
High-order Proximity Preserving Information Network Hashing

Defu Lian, Kai Zheng∗

School of Computer Science and
Engineering, University of Electronic
Science and Technology of China
{dove,zhengkai}@uestc.edu.cn

Vincent W. Zheng
Advanced Digital Sciences Center,

Singapore
vincent.zheng@adsc-create.edu.sg

Yong Ge
Management Information Systems,

University of Arizona
yongge@email.arizona.edu

Longbing Cao
Advanced Analytics Institute,

University of Technology Sydney
longbing.cao@uts.edu.au

Ivor W. Tsang
Centre for Artificial Intelligence,
University of Technology Sydney

Ivor.Tsang@uts.edu.au

Xing Xie
Microsoft Research Asia
xingx@microsoft.com

ABSTRACT

Information network embedding is an effective way for efficient

graph analytics. However, it still faces with computational chal-

lenges in problems such as link prediction and node recommenda-

tion, particularly with increasing scale of networks. Hashing is a

promising approach for accelerating these problems by orders of

magnitude. However, no prior studies have been focused on seek-

ing binary codes for information networks to preserve high-order

proximity. Since matrix factorization (MF) unifies and outperforms

several well-known embedding methods with high-order proximity

preserved, we propose a MF-based Information Network Hashing

(INH-MF) algorithm, to learn binary codes which can preserve

high-order proximity. We also suggest Hamming subspace learning,

which only updates partial binary codes each time, to scale up INH-

MF. We finally evaluate INH-MF on four real-world information

network datasets with respect to the tasks of node classification

and node recommendation. The results demonstrate that INH-MF

can perform significantly better than competing learning to hash

baselines in both tasks, and surprisingly outperforms network em-

bedding methods, including DeepWalk, LINE and NetMF, in the task

of node recommendation. The source code of INH-MF is available

online1.

CCS CONCEPTS

• Information systems → Data mining;Web applications;

KEYWORDS

Information Network Hashing, Matrix Factorization, Hamming

Subspace Learning

∗The corresponding author
1https://github.com/DefuLian/network

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD’18, August 19–23, 2018, London, United Kingdom

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3220034

ACM Reference Format:

Defu Lian, Kai Zheng, Vincent W. Zheng, Yong Ge, Longbing Cao, Ivor

W. Tsang, and Xing Xie. 2018. High-order Proximity Preserving Infor-

mation Network Hashing. In KDD’18: The 24th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery & Data Mining, August 19–23,

2018, London, United Kingdom. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3219819.3220034

1 INTRODUCTION

Information networks are ubiquitous in a wide diversity of real-

world scenarios, such as social network, road network, commu-

nication network, and the World Wide Web. Effective network

analytics can benefit a lot of applications, ranging from classify-

ing the role of a protein [13] to recommending new friends to

a user [2]. Network embedding, learning low-dimensional real-

valued vector representation for networks, becomes an effective

way for subsequent efficient network analytics, such as node classi-

fication/clustering/recommendation and link prediction. Recently,

lots of efforts have been devoted to improving the capability of

preserving high-order proximity within the networks in an explicit

or implicit way, such as DeepWalk [27], LINE (second-order) [35],

node2vec [12], Grarep [7], NetMF [28], and HOPE [26].

However, it still faces with computational challenges in problems

like node recommendation and link prediction. For example, recom-

mending a new friend for all users in a social network of size n costs

O(n2d), if d is dimension of representation. Since real-world social

networks may contains hundreds of millions of nodes, this compu-

tational cost will be extremely high in practice. Moreover, as social

networks keep evolving due to addition/deletion of new edges,

network embedding algorithms update representation frequently,

and list of recommended friends accordingly. The key of these

problems is k-nearest neighbor (knn) search, i.e., seeking the top-k

most “similar” nodes for a given “query” node. It is well-known

that hashing is a promising approach for fast similarity search [37].

This not only attributes to replacement of dot-product similarity

computation with fast Hamming distance calculation, but also to

the usage of index structures, like multi-index hashing [25], which

may have sub-linear run-time behavior. However, to the best of our

knowledge, no prior studies have been focused on seeking binary

representation (dubbed binary codes) for information networks to

preserve high-order proximity.

The key obstacles that hinder direct exploitation of graph hash-

ing [17, 20, 22, 23, 32] or other existing learning to hash methods,

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1744

including spectral hashing (SH) [38], inductive manifold hashing

(IMH) [31] and interactive quantization (ITQ) [11], to learn binary

codes are two-fold. First, high-order proximity is not preserved

even in graph hashing methods, but plays a tremendously impor-

tant role in network embedding. Note that graph hashing methods

are usually applied on constructed graphs from non-relational data.

Second, adjacency matrices, for representing information networks,

are usually very sparse. The methods like ITQ and SH cannot work

with sparse matrices, since they inevitably depend on PCA, which

would convert sparse matrices to dense due to zero-centering. Hash-

ing methods for collaborative filtering [39] are also different, since

they handle bipartite graphs and necessarily hash both types of

nodes. In contrast, we concentrate on homogeneous graphs, in

which all nodes are of the same type but each node plays two roles:

the node itself and a “context” of other nodes [35]. Hence, it is un-

necessary to hash the “context” role of nodes. Moreover, high-order

proximity preserving has been almost ignored in hashing methods

for collaborative filtering.

To this end, we study learning to hash information networks,

which has not been well investigated yet. Within it, information net-

works are embedded into a low-dimensional binary Hamming space

while the sparsity challenge is addressed and high-order proximity

between nodes is preserved. According to recent study [28], matrix

factorization (MF) unifies several important embedding algorithms

with high-order proximity preserved, including DeepWalk, LINE,

and node2vec, and shows superior performance to them. Therefore,

we propose a MF-based Information Network Hashing (INH-MF)

algorithm to simultaneously alleviate sparsity and preserve high-

order proximity. It is well-known that obtaining optimal binary

codes for nodes is generally NP-hard due to binary constraints [14].

Therefore, we resort to alternating optimization to directly tackle

the challenging mixed-integer problem. We find that orthonormal

constraints on representation of the “context” role of nodes will

lead to a closed form for updating binary codes. For scaling up

INH-MF, we further suggest Hamming subspace learning, which

only updates parts of binary codes each time. We finally evaluate

both effectiveness and efficiency of INH-MF on four real-world

information network datasets with respect to the tasks of node clas-

sification and node recommendation. Note that node classification

is commonly used to evaluate effectiveness of network embedding.

The results show that INH-MF performs significantly better than

several competing learning to hash algorithms, and surprisingly

outperforms network embedding algorithms, including LINE, Deep-

Walk, and NetMF, in the task of node recommendation.

To summarize, we make the following contributions:

• We study learning to hash information networks for the first

time with the aim of dramatically accelerating knn-dependent

network analytics, and present its unique characteristics and

challenges.

