
ESTELLE: An Efficient and Cost-effective Cloud Log Engine
Yupu Zhang

∗

University of Electronic Science and

Technology of China

Chengdu, China

zhangyupu@std.uestc.edu.cn

Guanglin Cong
∗

Cloud Database Innovation Lab of

Cloud BU, Huawei Technologies Co.

Chengdu, China

congguanglin@huawei.com

Jihan Qu

University of Electronic Science and

Technology of China

Chengdu, China

qujihan@std.uestc.edu.cn

Ran Xu

Cloud Database Innovation Lab of

Cloud BU, Huawei Technologies Co.

Chengdu, China

xuran215@huawei.com

Yuan Fu

University of Electronic Science and

Technology of China

Chengdu, China

fuyuan@std.uestc.edu.cn

Weiqi Li

Cloud Database Innovation Lab of

Cloud BU, Huawei Technologies Co.

Chengdu, China

liweiqi4@huawei.com

Feiran Hu

Cloud Database Innovation Lab of

Cloud BU, Huawei Technologies Co.

Chengdu, China

hufeiran@huawei.com

Jing Liu

Cloud Database Innovation Lab of

Cloud BU, Huawei Technologies Co.

Chengdu, China

liujing160@huawei.com

Wenliang Zhang
†

Cloud Database Innovation Lab of

Cloud BU, Huawei Technologies Co.

Chengdu, China

zhangwenliang14@huawei.com

Kai Zheng
†

University of Electronic Science and

Technology of China

Chengdu, China

zhengkai@uestc.edu.cn

ABSTRACT
With the advancement of cloud computing, more and more enter-

prises are adopting cloud services to build a variety of applications.

Monitoring and observability are integral to the complex and fragile

cloud-native architecture. As an extremely important data source

for both, logs play an indispensable role in applications such as code

debugging, root cause analysis, troubleshooting, and trend analysis.

However, the inherent characteristic of cloud logs, with TB-level

daily data production per user and continuous growth over time and

with business, poses core challenges for log engines. Traditional log

management systems are inadequate for handling the requirements

of massive log data high-frequency writing and storage, along with

low-frequency retrieval and analysis in cloud environments. Explor-

ing a low-cost, high-performance cloud-native log engine solution

is an extremely extraordinary challenging task. To tackle these chal-

lenges, we propose a cost-effective cloud-native log engine, called

∗
Equal contribution.

†
Corresponding authors. The corresponding author, Kai Zheng, is with Shenzhen

Institute for Advanced Study, University of Electronic Science and Technology of

China, Shenzhen, China.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, Chile.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0421-5/24/06. . . $15.00

https://doi.org/10.1145/3626246.3653387

ESTELLE, equipped with a low-cost pluggable log index framework.

This engine features a compute-storage separation and read-write

separation architecture, enabling linear scalability. We designed a

near-lock-free writing process for handling high-frequency writing

demands of massive logs. Object storage is used to significantly

reduce storage costs. We also tailored ESTELLE Log Bloom filter

and approximate inverted index for this cloud-native engine, apply-

ing them flexibly to enhance query efficiency and optimize various

queries. Extensive experiments on real open-source log datasets

have demonstrated that the ESTELLE Log Engine achieves ultra-

high single-core CPU write speeds and pretty low storage costs.

Furthermore, when equipped with the complete index framework, it

also maintains fairly low query latency across various log scenarios.

CCS CONCEPTS
• Information systems → DBMS engine architectures; Struc-
tured text search.

KEYWORDS
cost-effectiveness;Bloom filter;cloud-native;log engine;index frame-

work

ACM Reference Format:
Yupu Zhang, Guanglin Cong, Jihan Qu, Ran Xu, Yuan Fu, Weiqi Li, Feiran

Hu, Jing Liu, Wenliang Zhang, and Kai Zheng. 2024. ESTELLE: An Efficient

and Cost-effective Cloud Log Engine. In Companion of the 2024 International
Conference on Management of Data (SIGMOD-Companion ’24), June 9–15,
2024, Santiago, Chile. ACM, New York, NY, USA, 13 pages. https://doi.org/

10.1145/3626246.3653387

https://doi.org/10.1145/3626246.3653387
https://doi.org/10.1145/3626246.3653387
https://doi.org/10.1145/3626246.3653387

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, Chile. Yupu Zhang et al.

