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Abstract
Next Point-of-Interest (POI) recommendation
is of great value for location-based services. Ex-
isting solutions mainly rely on extensive ob-
served data and are brittle to users with few
interactions. Unfortunately, the problem of
few-shot next POI recommendation has not
been well studied yet. In this paper, we pro-
pose a novel meta-optimized model MFNP,
which can rapidly adapt to users with few
check-in records. Towards the cold-start prob-
lem, it seamlessly integrates carefully designed
user-specific and region-specific tasks in meta-
learning, such that region-aware user prefer-
ences can be captured via a rational fusion
of region-independent personal preferences and
region-dependent crowd preferences. In mod-
elling region-dependent crowd preferences, a
cluster-based adaptive network is adopted to
capture shared preferences from similar users
for knowledge transfer. Experimental results
on two real-world datasets show that our model
outperforms the state-of-the-art methods on
next POI recommendation for cold-start users.

1 Introduction
POI recommendation has become an important sub-field
of recommender system [Feng et al., 2015; Liu et al.,
2016]. As a natural extension of general POI recommen-
dation, next POI recommendation [Cheng et al., 2013]
aims to predict which POI in a target region a user will
go next. Compared with the general POI recommenda-
tion, next POI recommendation focuses more on exploit-
ing sequential patterns hidden in the check-in sequence
to fulfill users’ current demands.

In the literature, existing methods adopt sequential
analysis models like improved RNN [Feng et al., 2018],
LSTM [Zhao et al., 2020], and GRU [Manotumruksa et
al., 2018] to capture dynamic user preferences for Next
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POI recommendation. However, the check-in records of
users may be sparse and insufficient to support effec-
tive model training, which impedes effective recommen-
dation of above methods for cold-start users [Luo et al.,
2020]. To help them identify potentially interested POIs,
some approaches solve the sparsity problem of cold-start
user by utilizing auxiliary information, such as geograph-
ical influence [Chang et al., 2018], cross-domain interac-
tions [Zhang et al., 2020] and social correlations [Cho et
al., 2011]. However, these approaches may recommend
same POIs for users with similar context, and neglect
users’ real interests accordingly. It thus calls for few-
shot models that can fully capture the preferences of
cold-start users.

Inspired by recent advances of meta-learning in few-
shot learning, some studies [Lee et al., 2019; Dong et al.,
2020] are proposed to adopt it to solve the cold start
problem in general recommendation. Meta-learning
learns the experience between similar tasks for quick
adaptation to new tasks with only a few training data.
The recommendation for each user is usually regarded
as a learning task, and a global parameter with strong
generalization ability is learned to guide model param-
eter initialization of each task. The initialized parame-
ters are then turned by target user’s check-in data, un-
til task-specific parameters are derived for personalized
recommendation. In this way, the preferences of cold-
start users can be effectively modelled through the ex-
perience of modelling preferences of users in warm state.
Since meta-learning has been proven to be successful for
general recommendation in cold-start scenarios [Bharad-
hwaj, 2019; Lu et al., 2020], it is a great opportunity for
few-shot next POI recommendation.

Different from general recommendation, next POI rec-
ommendation requires to consider the phenomenon of
user interest drift [Yin et al., 2016], since a user may
have different preferences in different regions. Exist-
ing meta-learning based methods derive personal pref-
erences through user-specific setting [Lee et al., 2019;
Dong et al., 2020], which neglect the above phenomenon.
Unfortunately, modelling personal preferences in region
granularity faces severe data sparsity problem.  To al-



leviate this sparsity problem, crowd preferences hidden
in all check-ins in this region can be integrated. Since
similar users always follow similar behaviour patterns,
the crowd preferences should be obtained from similar
users, instead of all users to avoid divergence. Besides,
it is also challenging to design meta-learning tasks that
can accurately model region-dependent user preferences
by transferring the knowledge of user and crowd prefer-
ences via adaptive fusion.