• We propose an information network hashing algorithm based

on matrix factorization (INH-MF), which can address the spar-

sity challenge and preserve high-order proximity, and develop

an efficient parameter learning algorithm based on alternating

optimization, which can update parameters in close forms.

• We suggest Hamming subspace learning to deal with growing

density of networks due to high-order proximity preserving. The

evaluation results show it can speed up INH-MF dramatically

with a little sacrifice of performance of node classification.

• We extensively evaluate INH-MF on four real-world information

network datasets. The results not only show INH-MF outper-

forms the competing learning to hash baselines, but also demon-

strates that binary representation is surprisingly better at node

recommendation than real-valued.

2 RELATEDWORK

This paper is about unsupervised network hashing, so we mainly

review unsupervised leaning to hash algorithms, particularly graph

hashing, followed by recent advance of network embedding.

2.1 Learning to Hash

Learning to hash algorithms can fall into two categories [37]: two

stage approaches and discrete hashing. Two stage approaches first

derive real-valued feature learning and then apply quantization

methods to obtain binary codes. For example, Salakhutdinov and

Hinton [29] proposed semantic hashing (SH) to learn binary codes

via Restricted Boltzmann Machine for fast searching similar doc-

uments. Weiss et al. applied spectral analysis techniques to a con-

structed similarity graph between data points, and embedded it

into a low-dimensional space [38]. Moreover, this work has intro-

duce balanced and uncorrelated constraints for deriving compact

binary codes. Liu et al. proposed anchor graph hashing to scale

up spectral analysis [23]. Shen et al. proposed inductive manifold

hashing (IMH) for exploiting manifold structures [31]. Noticing

variance of the data in each PCA direction is different, Gong et al.

proposed iterative quantization to rotate representation for deriving

more effective binary codes [11]. A similar idea was also studied

in [19] with the goal of isotropic variances. Note that methods

except IMH and SH inevitably depend on PCA, which cannot be

applicable for large sparse matrices due to zero-centering. Discrete

hashing directly learns binary codes. For example, Discrete Graph

Hashing [22], Supervised Discrete Hashing [30], Asymmetric Dis-

crete Graph Hashing [32] and Scalable Graph Hashing [17] were

proposed for joint optimization quantization losses and intrinsic ob-

jective functions. The idea of discrete hashing has also been applied

for hashing based recommender system (RS) [21, 39, 40] recently.

However, rating data in RS can be organized as bipartite graph,

being different from homogeneous networks, as aforementioned.

2.2 Network Embedding

Network embedding is also different from graph embedding such

IsoMap and MDS, as discussed in [8, 35]. Hence, pioneer work is

DeepWalk [27] and Graph Factorization [1]. Graph Factorization

directly factorizes adjacency matrix to obtain a low-dimensional

vector. DeepWalk first adopts a truncated random walk on a net-

work to generate a set of walk sequences, and applies Skip-Gram to

obtain embeddings of nodes. Similar to DeepWalk, node2vec [12]

also optimizes embeddings to encode the statistics of randomwalks,

but designs a second-order random walk strategy to sample neigh-

bor nodes. LINE [35] is proposed for large scale network embedding,

and can preserve the first and second order proximity. Grarep [7]

demonstrates that k-order proximity should also be captured when

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1745

constructing the global representations of nodes. Recently, a gen-

eral matrix factorization framework is proposed for unifying Deep-

Walk, node2vec and LINE, within which LINE is a special case of

DeepWalk. HOPE [26] summarizes four measurements of high-

order proximity in a general formulation, and then applies gener-

alized SVD to get node embedding. Neighborhood aggregation is

another framework for embedding, including graph convolutional

network [18] and structure2vec [9]. For more literatures about

network embedding, refer to recent survey papers, such as [4, 8].

3 A GENERAL FRAMEWORK OF
INFORMATION NETWORK HASHING

3.1 Problem Statement

An information network is defined as G = 〈V ,E〉, where V is the

set of vertexes/nodes of size n = |V | and E is the set of edges

between nodes, representing a relationship. G can be represented

by an adjacency matrixA, where Ai, j is edge weight between node

i and node j , indicating the strength of relationship. The high-order

proximity matrix between nodes is represented by another matrix

S , which should be preserved by network embedding. The second-

order proximity matrix is directly related to the adjacency matrix

and the k-th order proximity matrix can be constructed by the

(k-1)-th order proximity matrix. Several ways of construction can

be referred in [7, 28]. With these notations, we then define the

information network hashing problem.

Definition 3.1 (Information Network Hashing). Given an informa-

tion networkG = 〈V ,E〉, the problem of information network hash-

ing aims to represent each nodev ∈ V into a low-dimensional Ham-

ming space {±1}d , i.e., learning a hash function hG : V → {±1}d ,
where d � n. In this space {±1}d , not only high-order proximity

between nodes should be preserved, but also bit uncorrelation and

balance conditions should be satisfied as much as possible.

Bit uncorrelation and balance conditions have been introduced

by [38] to approximate the code balance condition: the number of

data items mapped to each binary code is the same. Bit balance

means that each bit has almost equal chance of being 1 or -1, equiva-

lent to maximizing the entropy of each bit. Bit uncorrelation means

that different bits are uncorrelated, being usually implemented by

orthogonal constraints.

3.2 Overview

Information network hashing is based on learning to hash algo-

rithms with discrete hashing, i.e., treating binary codes as param-

eters and learning these codes directly. Binary code for node i is

denoted as a column vectorbi ∈ {±1}d , which only capture the role
of node itself. The “context” role of the node i is represented by a col-

umn vector qi ∈ Rd , maybe with some constraints. We also denote

B = [b1, · · · ,bn]T , a matrix of size n × d , andQ = [q1, · · · ,qn]T ,
a matrix of size n × d . Then the bit uncorrelation and balance is

implemented by BT B = nId and BT 1n = 0, respectively, where 1n
is a vector of length n with all ones. Note that these two conditions

may be not strictly satisfied. For example, if n is odd, BT 1n � 0.

Therefore, we only ensure that they are satisfied as much as possi-

ble. Similarly, it is pretty possible for constraints to be imposed on

Q , such as spectral norm ‖Q ‖2 ≤ 1 orQTQ = Id . We denote Q as

a set ofQ with these constraints. Based on B andQ , the proximity

between node i and j is estimated by

Ŝi, j = b
T
i qj . (1)

Therefore the loss function for information network hashing can

be defined as

min
B,Q

LG (B,Q) =
∑

(i, j)∈O
�(Si, j , Ŝi, j),

s.t.Q ∈ Q,BT 1n = 0,BT B = nIk

(2)

where O denotes the edge set, whose edges are necessarily taken

into account to preserve proximity, and �(x ,y) is the loss function,
which can be squared loss �(x ,y) = (x −y)2, absolute loss �(x ,y) =
|x − y |. It can also be replaced with ranking based loss function for

ranking-based information network hashing.