1 INTRODUCTION
Across the last several years, more and more enterprises have

rapidly migrated cloud-native applications to cloud-native infras-

tructures [7], in the form of microservices [5], serverless and con-

tainer [25, 32] technologies. With a vast number of applications

running on hundreds to thousands of machines, this distributed

architecture is highly complex yet extremely fragile [41], prone

to interruptions due to failures [19], and can even lead to partial

paralysis of the Internet [29]. Therefore, monitoring is crucial for

checking the operational status of applications. It not only requires

issuing alerts when failures occur but also demands early detec-

tion of bugs and issues hidden in the development environment

that may be exposed in the production environment, aiming to

prevent system interruptions [29]. However, compared to previ-

ous architectures, the unique characteristics of cloud-native archi-

tecture (e.g., Intrusiveness, Resilience, Reliability, etc. [1]) make

traditional monitoring solutions and strategies inadequate for mon-

itoring tasks [16, 35].

In recent years, observability, as an extension of monitoring,

has become an indispensable feature of the environment of cloud-

native architectures [27]. Logs, metrics, and traces, known as the

three pillars of observability, are the raw data needed to obtain an

internal view of the health and behavior of applications and mi-

croservices [26]. Logs, as a crucial data source for monitoring and

observability, capture the details of each request and can be used for

debugging [37], root cause analysis [41], exploratory troubleshoot-

ing [14], and other applications, making them indispensable for

any production-grade system [29].

In any production-grade system, the volume of logs increases sig-

nificantly over time and with business growth. Building a low-cost

log engine for an observability platform is an extraordinary mission.

We summarize the challenges we encountered in our production

environment as follows:

Challenge 1: Heavy and Skewed Log Writes. The hundreds
or thousands of various microservices and programs running on

the cloud-native infrastructures generate a large amount of logs

every day, with log generation times concentrated and frequently

encountering bursts of write demands. For example, in our produc-

tion environment, many users generate several hundred terabytes

of logs daily, and the total volume of logs produced each day contin-

ues to increase with business growth. Within a day, log writes are

mainly concentrated within a few hours. Therefore, the ability to

store and rapid write such massive log data at a low cost is crucial.

Challenge 2: Low Frequency and Heavy Log Queries. Com-

pared to write operations, the frequency of log queries is much

lower, and the majority of logs will be never queried. However,

executing precise queries within such a vast volume of data and

within an acceptable latency (ranging from hundreds of millisec-

onds to a few seconds) is undeniably challenging. Moreover, many

queries involve a wide time span, often ranging from a day to a

week, and sometimes even longer, up to a month or more. Therefore,

establishing reasonable data partitioning and designing efficient

and practical indexes and caches are essential.

Challenge 3: Various Log Queries and Important Log Ag-
gregations. In addition to the basic full-text queries, a log engine

needs to support several other crucial types of queries to meet

the requirements of monitoring and observability. Utilizing AND

queries is essential for filtering relevant events or operations that

meet multiple conditions, providing a more comprehensive context.

Additionally, prefix fuzzy queries can be employed to quickly locate

or filter logs related to services or components with specific prefixes,

facilitating further analysis and issue resolution. Log aggregation

is crucial for identifying trends and helping users recognize bot-

tlenecks, performance issues, or even network threats based on

data collected over a period. However, histogram queries for high-

frequency words suffer from significant time and resource consump-

tion, limiting their capability for rapid trend analysis. Therefore,

designing a system that can optimize various queries and efficiently

index data is paramount.

Challenge 4: Low-Cost Log Engine System. The trait of logs
growing with time and business makes low cost a necessary require-

ment for a log engine. It is also an indispensable part of a low-cost

observability platform. Here, low cost refers to the efficient writes,

storage, and queries of massive log data with fewer resources within

an acceptable time frame. Resources here primarily include CPU,

memory, I/O, etc. Therefore, utilizing low-cost storage for massive

logs and designing a dedicated cost-controllable index framework

for this specific scenario is both necessary and practical.

However, there is no existing log engine that meets all of the

above requirements. Among these log engines, some choose to

have no index at all [9, 18, 23], some choose to build inverted

indexes in real-time when writing logs [2, 3, 7, 9, 40]. Specifically,

SLS [9] offers two modes: one with no index and another utilizing

inverted indexes. Additionally, ClickHouse [39] offers an index-free

architecture and uses the standard Bloom filter [6] as the index.