In this paper, we investigate few-shot next POI rec-
ommendation while considering the phenomenon of user
interest drift, and propose a Meta-optimized model for
Few-shot Next POI recommendation (MFNP in short).
In MFNP, we build a meta-learner for each user to
provide personalized model, based on their own check-
in records. Aside from user-specific tasks, our model
also consists of region-specific tasks to capture region-
dependent crowd preferences for the target region. To
better transfer shared preferences cross similar users, we
group all users by clustering first and adopt an adap-
tive network to balance the importance of crowd prefer-
ences of different user groups. At last, to address data
sparsity, a fusion method is proposed to adaptively fuse
personal preferences and region-dependent crowd prefer-
ences, such that region-dependent user preferences can
be modelled via knowledge transfer. The main contribu-
tions of this work are as follows:

• We propose a novel meta-optimized model, which
is the first to utilize meta-learning for few-shot
next POI recommendation. By considering user
interest drift, it integrates carefully designed user-
specific and region-specific tasks, such that region-
level user preferences can be captured by the trans-
ferred knowledge of personal and crowd preferences
via adaptive fusion.

• We propose a cluster-based adaptive network to
model more meaningful region-dependent crowd
preferences. By merging different types of crowd
patterns on clustered users, it ensures shared prefer-
ences to be shared among similar users, thus avoids
the divergence among different types of users.

• Experimental results on two real datasets show that
our model outperforms state-of-the-art methods on
next POI recommendation for cold-start users.

2 Related Work
2.1 Next POI Recommendation
Researches on next-POI recommendation aim to exploit
sequential patterns of users. Some early works [Cheng
et al., 2013] utilize personalized Markov chains to cap-
ture the sequential correlation between POIs. Recently,
some efforts take advantage sequential deep neural mod-
els, and design customized gates in the RNN [Liu et
al., 2016; Feng et al., 2018], LSTM [Sun et al., 2020]
and GRU [Manotumruksa et al., 2018] to make full use
of spatio-temporal information. For example, Time-
LSTM [Zhu et al., 2017] designs a temporal gate for

integrating temporal contexts, and an additional spa-
tial gate is been equiped in STGN [Zhao et al., 2020]
to learn from spatial contexts. Since users must physi-
cally visit POIs in the real world, most models are suf-
fered from the sparse data of users’ check-ins [Feng et
al., 2018]. To help cold-start users identify potentially
interested POIs, some approaches utilize ancillary infor-
mation. Some works try to combine the social influ-
ence [Cho et al., 2011] or contextual influence [He et al.,
2016] with human mobility patterns.

However, these approaches may recommend same
POIs for users with similar content and neglect users’
real interests. Few-shot learning models are thus needed
to fully capture the preferences of cold-start users.

2.2 Meta-learning for Cold-start
Recommendation

As meta-learning has proven to be successful in the few-
shot learning field, recent works introduce it into the rec-
ommender system to overcome the cold-start problem.
Following the settings of few-shot learning, the early
works [Li et al., 2019] regard each user as a task, and for-
mulate cold-start recommendation as a few-shot learning
task with user profiles. They mainly adopt optimization-
based meta-learning approach such as model-agnostic
meta-learning for model training. Moreover, these meth-
ods are designed for the general recommendation along
with abundant auxiliary information (e.g. user profiles,
item attributes). MeLU [Lee et al., 2019] identifies reli-
able evidence candidates based on the users’ profile and
the attributes of items. Also relying on the auxiliary in-
formation of users and items, MAMO [Dong et al., 2020]
extends two designed memory matrices to provide per-
sonalized initialization for each user.

However, the above methods neglect user interest drift
and fail to model user preference in region granularity.
To this end, this paper proposes a novel meta-optimized
approach to effectively model region-dependent user
preferences for few-shot next POI recommendation.

3 Definition
Let U={u1, u2, ..., un} denote a set of users and
V={v1, v2, ..., vn} be a set of POIs. Follow the work
in [Yin et al., 2016], we use K-means to cluster all
the POIs into several regions according to the geo-
graphic distances, where regions can be denoted as
R={r1, r2, ..., rn}. For each POI vi, we use li to de-
note its corresponding geographical attribute in terms
of longitude and latitude coordinates, and ri to denote
its region for each POI vi (vi ∈ V ).
Definition of check-in sequence A user u’s check-
in sequence is represented by an ordered list: S(u) =
{v1, v2, ..., vj , vk, ..., v|Su|}, v|Su| denotes the current POI.
In this list, j < k indicates that behavior vj is occurred
before vk .
Definition of region’s trajectory set We define user
u’s check-ins in a region r as a trajectory: s(u)r =



Figure 1: The Overall Architecture of MFNP Model. We split the check-in sequence of each user as support set and query set.
After initialing the local parameters with the meta parameters, we model user’s preferences through the base recommender
system. In the user-specific preference modelling module, we model user’s region-independent preferences according to their
personal check-in records with the geo-detailed LSTM. In the region-specific preference modelling module, we first locate the
corresponding user group where the user belongs to. Then we learn region-dependent crowd preferences from the region-specific
check-ins and merge them by the temporal and spatial context. Finally, we locally train the recommender system with the
support set, and globally update the meta parameters with the query set.