4 INH-MF: INFORMATION NETWORK
HASHING BASED ON MATRIX
FACTORIZATION

In this section, based on the general framework for information

network hashing, we propose one of its instantiations – Information

Network Hashing based on Matrix Factorization (INH-MF).

4.1 Preliminary

Matrix factorization is used for hashing information networks in

this paper, since it has been proved to unify DeepWalk, node2vec

and LINE, and shows superior performance to them according

to [28]. In particular, DeepWalk implicitly approximates and factor-

izes the following matrix

S = log
(
vol(G)(1

T

T∑
r=1

(D−1A)r)D−1
)
− logb, (3)

where vol(G) = ∑
i

∑
j Ai, j is volume of an information networkG ,

D = diag([d1, · · · ,dn]) such that di represents generalized degree

of node i , T the context widow size (T + 1 is order of proximity), b
the number of negative samples in skip-gram. LINE(2nd) is a special

case of DeepWalk, by setting T = 1, that is

S = log(D−1AD−1) + log vol(G) − logb (4)

Therefore, different from Graph Factorization, LINE normalizes

weight of each edge by the generalized degree of both connected

nodes. Such a normalization step plays an important role in net-

work embedding according to experimental results of LINE [35].

There are also other methods for constructing high-order proximity

matrix [7, 26], but they are not discussed any more.

To obtain network embedding with k-th order proximity pre-

served, truncated Singular Value Decomposition (SVD) is suggested

for factorizing the proximity matrix S in Eq (3) by settingT = k − 1.

In particular, S ≈ U dΣdV
T
d
, then embedding of a node is suggested

as the corresponding row ofU dΣ
1
2

d
according to [7, 28].

4.2 Model Description

A straightforward way to derive binary codes for nodes is apply-

ing the sign function to the obtained network embedding, that is

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1746

B = sign(U dΣ
1
2

d
). This way of deriving binary codes is called two-

stage approaches. However, according to [22, 30, 39], two-stage

approaches may incur large quantization loss. They show that dis-

crete hashing, to treat hash codes as parameters for learning, is a

more promising alternative. Next, we first derive the loss function

for discrete hashing.

Truncated Singular Value Decomposition Sd = U dΣdV
T
d
is the

best rank-d approximation of S [3], that is, ‖S − Sd ‖F ≤ ‖S − B‖F ,
where B is any matrix of rank at most d . Hence, we can express

truncated SVD as the following optimization problem

Sd = argmin
B∈Rn×n

‖S − B‖F , s.t. rank(B) ≤ d . (5)

Since every finite-dimensional matrix has a rank factorization, B =
PQT , where P ,Q ∈ Rn×d , this optimization can be re-written as

min
P ,Q ∈Rn×d

‖S − PQT ‖2F . (6)

Here we assume P andQ corresponds to the role of node itself and

“context” of other nodes, respectively. This loss function is not con-

vex with respect to (P ,Q), but convex with respect to P orQ given

the other fixed. And all local minima of this objective function are

global [33]. Hence, alternating optimization is suggested, and col-

umn orthonormal constraint can be imposed onQ , i.e.,QTQ = Ik ,
for faster descending. When fixing Q , P = SQ is optimal; when

fixing P , minQ ‖S − PQT ‖ is equivalent to maxQ trace(QT ST P),
which also has a closed form of updating rule. The latter optimiza-

tion will be elaborated in the next subsection. Note that when

Q = V d and P = SQ , the gradient with respect to (P ,Q) vanishes.
Hence, (SV d ,V d) is a critical point of this objective function.

Since P corresponds to embedding of nodes, it is better to obtain

binary codes B by applying thresholding function on a rotated

P̂ = PW , whereW ∈ Rk×k is a orthonormal matrix [11]. Then

PQT = P̂(QW)T . For the sake of discrete hashing, P̂ is replaced

with B, to be directly learned from S . Since (QW)TQW = Id , by
denoting Q̂ = QW , the objective function for learning to hash

information networks is formulated as follows:

min
B,Q̂

LG (B, Q̂) = ‖S − BQ̂
T ‖2F

s.t. Q̂
T
Q̂ = Id ,B

T
1n = 0,BT B = nId

(7)

where the bit balance and uncorrelation constraints are imposed.

And Q̂ plays two roles: dimension reduction and rotation of basis.

Subsequently, the hat aboveQ will be dropped for convenience.

4.3 Model Optimization

Due to binary constraints, obtaining optimal binary codes is NP-

hard. Therefore, we resort to alternating optimization, which takes

turns in updating each parameter given others fixed. Next, we

derive the updating rules for B andQ .

4.3.1 LearningQ . When fixing B, via simple algebra, the opti-

mization problem forQ becomes as follows:

max
Q

trace(QT ST B), s.t.QTQ = Id (8)

This is also equivalent to

min
Q ∈Q

‖Q − ST B‖2F , (9)

where Q = {Q ∈ Rn×d |QTQ = Id } is Stiefel manifold [10]. Actu-

ally Eq (9) corresponds to projecting ST B to the Stiefel manifold,

which can be solved analytically. In particular, according to Von

Neumann’s trace inequality [15], trace(QT ST B) ≤ ∑
i σi (Q)σi (ST B) =∑d

i=1 σi (ST B), where σi (A) is the i-th largest singular value of A

and σi (Q) = 1,∀i ∈ {1, · · · ,d}. Assume ST B = XΣYT is the thin

SVD of ST B, then the optimal solution for Eq (8) is

Q∗ = XYT (10)

Below we denote P⊥(A) the projection of A to the Stiefel manifold

of the same size as A for brevity, thenQ∗ = P⊥(ST B).
4.3.2 Learning B. When fixingQ , via simple algebra, the opti-

mization problem for B is formulated as:

max
B

trace(QT ST B), s.t. BT B = nId and BT 1 = 0 (11)

This is also equivalent to

min
B∈B0∩B⊥

‖B − SQ ‖2F , (12)

which can also be viewed projecting SQ to the intersection of

a set B0 = {B ∈ {±1}n×k |BT 1 = 0} and a set B⊥ = {B ∈
{±1}n×k |BT B = nId }. Here the bit balance and uncorrelation are

split and handled separately, since we observe the bit balance con-

dition can be easier to deal with. And note that it is not necessary

to multiply SQ with an orthonormal matrixW for rotation, since

Q has already taken it into account.

Due to the difficulty of handling the uncorrelation constraint,

we approximate it by introducing Z = {Z ∈ Rn×d |ZTZ = nId }
and adding a penalty that a feasible B deviates a lot from the setZ.

Then the objective function for optimizing B becomes

min
B∈B0,Z ∈Z

‖B − SQ ‖2F + γ ‖B − Z ‖2F , (13)

When Z fixed, the optimization problem for B is reformulated as

min
B∈B0

‖B − (SQ + γZ)‖2F , (14)

This is also called projecting SQ + γZ onto a balanced Hamming

space. DenotingΦ = SQ +γZ , and it is easy to see that the optimal

B is obtained by

B∗ = sign(Φ − 1
T
nλ), (15)

where λ = median(Φ) of length d is column median of Φ and is

also considered a multiplier of the bit balance constraint.