Having no index at all allows the log engine to write logs quickly

but sacrifices support for efficient queries. Constructing an inverted

index of a size comparable to the data size during log writing can

lead to slow writing speeds and high storage costs. The use of

an index-free architecture with Bloom filters as the log indexes

provides efficient log indexing for log queries with minimal impact

on log writing speed. However, the standard Bloom filter is not

suitable for a low-cost log engine. When using the standard Bloom

filter for word filtering, fetching all the Bloom filters into memory

at once would incur significant I/O overhead. On the other hand, if

only the word related bits from all the Bloom filters are retrieved

into memory, the storage medium needs to have efficient random

access capability. Both of these approaches do not align with our

definition of low cost. Furthermore, none of the aforementioned log

engines optimize for various critical queries, especially histogram

queries for high-frequency words.

In this paper, we propose a cost-effective cloud-native log engine,

called ESTELLE, equipped with a low-cost pluggable log index

framework to address the challenges mentioned above. To address

heavy and skewed log writes, we introduce object storage to enable

low-cost storage of logs and their indexes. We apply a cloud-native

architecture with storage-compute separation to support linear

scaling of write capacity, and we carefully design an approximately

lock-free log writing process. To handle low-frequency and heavy

log queries, we adopt a dual time filtering strategy, implement

multiple caches, and introduce an efficient indexing framework. To

address various log queries and important log aggregations, we

configure an index set with multiple pluggable components for

ESTELLE: An Efficient and Cost-effective Cloud Log Engine SIGMOD-Companion ’24, June 9–15, 2024, Santiago, Chile.

each data block. We design a ESTELLE Log Bloom filter to optimize

full-text and prefix fuzzy queries and a fixed-length Approximate

Inverted Index for optimizing AND queries on low-frequency words

and histogram queries on high-frequency words. Specifically, to

enable quick returns of log aggregation results, we set the histogram

query in the progressive query mode. To meet the requirements

of a low-cost engine, we utilize object storage for log storage and

design the index set corresponding to each data block as a cost-

effective, cloud-native-friendly version. Specifically, for ESTELLE

Log Bloom filter and the Approximate Inverted Index, we carefully

design I/O-friendly columnar-store formats and provide strategies

and theoretical supports for balancing performance and cost.

Our contributions can be summarized as followed:

1) We implement a cost-effective, cloud-native log engine fea-

turing read-write separation and storage-computation separation.

This design facilitates rapid scaling in response to burst write and

query scenarios. Furthermore, we propose an near-lock-free writ-

ing process based on this framework to accommodate the demands

of massive log data ingestion.

2) We propose a low-cost pluggable log index framework pri-

marily composed of ESTELLE Log Bloom filter and Approximate

Inverted Index. Both are tailor-made, I/O-friendly index structures

specifically designed for cloud-native architectural log engines.

The former is employed for effective word filtering, while the latter

optimizes histogram queries for high-frequency words and AND

queries for low-frequency words. To our knowledge, the ESTELLE

Log Bloom filter is the first Bloom filter variant specifically cus-

tomized for this scenario.

3)We report on experiments using a real open-source log dataset,

showing that the ESTELLE Log Engine not only attains exception-

ally high single-core CPU write speeds, but also incurs relatively

low storage expenses. Moreover, when integrated with the complete

index framework, it consistently ensures fairly low query latency

in diverse log scenarios.

The remainder of the paper is organized as follows. Section 2

presents low-cost cloud-native ESTELLE Log Engine. Section 3

introduces a low-cost pluggable log index framework. Section 4 de-

scribes the detailed processes of several types of optimized queries.

Section 5 details the experiments and evalution. Section 6 provides

a brief introduction of related work. Section 7 gives the conclusion.

2 ESTELLE LOG ENGINE
This section introduces the ESTELLE Log Engine, covering its cloud-

native architecture, storage, writing, and querying processes.

2.1 Architecture Overview
Figure 1 shows the architecture of ESTELLE Log Engine. It is a

cloud-native architecture featuring read-write and storage-compute

separation. Below is a brief introduction to some main modules.