{v1, v2, ..., vi, ..., v|su|}, where each POI vi is located in
r. A region r’s trajectory set is represented by a set:
sr = {s(u1), s(u2), ..., s(uj), .., s(u|sr|)}, which is col-
lected from all the trajectories that occured in r. |sr|
denotes the number of visitors who visited region r.
Problem Formalization Given a user u ∈ U and a set
of POIs V , with the user’s historical check-in sequence
Su = {v1, v2, vt−1} where vt−1 is the most recent POI
that u has visited, next POI recommendation aims to
recommend the top-k POIs that user u may be inter-
ested at a future time t.

4 Our Model
In this section, we propose a meta-optimization frame-
work MFNP to support accurate next POI recommenda-
tion for cold-start users. Figure 1 shows the architecture
of the model. We introduce the recommender model and
meta-optimization learner in sections 4.1 and 4.2 respec-
tively.

4.1 Recommender Model
The proposed base model for recommending next POI
contains three modules: a user-specific module to cap-
ture personal preferences in a region-dependent way from
users’ personal check-in sequences; a region-specific mod-
ule to capture the similar users’ region-dependent crowd
preferences in the same region; a prediction module to
infer the interested POIs for users.

User-specific Preference Modelling
Inspired by previous solutions [Lee et al., 2019; Li et
al., 2019], we first regard each user as a learning task
to capture their region-independent personal preferences
using their own check-in data without considering the
specific region.

Understanding users’ instant demands and modelling
their short-term preferences play an important role in
the next POI recommendation. We represent users’
personal preferences with sequential models to explore
their behaviour patterns from their complete check-in
sequences. Given the check-in sequence Su of user u,
we first learn the temporal dependencies by a standard
LSTM:

ht−1 = LSTM(xt−1, ht−2), (1 ≤ t ≤ |Su|) (1)

where ht−1 and ht−2 is the hidden state of LSTM at t−1
and t− 2 respectively, xt−1 is the embedding vector for
POI vt−1 ∈ Su.

Since RNN-based methods strictly follow the tem-
poral order, they can not capture the spatial depen-
dencies from the visited POIs which are geographically
scattered in the real world. Therefore, we apply the
geo-dilated LSTM scheme [Sun et al., 2020] to explore
the geographical relations among non-consecutive POIs.
The geo-dilated LSTM picks POIs from the check-in se-
quences as the input with different skip lengths, which
determined by the geographical relevance. For exam-
ple, given a check-in sequence Sn = {v1, v2, v3, v4, v5},
v3 has two preceding POIs in the temporal sequence:
v1 and v2. Since the geographical distance between v1
and v3 is shorter than the distance between v1 and v2,
there exists a geo-dilated sequences {v1, v3}. After find-
ing the path from v1 to v5, we can construct the input set
Sgeo
n = {{v1, v3}, {v3, v5}}. Then the preferences of users

which conclude the spatial dependencies can be learned
by the dilated LSTM scheme with the input Sgeo

n :

h′
t−1 = LSTM(xt−1, h

′
t−δ), (1 ≤ t ≤ |Su|) (2)

where δ is the skip length which will be automatically
determined on geographical factors, h′

t−δ is computed
from the last sequence {xδ, xt−1} ∈ Sgeo

n .



At time t−1, the final representation of user’s region-
independent preference is an average of the latent repre-
sentations ht−1 and h′

t−1:

pt−1
u =

ht−1 + h′
t−1

2
(3)

Region-specific Preference Modelling
Different from the general recommendation, users’ pref-
erences may be region-varying in the POI recommenda-
tion. However, due to the sparse check-in data, it is
impossible for us to model users’ region-dependent pref-
erences in each region separately. As the rapid develop-
ment of social media and the Internet, people are more
easily influenced by others’ successful experiences, re-
sulting in that similar users may follow the similar be-
haviour pattern [Yin et al., 2016]. This allows us to
model region-dependent crowd preferences from the sim-
ilar people in the same region.