Due to introducing a new delegate variableZ , it is also necessary
to update it when B is updated. The updating rule can be easily

derived, since it is very similar to projection onto Stiefel mani-

fold. In particular, if P⊥(B) is denoted the projection of B onto the

corresponding Stiefel manifold, Z can be updated according to

Z∗ =
√
nP⊥(B). (16)

4.4 Hamming Subspace Learning

Since high-order proximity is usually preserved in network em-

bedding, proximity matrix S may become much denser than A, so
much more time is cost for obtaining network embedding with

high-order proximity preserved. In order to scaling up information

network hashing algorithms, we suggest Hamming subspace learn-

ing, to update partial binary codes each time, similar to [24]. Next,

we present how to design a loss function to select a subset of bits

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1747

for updating. Assuming e ∈ {0, 1}d a bit-selection variable, if the

i-th bit of binary code is selected, ei = 1. Then we optimize the

following function w.r.t e

max
e : |e |<l

LG (e) = ‖S − Bdiag(e)QT ‖2F ∝ −
d∑
i=1

eiqiS
Tbi (17)

where l is the number of selected bits. This optimization problem

aims to find worst-fit subspaces to update the corresponding bits

of binary codes, similar to [34]. Obviously, this optimization has an

optimal solution. That is, we first score the i-th bit by qiS
Tbi , and

select l bits with smallest scores.

4.5 Initialization

As discussed before, obtaining optimal binary codes is NP-hard, so

a good initialization of binary codes is important. Truncated SVD

on sparse matrices may not be efficient and even cannot return

convergent singular vectors, as evidenced by runtime errors of svds

routine of scipy on 50% of the Flickr dataset in the experiment.

Therefore, we solve the problem in Eq (6) via alternating optimiza-

tion to obtain (P ,Q). Then B is initialized via Eq (15) by setting

Φ = P . It is also possible to solve a relaxed problem of Eq (7) by

replacing B with a real-valued matrix, but it will be left for future

work.

4.6 Convergence and Complexity

Convergence Due to the way of handling uncorrelation, the final

objective function for optimization is

min
B∈B0,Q ∈Q,Z ∈Z

LG (B,Q,Z) = ‖S − BQT ‖2F + γ ‖B − Z ‖2F (18)

The overall algorithm for optimizing this objective function is pre-

sented in Algorithm 1, which can be convergent according to The-

orem 4.1.

Algorithm 1: INH-MF

Initialize B0 ;

cache Ψ = ST B0;

Q0 ← P⊥(Ψ); // Eq (10)

Z 0 ←
√
nP⊥(B0); // Eq (16)

t ← 0 ;

repeat

e ← bit-selection(S,Bt−1,Qt−1); // O(nd)
Bt ← solve Eq(13) with e; // O(‖S ‖0l)
update Ψ with Bt and e; // O(‖S ‖0l)
Qt ← P⊥(Ψ); // O(nd2)
Z t ←

√
nP⊥(Bt); // O(nd2)

t ← t + 1 ;

until convergent;

Theorem 4.1. LG (B,Q,Z) is non-increasing based on optimiza-

tion in Algorithm 1.

Proof. Eq (13) is based on Frobenius norm, so it can be divided

into two parts according to e , by splitting B by columns. The part

includes submatrix of B with selected columns (bits) is minimized

and the other part keeps fixed. Hence, LG (Bt−1,Qt−1,Z t−1) ≥

LG (Bt ,Qt−1,Z t−1). SinceQt minimizes ‖S − BtQ
T ‖2

F
s.t.Q ∈ Q

and Z t minimizes γ ‖Bt − Z ‖2
F
s.t. Z ∈ Z, LG (Bt ,Qt−1,Z t−1) ≥

LG (Bt ,Qt ,Z t−1) ≥ LG (Bt ,Qt ,Z t). Putting them together, we

have LG (Bt−1,Qt−1,Z t−1) ≥ LG (Bt ,Qt ,Z t). �

Complexity Computing e is achieved by element-wise multiplica-

tion betweenQ and Ψ, and subsequent search of the top-k smallest

values, so it costs O(nd). Updating B with e according to Eq (15)

relies on multiplication of S andW with selected columns and on

computation of column median. Hence, it costs O(‖S ‖0l), where
‖S ‖0 denotes the number of non-zeros in S and |e | = l . Updating
Q and Z only depends on thin SVD and thus costs O(nd2). Hence,
overall complexity of each round is O(nd2 + ‖S ‖0l).

5 EXPERIMENTS

In this section, we evaluate INH-MF with respect to the commonly-

used tasks of node classification and node recommendation [8].

These two tasks are vital to evaluating the effectiveness of network

embedding. The latter task is also useful for evaluating efficiency

improvement due to hashing.

5.1 Experimental Setup

5.1.1 Datasets. We evaluate the algorithms with four widely-

used real-world network datasets. 1) BlogCatalog [36], a network of

social relationships of bloggers in the BlogCatalog website, whose

labels represents interests of bloggers. 2) Protein-Protein Interac-

tions (PPI) [12], a subgraph of the PPI network for Homo Sapi-

ens, whose labels represent biological states. 3) Wikipedia is a

co-occurrence network of words appearing in the first million bytes

of the Wikipedia dump. The labels are Part-of-Speech (POS) tags

inferred using the Stanford POS-Tagger. 4) Flickr [36], a network

of contacts between Flickr users, whose labels represent the user’s

interest group. The statistics of these datasets are shown in Table 1.

Table 1: Statistics of Datasets

Dataset Blogcatalog PPI Wikipedia Flickr

|V| 10,312 3,890 4,777 80,513

|E| 333,983 76,584 184,812 5,899,882

#Label 39 50 40 195

Density 3.14e-3 5.06e-3 8.10e-3 9.10e-4

5.1.2 Compared Algorithms. We compare the proposed algo-

rithms with LINE(2nd) [35] (number of samples 10B, number of neg-

ative samples 5, initial learning rate 0.025), DeepWalk [27](window

size 10, walk length 40, and the number of walks 80), and NetMF [28]

(b=1,T=1 for the Wikipedia dataset and T=10 for others). The di-

mension of representation is set 128.

We also compare INH-MF with Spectral Hashing (SH) [38], Hash-

ing with Graphs with one layer (AGH-1) and two layers (AGH-2)

(anchor number 1000) [23], Inductive Hashing on Manifold with LE

manifold learning (IMH-LE) [31], Iterative Quantization (ITQ) [11],

Discrete Collaborative Filtering (DCF), which take adjacency ma-

trices as input [39]. Their code length is also set 128. Each node,

represented by a row in the adjacency matrix of networks, is consid-

ered data points for hashing. Note that SH and ITQ depend on PCA,

which does not scale up and can’t be applied for the Flickr dataset

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1748

(80,513×80,153 dense matrix) due to zero-centering. Therefore, we

ignore zero-centering on the Flickr dataset and directly apply SVD

to get real-valued low-dimensional representation. INH-MF-i, an

initialization algorithm of INH-MF, is also included into baselines.