Meta Cluster is primarily responsible for mananging system

metadata and the entire cluster. It stores metadata, including data-

base schema, table schema, permissions information, etc. Addition-

ally, it maintains the Retention Policy (i.e., RP) that specifies the

period data is to be retained. Meta Cluster also monitors the status

of nodes within the entire cluster. It plays a crucial role in fault

Elastic Load Balancer (ELB)

Application (Protocols, e.g., SPL, SQL, HTTP)

Execution Layer

Read Router
Coordinator

Optimizer

Query Executor

DAG
Progressive

Query

Cloud Storage (OBS)

Shard0

Meta data

Log Indexes (C)

Log Blocks

……

Query Executor

Worker

Query Cluster

DAG
Progressive

Query

Local Cache

Online Cache

Offline Cache

Meta Cluster

Schema RP Status

Cloud Storage (SFS)

……

High-frequency
Word Hash Tables

Version0

Version1
……

Shard0

Log Indexes (R)

Log Blocks

Shard1

Log Indexes (R)

Log Blocks

Shard2

Log Indexes (R)

Log Blocks

Shard1

Meta data

Log Indexes (C)

Log Blocks

Shard2

Meta data

Log Indexes (C)

Log Blocks

Worker

Write Cluster

Offline Task

Collector

Data Builder

tokenizer

Encoder

Online Write
Task

Data Queue

Memory

memtable

map cache

Memory
Cache

Memory Cache

Online Cache

Offline Cache

Figure 1: The Architecture of ESTELLE Log Engine

detection and failover. Furthermore, it is also in charge of the allo-

cation and takeover of shards, determing, for instance, which write

state nodes are responsible for specific shards. Meta Cluster itself

employs raft algorithm [31] to ensure information consistency.

Execution Layer executes query and write operations, serving

as the computational core of the ESTELLE Log Engine. It is essen-

tially a cluster composed of numerous nodes, where each node

can operate in either a query or write state. When ELB receives a

write request from the upper-level application, it randomly assigns

it to a node, which is then referred to as a write state node. The

query state node is further subdivided into two types: coordinator

and subquery node. The query state node that receives query re-

quests dispatched by the ELB is referred to as the coordinator. The

query state node that receives subquery requests dispatched by a

coordinator is referred to as the subquery node of the coordinator.

Each write state node and subquery node in the cluster contains a

set of workers, which can be understood as threads. Each worker

corresponds to one shard. The log writing process performed by

write state nodes and the query process executed by query state

nodes are introduced in Section 2.3 and Section 2.4, respectively.

Object Storage Service OBS [12] (i.e., Object Storage Service) is
a product from Huawei Cloud, offering massive, secure, highly reli-

able, and cost-effective object storage services. OBS provides web

service interfaces based on the HTTP/HTTPS protocol, allowing

multiple cloud servers to access it over the Internet. Moreover, OBS

uses the Erasure Code (EC) algorithm, instead of multiple copies, to

ensure data redundancy. Object storage has a lower cost compared

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, Chile. Yupu Zhang et al.

to other storage services, but with relatively high access latency. In

the production environment, log data exhibits a characteristic of

high-frequency writes and low-frequency queries. Therefore, in the

ESTELLE Log Engine, OBS is utilized for the permanent storage of

both log data and its associated indexes. Typically, data is flushed to

OBS only after it has accumulated to a certain extent in the memory

of the write state node.

Scalable File Service SFS [13] (i.e., Scalable File Service) is also
one of Huawei Cloud’s products, offering on-demand scalable high-

performance file storage using NFS (i.e., Network File System). It

can be mounted simultaneously on multiple cloud servers, enabling

shared storage. The storage system adopts a distributed storage

architecture with a fully modular and redundant design, eliminating

single points of failure. The underlying storage comprises two

types of storage media: HDD and SSD. The access speed of SFS is

significantly faster compared to OBS, but the cost is much higher.

Therefore, in the ESTELLE Log Engine, when the volume of log

data in the memory of a write state node has not yet reached the

amount of a block, but a flush command is received from the user

or there are no log entries written for more than 30 seconds, this

log data is then temporarily written to the SFS. This avoids the

performance loss associated with frequent flushing to OBS. SFS is

also used for storing the high-frequency word hash tables.