To achieve this, we propose a cluster-based adaptive
network to locate the user group where the user be-
longs to, so that region-dependent crowd preferences
can be modelled more accurately. Specifically, we clus-
ter users into different user groups based on the repre-
sentation P t−1

u obtained by Eq.(3) by HDBSCAN algo-
rithm [McInnes et al., 2017]:

cu = HDBSCAN(pt−1
u ) (4)

where cu is the user group of u.
Given the region r where the recent POI vt−1 is located

in, we can filter the trajectories which are generated by
users which belong to cu. All trajectories are sorted in
temporal order sr = {s1, s2, ..., sm, ...sn}. The informa-
tion of all POIs in each trajectory sm is encoded by a
LSTM layer:

ht = LSTM(xt, ht−1), (1 ≤ t ≤ |sm|) (5)
where ht−1 is the hidden state of LSTM, xt is the em-
bedding vector for t-th POI vt ∈ sm.

Instead of a naive combination of all the corresponding
trajectories, we have to incorporate the temporal factors
with users’ personal trajectories. This is due to the fact
that the popularity of POIs among the crowd is chang-
ing over time. For example, people may choose fast food
on weekdays at lunchtime and seek for cinema on week-
ends night. Therefore, we apply a time weighted op-
eration to incorporate such information to capture the
time-sensitive property. We map one week into 48 time
slots (24 slots for hours on weekdays and 24 slots for
hours on weekends). For each slot o, we construct a POI
set Go = {v1, v2, ..., v|Go|}, where v ∈ V is a POI visited
by at least one user in time slot o. We calculate the tem-
poral similarity τi,j between the i − th and j − th time
slots by Jaccard index:

τi,j =
|Gi ∩Gj |
|Gi ∪Gj |

(6)

Then, we can derive a sequence of trajectory time
slots according to the check-in time of all the POIs in

sm. The time slots sequences can be represented as
{p1, p2, ...p|sm|}, where p ∈ {1, 2, ..., 48}. Given the tar-
get user’s current time slot o, the sequence-level repre-
sentation sm for sm is generated as follows:

sm =

|sm|∑
t=1

wtht, wt =
exp (τo,pt

)∑|sm|
j=1 exp

(
τo,pj

) (7)

where τo,pt is the temporal similarity between the current
time slot o and the time slot of the j-th visited POI in sm.
Besides, we use the similar way to generate the sequence-
level representation Su for Su, while the time-weighted
operation is replaced by an average pooling.

After learning the representations {s1, s2, ..., sn} for all
trajectories in sr = {s1, s2, ..., sn}, we can derive region-
dependent crowd preference pru with respect to the user’s
personal trajectory Su using a geo-nonlocal operation to
integrate spatial factors:

pr
u =

1

C(s)

|sr|∑
m

f (Su, sm) g (sm) (8)

where C(S) =
∑|sr|

m exp
(

1
du,m

S⊤
u sm

)
is the normaliza-

tion factor by taking the user’s most recently visited lo-
cation into account. du,m is the geographical distance
between the location lt−1 of the current POI vt−1 and the
location lsm of trajectory sm, where lsm is defined via the
average pooling operation for all the visited POIs in the
trajectory sm. The pairwise function f(·) calculates an
affinity score between the user’s personal trajectory Su

and the region-based trajectories sm, and g(·) generates
the representation for sm. Specifically, in our solution,
f (Su, sm) and g (sm) are defined as:

f (Su, sm) = exp

(
1

du,m
S⊤
u sm

)
(9)

g (sm) = Wrsm (10)
where Su and sm are the representations of user’s per-
sonal check-in sequence Su and region-based trajectory
sm, respectively, while Wr is a trainable projection
weight matrix.
Prediction
After obtaining the representations of both personal
preferences pt−1

u and region-dependent crowd prefer-
ences pr

u, we compute the probability distribution ŷ over
all POIs in |V | as:

ŷ = softmax
(
Wp

(
pt−1
u ⊕ pr

u

))
(11)

where ⊕ is the concatenation operation of personal pref-
erences and region-dependent crowd preferences, Wp is
a trainable projection matrix for all POIs. Consequently,
the POI most likely to be visited by the target user at the
next time step t is the one with the largest probability.