5.1.3 Settings and Metrics. For node classification, we exactly

follow the same experimental procedure and treatment in Deep-

Walk. In particular, we randomly sample a portion of labeled nodes

for training and use the rest for testing. For BlogCatalog, PPI and

Wiki datasets, the training ratio ranges from 10% to 90% with a

step 20%. For Flickr, the training ratio ranges from 1% to 9% with

a step 2%. Using the one-vs-the rest logistic regression, we repeat

the prediction procedure 10 times and evaluate the performance of

all methods in terms of Micro-F1 and Macro-F1.

For node recommendation, we randomly sample 90% neighbors

of each node for training and use the rest for testing. We also

repeat the recommendation procedure 10 times and evaluate the

performance of all methods in terms of NDCG@50, AUC (Area

under ROCCurve) andMPR (Mean Percentile Ranking) [16]. MPR is

a common evaluation metric for implicit feedback recommendation.

In contrast to NDCG and AUC, the smaller MPR is, the better node

recommendation is. For easy differentiation, we use ↑ to annotate

NDCG and AUC, and ↓ to annotate MPR, as shown in Table 4.

5.2 Quantitative Results

5.2.1 Node Classification. The results of node classification are

shown in Table 2 and Table 3. We have the following observations.

First, INH-MF significantly outperforms all learning to hash

algorithms on the BlogCatalog, PPI and Flickr dataset in terms of

both Micro-F1 and Macro-F1, indicating the effective approach of

INH-MF to handle sparsity and to preserve high-order proximity.

The relative improvements in terms of Micro-F1 on the BlogCatalog,

PPI and Flickr dataset are at least 43.3%, 22.8% and 6.6%, respectively

and the relative improvements in terms of Macro-F1 are at least

80.7%, 23.4% and 25.6%, respectively. And it is worth noting that

only second-order proximity is considered on the Flickr dataset

due to out of memory issues when T = 10, so that its performance

can be improved further. ITQ performs best among all learning to

hash methods and is even comparable to INH-MF on the Wikipedia

dataset, so the rotation of basis to balance variance of different

dimensions is effective for deriving more compact binary codes.

The main reason that ITQ and INH-MF are comparable on the

Wikipedia dataset is because the second-order proximity (T = 1

in Eq (3)) is superior to higher-order, so that the advantage of

preserving high-order proximity in INH-MF cannot be leveraged.

Moreover, the Wikipedia dataset is the densest among all datasets

according to Table 1.

Second, INH-MF outperforms LINE (2nd) significantly in the

most cases, indicating the importance of preserving high-order

proximity. And INH-MF is a little worse than or sometimes even

comparable to DeepWalk and NetMF. Therefore, transforming net-

work embedding from real-valued representation to binary will

incur information loss, but not much. This benefits from the reason-

able design of the proposed algorithm. Moreover, with the increase

of training data, the margin between them becomes smaller.

Third, INH-MF is almost significantly better than INH-MF-i,

indicating effectiveness of the proposed algorithm and optimization

procedure, though the improvements on the Wikipedia dataset are

not so large.

Finally, DCF does not perform aswell as expected, is almost worst

among them. This demonstrates that imposing binary constraints

on representation of the “context” role of nodes further incurs

information loss and that high order proximity preserving plays

an important role in network embedding and hashing. These two

points also distinguish homogeneous graphs hashing from bipartite

graph hashing.

5.2.2 Node Recommendation. The results of node recommenda-

tion are reported in Table 4. Observations are listed as follows.

First, INH-MF not only outperforms all learning to hash algo-

rithms significantly, but also LINE, DeepWalk and NetMF on both

BlogCatalog and PPI datasets. This observation also holds on the

Flickr dataset in terms of NDCG. The relative improvements of

NDCG on the BlogCatalog, PPI and Flickr dataset are at least 73.4%,

53.1% and 23.4%, respectively. This is surprising but reasonable. Net-

work embedding methods are trained with high-order proximity

preserved but tested with 1-hop neighbors of each node, so they

may overfit in the task of node recommendation. Converting them

into binary representation leads to information loss, but it also

alleviates the over-fitting problem. This also implies that network

embedding being suitable for node classification may not fit for

node recommendation.

Second, DCF is still worst of all in terms of NDCG. According to

AUC, DCF is only slightly better than random guess. This confirms

that homogeneous graph hashing is different from bipartite graph

hashing, so that hashing methods for recommender systems cannot

be directly applied. Moreover, the input of DCF in recommender

system is a user-item rating matrix, whose rating distribution is

different from edge weight distribution in information networks.

Third, ITQ performs well on the Flickr dataset, but this is a

variant of ITQ. As aforementioned, ITQ cannot be directly applied

due to zero-centering in PCA, so we discard zero-centering and

perform SVD to obtain the representation. This is quite similar to

INH-MF due toT = 1 in this case, except an extra transformation of

adjacency matrix according to Eq (4). When high-order proximity

is preserved, the performance of INH-MF can be further improved.

Fourth, AUC of many learning to hash algorithms and even

LINE on some datasets is even lower than random guess. This, on

one hand, may be because they do not capture sufficient network

information; on the other hand, their goal for embedding does not

align with the goal of node recommendation.

Finally, the results on the Wikipedia dataset show AGH-2 per-

forms best rather than INH-MF. This mainly depends on the charac-

teristics of the Wikipedia dataset, as analyzed in node classification.

In addition to superior performance of INH-MF in terms of

NDCG, AUC and MPR, hashing also dramatically accelerates node

recommendation. The speedup of 200-nn search via hamming dis-

tance compared to dot-product is shown in Fig. 1(a). The speedup

achieves up to 10 on the Flickr dataset, and round 4 on the other

three datasets. Hence, networks with a larger size will gain more

speedup. If multi-index hashing [25] is exploited, node recommen-

dation may be accelerated by two orders of magnitude, since it has

sub-linear run-time behavior for uniformly distributed codes.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1749

Table 2: Micro/Macro-F1 (%) of node classification on the BlogCatalog and PPI dataset. ** 0.01 & * 0.05 level, paired t-test.