2.2 Storage Layout

Logstream-1

Repository

Logstream-2

Logstream-n

……

Group-202301

LogStream

Group-202302

Group-202312

……

Shard-0

ShardGroup

Shard-1

Shard-n

……

Index-0 | Block

Shard

Index-1 | Block

Index-n | Block

……

DataRow-0

Block

DataRow-1

DataRow-n

……

Figure 2: The Storage Layout of ESTELLE Log Engine

The storage layout of the ESTELLE Log Engine is illustrated in

Figure 2. A data row mainly consists of two parts: a timestamp

and the actual log content, and the latter can be understood as a

string. Each data row stores one log entry. Data rows accumulate

to form a block once they reach a certain quantity. A block serves

as the fundamental unit for data compression and index design.

Within a shard, multiple blocks and their corresponding indexes are

stored. A shard is the smallest unit to manage the read and write

capabilities of the index table, and all the shards are grouped into

a Shard Group based on their write time to expedite queries and

log expiration. A logstream is a combination of logs and indexes,

and can be understood as a table. A repository is a collection of

logstreams, with each user corresponding to a distinct repository.

2.3 Writing Process
Figure 1 shows the write state node’s log writes as online write

tasks for immediate write requests and offline tasks for periodic

updates to high-frequency word hash tables.

2.3.1 Online Write Task. Figure 3 serves as a supplement to the

content related to online write tasks in Figure 1.

The writing process above the shard level is depicted in Figure 3.

Upon receiving a write request from the upper-level application,

ELB randomly assigns it to one node in the cluster. At this point,

OBS
pt-0

Shard-0

Shard-6

Shard-12

Shard-18

pt-1

Shard-1

Shard-7

Shard-13

Shard-19

pt-2

Shard-2

Shard-8

Shard-14

Shard-20

pt-3

Shard-3

Shard-9

Shard-15

Shard-21

pt-4

Shard-4

Shard-10

Shard-16

Shard-22

pt-5

Shard-5

Shard-11

Shard-17

Shard-23

ShardGroup
-20230101

Write State
Node-0

Write State
Node-1

Write State
Node-2

Write records

Elastic Load Balance (ELB)

Execution
Layer

……

Worker-00 Worker-01

Writing request-2Writing request-0 Writing request-1

ShardGroup
-20230102

ShardGroup
-20230103

ShardGroup
-20230104

Figure 3: The Online Write Task

the node is referred to as a write state node. Subsequently, each

write state node creates multiple workers and distributes log data

randomly among these workers. The number of workers created

is equal to the number of pts (i.e., partitions) it holds. The pts

represent partitions of a repository, and each worker only writes

log data in its corresponding pt. Therefore, the number of pts in

a repository corresponds to its concurrent write capacity. Each

worker corresponds to one shard per day and writes data to it.

When a new day begins, the content of the shard from the previous

day will no longer change, and the worker will create a new shard

in its corresponding pt.

The writing process at the shard level is indicated in the middle-

right section of Figure 1. When a worker writes log to a shard, it

maintains a Data Queue. The queue releases a batch of log data

to the Encoder in a single operation. The tokenizer within the En-

coder tokenizes the logs, and these tokens are utilized for index

construction. The processed log data and its corresponding indexes

are then temporarily cached in the memtable. When a user issues a

flush command or if no new log data row written for over 30 sec-

onds, log data along with its indexes, which has not yet reached the

volume of a block, will be written to the SFS. Under normal circum-

stances, when the log data rows in the memtable reach the volume

of a block, they are compressed and written to OBS. At this point,

the number of indexes constructed in the memtable is checked. If

they reach the quantity of a group, they will be transformed into

columnar-store format and flushed to OBS. After flushing the log

data rows or indexes to OBS, their corresponding contents in both

SFS and memtable are cleared. Indexes in memtable and SFS use

row-store format, while OBS indexes use column-store. More on

index construction and the two formats in Section 3.

The carefully designed write process outlined above provides

several benefits. From the perspective of the entire online write task

process, apart from the Data Queue, the entire process remains lock-

free. This significantly enhances the writing speed of the ESTELLE

Log Engine. The number of pts in the repository can adjust to user

concurrency needs, allowing linear write capacity scaling.