4.2 Meta-optimized framework
Local Update
Inspired by recent advances of meta-training [Li et al.,
2019; Dong et al., 2020], we initialize the recommender



parameters from the global initial values. At the begin-
ning of the training process, we randomly initialize the
global parameters. For each user, we have a support
set and a query set. During the local update phase (i.e.
learning on the support set), we first initialize the lo-
cal recommender parameters θu, θg, θr as the meta pa-
rameters ϕu, ϕg, ϕr, where θu, θg, θr represent the pa-
rameters of the user-specific preference module, region-
specific preferences module and the prediction module,
respectively. Calculated by the Eq.(1-3), we can obtain
region-independent personal preferences. After locating
the corresponding user group, we calculate the region-
dependent crowd preferences by Eq.(5-10). The predic-
tion is calculated through the above two preferences by
Eq.(11). The optimization goal of local training is to
minimize the loss of the recommendation for a single
user, the parameters can be locally updated as follows:

θ∗ ← θ∗ − ρ · ∇θ∗L(y, ŷ) (12)
Global Update
The aim of the meta optimization is to minimize the ex-
pected loss on the query set. After the local training on
the support set, we update the global parameters accord-
ing to the loss on query sets. Suppose the recommender
model is denoted as Rθ̂∗

, where θ = {θu, θg, θr}. After
the local training on support set, we get the model Rθ̂∗

with updated parameter θ̂. Our goal is minimizing the
training loss for users u ∈ Utrain on query sets for q ∈ Q.
Then, the global parameters are updated by:

ϕ∗ ← ϕ∗ − λΣu∈Utrain
Σq∈Q∇L

(
Rθ̂∗

)
(13)

5 Experiment
5.1 Dataset
We conduct experiments on two public LBSNs datasets,
namely Foursquare [Yang et al., 2015] and Gowalla [Yin
et al., 2013]. The statistics of both datasets are shown
in Table 1. The Foursquare dataset contains the POI
check-in records created by users living in New York
from February 2009 to October 2010, while Gowalla con-
tains world-wide check-ins from February 2009 to Oc-
tober 2010. For both datasets, we eliminate unpopu-
lar POIs that are visited by less than 3 users and trim
the number of check-in records for each user as with
10 records to force the model to learn from few samples.
Each user is regarded as a sample in the dataset. We ran-
domly separate the users into training and testing users
with ratio 80:20. Especially, for all the meta-optimized
methods, the check-in sequence of a single user are fur-
ther divided into support set and query set by employing
the data augmentation strategy.

5.2 Compared methods and Settings
We adopt the following baselines for recommender sys-
tems, where MeLU and MAMO are based on meta-
optimization for general recommendation, and the other
methods are sequential-based model for next POI rec-
ommendation.

Table 1: Dataset description

Datasets Users POIs Check-ins
Foursquare 824 38,336 227,428

Gowalla 18,737 32,510 1,278,274

• MeLU [Lee et al., 2019] obtains auxiliary informa-
tion from the user profile and item attributes and
optimized the recommender model which composed
of a fully connected layer as meta-learning.

• MAMO [Dong et al., 2020] extends the MeLU with
two designed memories to provide personalized ini-
tialization for each user.

• STRNN [Liu et al., 2016] applies time-specific
transition matrices and distance-specific transition
matrices in RNN to integrate spatial and temporal
contexts.

• T-LSTM [Zhu et al., 2017] equips time gates with
LSTM for modelling the temporal interval between
check-ins from users’ sequential actions.

• STGCN [Zhao et al., 2020] extends a spatial gate
on the T-LSTM network architecture to model spa-
tial intervals between check-ins for the next POI
recommendation.

• LSTPM [Sun et al., 2020] develops a context-aware
non-local network to model long-term preferences
and a geo-dilated LSTM to model short-term pref-
erences, which considers both spatial and temporal
factors.

Following the work in [Feng et al., 2018], we set the
dimension of embeddings and the hidden states to 500
for all deep learning-based methods. The K of region
clusters is set to 30, while the number of cluster of users
is set to 6. All the parameters in our model are optimized
using the gradient descent optimization algorithm Adam
with the batch size of 1 and the learning rate of 0.0001.

5.3 Evaluation
To evaluate the performance of each method for next
POI recommendation, we adopt two evaluation met-
rics Accuracy (Acc@K) and Normalized Discounted Cu-
mulative Gain (NDCG@K). Acc@K measures the pres-
ence of the correct POI among the ground-truth, and
NDCG@K measures the quality top-K ranking list. In
this paper, we choose the popular K = {1, 5, 10} for
evaluation.