Metric ALG
BlogCatalog PPI

10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

Micro-F1

LINE 25.35 32.05 35.16 36.61 37.35 11.70 14.20 16.00 17.82 19.59

DeepWalk 35.85 39.91 41.62 42.45 42.90 16.06 19.37 21.26 22.63 24.36

NetMF 38.33 41.43 42.67 43.34 43.15 18.05 21.80 23.10 24.40 25.96

DCF 14.23 15.54 16.07 16.58 16.94 7.27 7.49 7.51 8.10 7.86

AGH-1 15.20 16.15 16.93 17.51 17.93 9.79 11.12 11.76 12.18 12.32

AGH-2 15.87 16.42 16.91 17.23 17.21 9.28 10.37 10.69 10.85 11.17

IMH-LE 15.28 15.76 16.10 16.45 16.83 8.94 9.56 9.85 9.88 10.40

SH 17.20 20.20 20.95 21.37 21.34 9.04 10.50 11.58 12.42 12.82

ITQ 19.23 24.03 25.87 26.98 27.71 10.97 13.34 14.99 16.23 17.34

INH-MF-i 25.63 33.91 36.53 37.66 37.81 11.67 14.21 16.44 18.09 19.78

INH-MF 29.29** 35.58** 38.06** 39.29** 39.72** 13.61** 16.38** 18.59** 20.16** 22.02**

Macro-F1

LINE 14.38 19.11 21.36 22.25 22.62 9.50 12.15 13.82 15.35 15.92

DeepWalk 21.16 25.59 27.58 28.47 28.66 12.89 16.71 18.25 19.48 20.36

NetMF 23.12 26.70 28.31 28.91 28.44 13.97 18.29 19.94 21.01 21.45

DCF 5.04 4.85 4.67 4.68 4.59 4.73 4.84 4.84 5.38 4.90

AGH-1 5.35 5.29 5.26 5.35 5.27 7.50 8.78 9.45 9.75 9.95

AGH-2 3.71 3.60 3.65 3.71 3.57 5.80 7.37 7.89 8.10 8.40

IMH-LE 4.05 3.96 3.93 3.86 4.09 5.56 6.87 7.57 7.46 7.46

SH 7.48 7.88 7.74 7.83 7.34 7.12 8.55 9.30 9.92 9.62

ITQ 10.29 12.17 12.61 12.91 13.10 9.17 11.69 13.03 14.08 14.36

INH-MF-i 16.82 22.29 24.11 24.96 25.30 9.82 12.57 14.30 15.50 16.76

INH-MF 18.60** 23.09** 25.10** 26.04** 26.35** 11.59** 14.47** 16.11** 17.38** 18.82**

Table 3: Micro/Macro-F1(%) of node classification on the Wikipedia and Flickr dataset. ** 0.01 & * 0.05 level, paired t-test.

Metric ALG
Wikipedia Flickr

10% 30% 50% 70% 90% 1% 3% 5% 7% 9%

Micro-F1

LINE 41.30 48.35 51.89 53.57 54.86 25.30 28.64 30.07 31.28 32.34

DeepWalk 42.32 47.02 48.65 49.80 50.35 32.06 35.89 37.46 38.29 38.84

NetMF 50.10 55.81 57.26 58.47 59.13 31.97 35.07 36.24 36.82 37.19

DCF 27.74 35.99 39.33 40.82 42.11 15.71 16.20 16.46 16.59 16.69

AGH-1 35.37 40.71 43.02 44.47 45.88 21.50 23.23 24.02 24.60 24.97

AGH-2 40.14** 43.66 44.70 45.22 46.30 19.91 21.18 21.73 22.15 22.35

IMH-LE 37.50 42.05 43.89 44.64 45.55 19.12 20.05 20.39 20.75 20.90

SH 40.81** 41.82 41.83 42.29 42.46 18.85 20.82 21.60 22.08 22.38

ITQ 39.92 44.74 46.84 47.91 49.45 24.00 26.29 28.09 29.37 30.30

INH-MF-i 39.03 48.15 51.31 52.87 54.24** 21.87 26.77 28.88 30.41 31.53

INH-MF 39.50 48.95* 52.74** 54.42** 54.82** 25.58** 29.77** 31.66** 32.85** 33.74**

Macro-F1

LINE 8.51 10.53 12.63 13.40 13.16 9.01 13.42 15.77 17.44 18.68

DeepWalk 7.26 9.02 9.71 10.03 9.92 13.36 19.45 22.21 23.94 25.07

NetMF 9.04 12.44 13.67 14.04 14.91 12.32 17.32 19.42 20.68 21.57

DCF 5.19 6.17 6.68 6.62 6.53 1.10 1.45 1.58 1.65 1.75

AGH-1 7.82 9.19 9.74 9.38 9.89 5.98 7.11 7.58 7.96 8.19

AGH-2 7.95 8.97 9.77 9.05 9.63 4.68 5.77 6.24 6.50 6.70

IMH-LE 7.94 9.36 10.16 9.87 9.79 3.45 4.25 4.59 4.73 4.88

SH 5.54 6.61 7.31 8.06 7.03 4.74 6.36 7.21 7.61 7.92

ITQ 9.98** 11.97** 13.46** 13.91 13.19** 10.38 12.65 13.91 14.77 15.34

INH-MF-i 8.78 10.98 12.48 13.72 13.40** 9.25 13.57 15.47 16.94 17.94

INH-MF 9.18 11.60** 13.41** 14.72* 14.14** 13.04** 17.41** 19.05** 20.09** 20.86**

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1750

Table 4: NDCG@50, AUC and Mean Percentile Ranking (Section 5.1.3) of node recommendation. ** 0.01 level, paired t-test.

ALG
BlogCatalog PPI Wikipedia Flickr

NDCG↑ AUC↑ MPR↓ NDCG↑ AUC↑ MPR↓ NDCG↑ AUC↑ MPR↓ NDCG↑ AUC↑ MPR↓
LINE 0.0417 0.3804 0.6196 0.0874 0.5652 0.4347 0.0339 0.3913 0.6086 0.0623 0.6254 0.3746

DeepWalk 0.0426 0.6329 0.3671 0.0690 0.6967 0.3033 0.0535 0.5551 0.4448 0.0597 0.8319 0.1682

NetMF 0.0388 0.6802 0.3199 0.0981 0.7318 0.2683 0.1695 0.6732 0.3269 0.0366 0.8631 0.1370

DCF 0.0006 0.5294 0.4705 0.0007 0.5365 0.4634 0.0141 0.5445 0.4555 0.0002 0.5677 0.4323

AGH-1 0.0339 0.2759 0.7240 0.0579 0.3373 0.6625 0.0178 0.3986 0.6013 0.0551 0.4285 0.5715

AGH-2 0.0277 0.1770 0.8228 0.0384 0.3022 0.6975 0.1825** 0.5389 0.4610 0.0274 0.3672 0.6328

IMH-LE 0.0295 0.1785 0.8214 0.0481 0.3259 0.6739 0.0180 0.2650 0.7348 0.0392 0.4209 0.5792

SH 0.0117 0.1573 0.8424 0.0245 0.2749 0.7248 0.0266 0.2203 0.7794 0.0464 0.2983 0.7017

ITQ 0.0593 0.6203 0.3799 0.0968 0.7092 0.2909 0.0344 0.6581** 0.3419** 0.0947 0.8626** 0.1375**

INH-MF-i 0.0857 0.6560 0.3441 0.1273 0.6895 0.3106 0.0397 0.6163 0.3838 0.1019 0.7583 0.2417

INH-MF 0.1021** 0.7519** 0.2483** 0.1502** 0.7596** 0.2406** 0.0449 0.6135 0.3866 0.1169** 0.8308 0.1693

BlogCatalog PPI Wiki Flickr
0

2

4

6

8

10

sp
ee

du
p

of
 h

am
m

in
g

ra
nk

in
g

(a) Speedup of 200-NN search

0 2 4 6 8 10
speedup of training

0.04

0.07

0.1

0.13

0.16

N
D

C
G

@
50

BlogCatalog
PPI
Wiki
Flickr

(b) NDCG@50 v.s. training speedup

Figure 1: (a) speedup of 200-nearest neighbor search via

Hamming distance compared to widely-used dot-product.

