon
Electronic Clothing

BPR-MF 0.8022 0.6069
Bi-LSTM 0.8734 0.6590

Bi-LSTM+Attention 0.8766 0.6612
CNN+Pooling 0.8804 0.6696

ATRank 0.8910 0.6725
DMRAN No Time 0.8712 -

DMRAN Item 0.8896 0.6714
DMRAN Feature 0.8835 0.6468

DMRAN 0.8932 0.6779

Table 2: The AUC values of all models in the two datasets

• CNN+Pooling [Tang and Wang, 2018]: This method
adopts a 1-D convolution structure with max-pooling to
extract user preferences from their historical behaviors.

• ATRank [Zhou et al., 2018]: Inspired by the great suc-
cess of Transformer [Vaswani et al., 2017], this method
exploits multi-head self-attention mechanism to model
the users’ interaction sequences for capturing user pref-
erences.

In addition, to evaluate the impact of each part of our
model, we compare DMRAN with its three variants, denoted
as DMRAN No Time, DMRAN Item, and DMRAN Feature
respectively. DMRAN No Time does not consider the time
signal behind each historical behavior, DMRAN Item and
DMRAN Feature remove Feature Level Self-attention and
Item Level Attention from DMRAN, respectively.

Hyperparameter
All models are trained with stochastic gradient descent
(SGD). The learning rate starts at 1.0. The batch size, L2-
loss weight, and the size of all hidden layers are set to 32 or
16, 5e-5 or 1e-4, and 128, respectively. For DMRAN, we ap-
ply a gird search in {2, 5, 8, 10, 15, 20} for the special hyper-
parameter r i.e., the number of rows as shown in E.q. 8. In
addition, to ensure the robustness, the residual connection,
layer normalization and feed forward network [Vaswani et
al., 2017] are adopted for implementations.

5.2 Comparison Of Performance (Q1)
Table. 2 lists AUC values by the baseline methods, DMRAN
and its variants in Amazon Electronic and Clothing datasets.
From the table, we can observe:

(1) DMRAN always achieves the best performance, com-
pared with all other methods. Specifically, DMRAN im-
proves 0.24% and 0.80% of AUC compared with the second
best method (i.e., ATRank) in Amazon Electronic and Cloth-
ing datasets, respectively. This demonstrates the effectiveness
of DMRAN in capturing the fine-grained user preferences.

(2) DMRAN outperforms DMRAN No Time in Amazon
Electronic dataset. Specifically, the relative performance im-
provement is 2.52% of AUC. This fact indicates the good ef-
fectiveness of modeling the time signals in some scenarios.

Figure. 3 shows the evolution of AUC values in the Ama-
zon Electronic dataset along with the training procedure.
We can see that DMRAN converges fast, and compared to
ATRank, DMRAN does not lead to overfitting that causes a
rapid drop in AUC. This indicates the efficiency and effec-
tiveness of DMRAN in training the model parameters.
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Figure 3: The process of the AUC computation of all methods in
Amazon Electronic dataset
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Figure 4: The process of the AUC computation of DMRAN together
its variants in Amazon Electronic dataset

To sum up, compared to all baseline methods, DMRAN
can get the best ranking result with a good efficiency.

5.3 The Impact of ILA and FLAT (Q2)
Item Level Attention and Feature Level Self-attention are two
main parts of our model. We compare DMRAN with its two
variants, i.e., DMRAN Item and DMRAN Feature.

From the Table. 2, we can see that DMRAN Item achieves
better performance compared with DMRAN Feature. Based
on the statistics, the AUC value of DMRAN Feature is 0.69%
and 3.80% less than that of DMRAN Item in Amazon Elec-
tronic and Clothing datasets, respectively. In addition, the
AUC value of DMRAN Item is only 0.15% and 0.16% less
than that of the second best method (i.e., ATRank) respec-
tively. This indicates that Item Level Attention is essential
for our model and guarantees the effectiveness of DMRAN.

Figure. 4 shows the convergence process of DMRAN,
DMRAN Item, and DMRAN Feature in Amazon Electronic
dataset. We can see that DMRAN Item converges faster
than DMRAN, and DMRAN converges faster than DM-
RAN Feature. The reasons are as follows.

(1) Item Level Attention only computes a weight for
each item, but Feature Level Self-attention computes dif-
ferent weights for each features of each item. Thus DM-
RAN Feature converges slowly than DMRAN Item.

(2) Item Level Attention makes the interaction sequence
(i.e., H) into a shorter sequence (i.e., M ), while extract-
ing the relevant items. Thus, compared to DMRAN Feature,
DMRAN converges faster.

In addition, as shown in Table. 2, the AUC value of DM-
RAN is 0.40% and 0.96% more than that of DMRAN Item in
Amazon Electronic and Clothing datasets, respectively. This
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Figure 5: The AUC values by DMRAN based on different r values
in the two datasets

indicates that Item Level Attention can reduce the interfer-
ence of items that are irrelevant to users’ interests on Feature
Level Self-attention.

5.4 The Impact of Multiple Vectors (Q3)
Figure. 5 shows the AUC values by DMRAN based on differ-
ent r values in Amazon Electronic and Clothing datasets. We
can observe:

(1) When r = 2, the AUC value is the minimal in all the
cases. Specifically, the AUC values with r = 2 are 0.40%
and 1.08% less than that of the best performing DMRAN in
Amazon Electronic and Clothing datasets, respectively. This
indicates that multiple rows in the interaction sequence em-
bedding matrix M can provide complementary information
about the users preferences for better recommendations.

(2) The AUC value of DMRAN with r = 2 is 0.8896 in
Amazon Electronic test set. With the increase of the r value to
8 and 10, the AUC value increases to 0.8921 and 0.8932, re-
spectively. While when r reach to 15 and 20, the correspond-
ing AUC values drop to 0.8915 and 0.8910, respectively. This
is because: (i) At first, with the increase of r value, there will
be more information about users’ interests to be embedded in
the matrix M , and thus the AUC value increases. (ii) How-
ever, when r reaches a large value, some useless information
that does not match the users’ interests will be embedded in
the matrixM as well. Thus, the AUC value decreases.

6 Conclusion
In this paper, we have proposed a hierarchical fine-grained
Attention-based network (DMRAN) for the next-item recom-
mendation. Based on the two levels of attention mechanism
with time encoding, DMRAN not only intensifies relevant
items and downplays those irrelevant to the next choice, but
also picks out the relevant aspects of the relevant items. Fi-
nally, the fine-grained and dynamic user preferences can be
captured. Extensive validations on two real-world datasets
have demonstrated the superiority of DMRAN against other
state-of-the-art methods.
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