5.4 Performance
Firstly, although MeLU and MAMO can learn from few
training samples, they still perform worse than other se-
quential models, due to the lack of sufficient auxiliary
information in the next POI recommendation. Secondly,
both LSTPM and STGCN are superior to other meth-
ods, since they both adaptively model the preferences of
users according to the current states of users. At last, our



Table 2: Performance comparison on two datasets w.r.t. Acc@K and NDCG@K

Foursquare Gowalla
Acc@1 Acc@5 Acc@10 NDCG@5 NDCG@10 Acc@1 Acc@5 Acc@10 NDCG@5 NDCG@10

MeLU 0.0022 0.0074 0.0108 0.0039 0.0063 0.0003 0.0019 0.0026 0.0004 0.0015
MAMO 0.0044 0.0145 0.0212 0.0058 0.0135 0.0019 0.0034 0.0052 0.0013 0.0023
STRNN 0.0087 0.0177 0.0230 0.0072 0.0140 0.0043 0.0053 0.0077 0.0021 0.0042

T-LSTM 0.0075 0.0178 0.0215 0.0079 0.0137 0.0043 0.0061 0.0068 0.0026 0.0039
LSTPM 0.0114 0.0214 0.0295 0.0129 0.0148 0.0087 0.0206 0.0238 0.0127 0.0158
STGCN 0.0158 0.0256 0.0297 0.0135 0.0145 0.0076 0.0212 0.0277 0.0145 0.0171
MFNP 0.0255 0.0379 0.0503 0.0173 0.0292 0.0152 0.0308 0.0381 0.0234 0.0258

proposed model significantly outperforms all the baseline
methods on both datasets in terms of the Acc@K and
NDCG@K metric. It indicates the effectiveness of the
MFNP model, due to the way of building meta-learners
on both user-specific tasks and region-specific tasks. It
demonstrates that our model can explore the preferences
from the other users and adapt it to the cold-start users.
Moreover, the performance of Foursquare performs bet-
ter than Gowalla. That is because the users’ check-in in
Gowalla is sparser than these in Foursquare. The per-
formance of our model further verifies that our work can
do well under the scenario of data sparsity in the next
POI recommendation.
Effectiveness of Region-specific Preference
To verify whether the region-specific preference mod-
elling module and the corresponding operation is nec-
essary for next POI recommendation, we conduct the
experiment on two variants of our MFNP model.
• MFNP-User This version removes the whole

region-specific preference module and only cap-
ture users’ region-independent preferences from the
check-in sequence of themselves.
• MFNP-Crowd This version applies the average

operation instead of the adaptive method for con-
sidering the spatial and temporal factors when com-
bining region-dependent crowd preferences.

As shown in Table 3, we can observe that MFNP-Crowd
always perform better than MFNP-User, showing that
region-dependent crowd preferences are effective for the
next POI recommendation for cold-start users. Since
MFNP is always significantly better than MFNP-Crowd,
we can draw the conclusion that considering region-
dependent crowd preferences of similar users with spatial
and temporal factors are helpful for providing personal-
ized region-dependent crowd preferences for users.
Impact of the Number of User Clusters
To investigate whether the performance of our model is
sensitive to the number of user clusters and explore the
optimal parameters, we test the performance of MRNP
by varying the number of user types. As shown in Figure
2, we can observe that the accuracy of the next POI rec-
ommendation first increases and then decrease and then
becomes stable as the number of user clusters gradually

Table 3: Comparison of different variants of MFNP

Foursquare Gowalla
Acc@1 Acc@5 Acc@1 Acc@5

MFNP-User 0.0174 0.0254 0.0079 0.0175
MFNP-Crowd 0.0219 0.0294 0.0137 0.0278
MFNP-MFNP 0.0255 0.0379 0.0152 0.0308

(a) Foursquare (b) Gowalla

Figure 2: Performance comparison of different numbers of
user clusters.

increases. The optimal parameter setting of the number
of clusters is C=6 for Foursquare and Gowalla.

6 Conclusion
In this paper, we investigate few-shot next POI recom-
mendation while considering the phenomenon of user in-
terest drift. We build a meta-learner for each user to pro-
vide personalized model according to their own check-in
records. In addition, we propose a region-specific prefer-
ence module to capture region-dependent crowd prefer-
ences of similar users in the same region with the target
user. An adaptive method is proposed to combine these
preferences with spatial and temporal factors. The ex-
periments demonstrate that our model outperformed the
state-of-the-art methods on real-world datasets.
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