(b) NDCG@50 of node recommendation v.s. speedup of

training due to subspace learning;

5.3 Parameter Sensitivity

In this part, we study the effect of subspace learning, and sensitivity

of code length, training size and uncorrelation coefficient.

5.3.1 Hamming Subspace Learning. We vary the ratio of selected

bits (ratio = l/d) from 0.1 to 1 with a step 0.1, and show the per-

formance of node classification and node recommendation. The

running time of INH-MF is also recorded in order to compute the

speedup of training due to subspace learning. The results are shown

in Fig. 1(b) and Fig. 2. We observe that the performance of both node

classification and node recommendation almost do not drop with

fewer bits selected. Moreover, the speedup of training can achieve

up to 9-10, particularly when high-order proximity is taken into

account, such as on the BlogCatalog dataset. The speedup on the

Flickr and Wikipedia dataset is a little smaller, since only second-

order proximity is considered and the thin SVD of n × d matrices

dominates computation time. Therefore, subspace learning is really

useful for improving the efficiency of optimization in information

network hashing with a little sacrifice of performance.

5.3.2 Code Length and Training Data Size. Due to space limita-

tion, only the results on the Flickr dataset are reported. The results

with varying code length are shown in Fig. 3. In the task of node

0 2 4 6 8 10
speedup of training

28

30

32

34

36

38

40

M
ic

ro
-F

1(
%

)
10%
30%
50%
70%
90%

(a) BlogCatalog

0 2 4 6 8
speedup of training

12

14

16

18

20

22

M
ic

ro
-F

1(
%

)

10%
30%
50%
70%
90%

(b) PPI

0.8 1 1.2 1.4 1.6 1.8
speedup of training

35

40

45

50

55

M
ic

ro
-F

1(
%

)

10%
30%
50%
70%
90%

(c) Wiki

1 1.5 2 2.5 3 3.5
speedup of training

24

26

28

30

32

34

M
ic

ro
-F

1(
%

)
10%
30%
50%
70%
90%

(d) Flickr

Figure 2: Micro-F1 score(%) of node classification v.s.

speedup of training due to subspace learning

classification, the performance of network embedding improves

first and then become stable when code length increases from 16

to 512. In contrast, when code length is too large, the performance

of network hashing drops. In the task of node recommendation,

hashing is always better than embedding, and their performances

show continuous improvement with the increase of dimension/code

length. The results with varying data size (the number of edges) are

shown in Fig. 4. Both node classification and node recommendation

via INH-MF improve with the increase of training data size. NetMF

shows similar trends, but reports runtime errors when network is

sparse due to failure of SVD.

5.3.3 Uncorrelation. The bit balance condition is naturally in-

corporated into INH-MF without any parameter tuning, but the bit

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1751

16 32 64 128 256 512
dimension of representation space

20

25

30

35

40

M
ic

ro
-F

1

INH-MF
NetMF

16 32 64 128 256 512
dimension of representation space

0

0.05

0.1

0.15

N
D

C
G

@
50

INH-MF
NetMF

Figure 3: Sensitivity w.r.t code length

20% 40% 60% 80% 100%
percentage of training data

20

25

30

35

40

M
ic

ro
-F

1

INH-MF
NetMF

20% 40% 60% 80% 100%
percentage of training data

0

0.05

0.1

0.15

N
D

C
G

@
50

INH-MF
NetMF

Figure 4: Sensitivity w.r.t training data size.

uncorrelation is achieved by a penalty term with a coefficient γ .
The results of node classification and node recommendation with

the change of γ from 0.01 to 5.12 are shown in Fig. 5. We can see

that uncorrelation does not play an important role, except node

recommendation on the Flickr dataset. This may lie in the effect

of orthogonal constraints ofQ , so that different bits are not much

correlated [20].

10 -2 10 -1 10 0 10 1
0.7

0.8

0.9

1

1.1

re
la

tiv
e

M
ic

ro
-F

1

BlogCatalog
PPI
Wiki
Flickr

10 -2 10 -1 10 0 10 1
0.7

0.8

0.9

1

1.1

re
la

tiv
e

N
D

C
G

@
50

BlogCatalog
PPI
Wiki
Flickr

Figure 5: Sensitivity w.r.t coefficient of uncorrelation.

5.4 Scalability

We finally investigate the scalability of INH-MF with the increase

of code length and training data size, and show the results in Fig. 6,

where INH-MF(20%) selects 20% of bits for subspace learning. INH-

MF(20%) is comparably efficient to ITQ, and is much more effi-

cient than AGH-1. Though not as efficient as INH-MF(20%), INH-

MF(100%) also scales linearly with training data size, and almost

quadratically with code length, aligning with complexity analysis.

6 CONCLUSIONS

In this paper we studied learning to hash information network

problems, and proposed a MF-based information network hashing

16 32 64 128 256 512
dimension of representation space

0

500

1000

1500

2000

2500

3000

tra
in

in
g

tim
e

(s
ec

on
d)

INH-MF(20%)
INH-MF(100%)
SH
ITQ
AGH-1

20% 40% 60% 80% 100%
percentage of training data

0

200

400

600

800

1000

1200

1400

tra
in

in
g

tim
e

(s
ec

on
d)

INH-MF(20%)
INH-MF(100%)
SH
ITQ
AGH-1

Figure 6: Training time w.r.t code length (left) and training

data size (right).

algorithm which can preserve high-order proximity. We developed

an efficient alternating optimization algorithm for learning param-

eters and suggested Hamming subspace learning for scaling up. We

extensively evaluated the proposed algorithms (INH-MF) on four

real-world network datasets with respect to node classification and

node recommendation. In both tasks, INH-MF significantly outper-

formed competing learning to hash algorithms on three datasets.

INH-MF can surprisingly outperform all network embedding algo-

rithms in most cases with respect to node recommendation. And in

the task of node classification, INH-MF was almost better than to

LINE, but generally a little worse than or sometimes comparable to

NetMF and DeepWalk. Moreover, INH-MF was shown dramatical

speedup of node recommendation and of parameter learning due

to subspace learning.

ACKNOWLEDGMENTS

Defu Lian is supported by the National Natural Science Founda-

tion of China (Grant No. 61502077 and 61631005) and the Fun-

damental Research Funds for the Central Universities (Grant No.

ZYGX2016J087), Kai Zheng is supported by the National Natural

Science Foundation of China (Grant No. 61532018 and 61502324).

Ivor Tsang is supported by the Australian Research Council (Grant

No. FT130100746, DP180100106 and LP150100671). Vincent Zheng

is supported by National Research Foundation, Prime Minister’s

Office, Singapore under its Campus for Research Excellence and

Technological Enterprise (CREATE) programme, and Alibaba Inno-

vative Research program.

REFERENCES
[1] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski,

and Alexander J Smola. 2013. Distributed large-scale natural graph factorization.
In Proceedings of WWW’13. ACM, 37–48.

[2] Lars Backstrom and Jure Leskovec. 2011. Supervised random walks: predicting
and recommending links in social networks. In Proceedings of WSDM’11. ACM,
635–644.

[3] Avrim Blum, John Hopcroft, and Ravindran Kannan. 2016. Foundations of data
science. Vorabversion eines Lehrbuchs (2016).

[4] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2017. A Com-
prehensive Survey of Graph Embedding: Problems, Techniques and Applications.
arXiv preprint arXiv:1709.07604 (2017).

[5] Jie Cao, Zhiang Wu, Youquan Wang, and Yi Zhuang. 2013. Hybrid collaborative
filtering algorithm for bidirectional web service recommendation. Knowledge
and information systems 36, 3 (2013), 607–627.

[6] Jie Cao, Zhiang Wu, Junjie Wu, and Hui Xiong. 2013. SAIL: Summation-based
incremental learning for information-theoretic text clustering. IEEE Transactions
on Cybernetics 43, 2 (2013), 570–584.

[7] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph repre-
sentations with global structural information. In Proceedings of CIKM’15. ACM,
891–900.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1752

[8] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2017. A Survey on Network
Embedding. arXiv preprint arXiv:1711.08752 (2017).

[9] Hanjun Dai, Bo Dai, and Le Song. 2016. Discriminative embeddings of latent
variable models for structured data. In Proceedings of ICML’16. 2702–2711.

[10] Lars Eldén and Haesun Park. 1999. A Procrustes problem on the Stiefel manifold.
Numer. Math. 82, 4 (1999), 599–619.

[11] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. 2013.
Iterative quantization: A procrustean approach to learning binary codes for
large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35, 12 (2013).

[12] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of KDD’16. ACM, 855–864.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of NIPS’17. 1025–1035.

[14] Johan Håstad. 2001. Some optimal inapproximability results. Journal of the ACM
(JACM) 48, 4 (2001), 798–859.

[15] Roger A Horn and Charles R Johnson. 1990. Matrix analysis. Cambridge press.
[16] Y. Hu, Y. Koren, and C. Volinsky. 2008. Collaborative filtering for implicit feedback

datasets. In Proceedings of ICDM’08. IEEE, 263–272.
[17] Qing-Yuan Jiang and Wu-Jun Li. 2015. Scalable Graph Hashing with Feature

Transformation.. In Proceedings of IJCAI’15. 2248–2254.
[18] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).
[19] Weihao Kong and Wu-Jun Li. 2012. Isotropic hashing. In Proceedings of NIPS’12.

1646–1654.
[20] Xuelong Li, Di Hu, and Feiping Nie. 2017. Large Graph Hashing with Spectral

Rotation.. In Proceedings of AAAI’17. 2203–2209.
[21] Defu Lian, Rui Liu, Yong Ge, Kai Zheng, Xing Xie, and Longbing Cao. 2017.

Discrete Content-aware Matrix Factorization. In Proceedings of KDD’17. 325–334.
[22] Wei Liu, CunMu, Sanjiv Kumar, and Shih-Fu Chang. 2014. Discrete graph hashing.

In Proceedings of NIPS’14. 3419–3427.
[23] Wei Liu, JunWang, Sanjiv Kumar, and Shih-Fu Chang. 2011. Hashing with graphs.

In Proceedings of ICML’11. 1–8.
[24] Chao Ma, Ivor W Tsang, Furong Peng, and Chuancai Liu. 2017. Partial hash

update via hamming subspace learning. IEEE Transactions on Image Processing
26, 4 (2017), 1939–1951.

[25] Mohammad Norouzi, Ali Punjani, and David J Fleet. 2012. Fast search in hamming
space with multi-index hashing. In Proceedings of CVPR’12. IEEE, 3108–3115.

[26] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric transitivity preserving graph embedding. In Proceedings of KDD’16. ACM,
1105–1114.

[27] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of KDD’14. ACM, 701–710.

[28] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network Embedding as Matrix Factorization: UnifyingDeepWalk, LINE, PTE, and
node2vec. In Proceedings of WSDM’18. ACM.

[29] Ruslan Salakhutdinov and Geoffrey Hinton. 2009. Semantic hashing. International
Journal of Approximate Reasoning 50, 7 (2009), 969–978.

[30] Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen. 2015. Supervised
discrete hashing. In Proceedings of CVPR’15. 37–45.

[31] Fumin Shen, Chunhua Shen, Qinfeng Shi, Anton Van Den Hengel, and Zhenmin
Tang. 2013. Inductive hashing on manifolds. In Proceedings of CVPR’13. IEEE,
1562–1569.

[32] Xiaoshuang Shi, Fuyong Xing, Kaidi Xu, Manish Sapkota, and Lin Yang. 2017.
Asymmetric Discrete Graph Hashing.. In Proceedings of AAAI’17. 2541–2547.

[33] N. Srebro and T. Jaakkola. 2003. Weighted low-rank approximations. In Proceed-
ings of ICML’03. 720–727.

[34] Mingkui Tan, Ivor W. Tsang, and Li Wang. 2014. Towards Ultrahigh Dimensional
Feature Selection for Big Data. Journal of Machine Learning Research 15 (2014).

[35] Jian Tang,MengQu,MingzheWang,Ming Zhang, Jun Yan, andQiaozhuMei. 2015.
Line: Large-scale information network embedding. In Proceedings of WWW’15.
1067–1077.

[36] Lei Tang and Huan Liu. 2009. Relational learning via latent social dimensions. In
Proceedings of KDD’09. ACM, 817–826.

[37] Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. 2017. A survey on
learning to hash. IEEE Trans. Pattern Anal. Mach. Intell. (2017).

[38] Yair Weiss, Antonio Torralba, and Rob Fergus. 2009. Spectral hashing. In Proceed-
ings of NIPS’09. 1753–1760.

[39] Hanwang Zhang, Fumin Shen, Wei Liu, Xiangnan He, Huanbo Luan, and Tat-
Seng Chua. 2016. Discrete collaborative filtering. In Proceedings of SIGIR’16. ACM,
325–334.

[40] Yan Zhang, Defu Lian, and Guowu Yang. 2017. Discrete Personalized Ranking for
Fast Collaborative Filtering from Implicit Feedback. In Proceedings of AAAI’17.
1669–1675.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1753