2.3.2 Offline Task. The Offline Task is a pluggable component

designed to generate or update high-frequency word hash tables,

intended for use by other pluggable indexes.

The collector, as shown in Figure 1, updates word frequency

information daily. At the end of each day, the collector randomly

ESTELLE: An Efficient and Cost-effective Cloud Log Engine SIGMOD-Companion ’24, June 9–15, 2024, Santiago, Chile.

samples that day’s log data from the Shard Group, calculates word

frequencies to form a hash table. The hash tables are cached in the

map cache, and updated in a sliding window fashion.

Collector also periodically updates the high-frequencyword hash

tables. When a checkpoint is reached, the collector filters words

with frequencies greater than the high-low frequency threshold 𝑟

from the recently cached hash tables. It calculates each word’s aver-

age daily frequency, retaining those still above 𝑟 as high-frequency

words. A new high-frequency word hash table,𝑊𝑠 = {𝑤1,𝑤2, · · · },
is then generated. Each item𝑤𝑖 =< 𝑠𝑡𝑟, 𝑝𝑠 > pairs a word 𝑠𝑡𝑟 with

its frequency 𝑝𝑠 . If a high-frequency word hash table has not been

generated before,𝑊𝑠 will be assigned a version number and written

to SFS. To save storage space, the values in this hash table can be

set to null before writing, as we only need it to determine whether

a word is a high-frequency word. If a previously generated high-

frequency word hash table exists, load the latest version (denoted

as𝑊𝑙 = {𝑤1,𝑤2, · · · }, and 𝑤𝑖 =< 𝑠𝑡𝑟, >.) from SFS into the map

cache. Then calculate the similarity between𝑊𝑠 and𝑊𝑙 using the

following Equation 1.∑
𝑤.𝑠𝑡𝑟 ∈𝑊𝑙 .𝑠𝑡𝑟

⋂
𝑊𝑠 .𝑠𝑡𝑟

𝑤.𝑝𝑠∑
𝑤.𝑠𝑡𝑟 ∈𝑊𝑠 .𝑠𝑡𝑟

𝑤.𝑝𝑠
(1)

If similarity is below 0.9,𝑊𝑠 gets a new version number and is saved

to SFS; otherwise, no update is needed.

2.4 Query Process
The primary query process above the shard-level in the ESTELLE

Log Engine is depicted in the middle-left section of Figure 1. This

process can mainly be divided into the coordinator’s request allo-

cation process and the subquery node’s query process.

2.4.1 Coordinator Allocation Process. The main role of the coor-

dinator in the cluster is to judiciously allocate sub-requests and

merge responses from its subquery nodes. Upon receiving a query

from ELB, the coordinator parses, optimizes it, and creates a query

plan as a Directed Acyclic Graph (DAG). Subsequently, the coordi-

nator sends sub-requests to multiple other query state nodes (i.e.,

its subquery nodes) following the guidance of Read Router. Upon

receiving the query results from its corresponding subquery nodes,

the coordinator merges these results and ultimately returns the

final query result to the upper-level application. A query requiring

multiple dependent sub-executions is termed a stateful query (e.g.,

Progressive Query), with previous results temporarily stored in the

coordinator’s memory cache.

It is the responsibility of the read router to select the subquery

nodes corresponding to the sub-requests. Subquery nodes are in-

herently stateless. The coordinator provides a weak state to these

subquery nodes through reading routes. To fully utilize caches of

subquery nodes, reduce interactions with OBS and enhance query

efficiency, the read router primarily adheres to the following several

rules when selecting subquery nodes.

• Within a single query, subquery tasks corresponding to

shards within one pt are dispatched to one subquery node.

• Across multiple queries, subquery tasks associated with one

shard are dispatched to the subquery node that previously

executed subquery tasks on this shard.

• Across multiple stateful queries, the coordinator that re-

ceived a query previously executed will directly forward

the query request to the coordinator that handled the execu-

tion of that query task last time.

2.4.2 Subquery NodeQuery Process. The primary task of subquery

nodes is to execute queries and provide the subquery results back

to their coordinators. After receiving a sub-request, the subquery

node also firstly parses and optimizes the sub-request, and then

generates a DAG-form query plan. When executing the query plan,

the subquery node creates multiple workers, with each worker

corresponding to a shard-level query task. The query process at the

shard-level is introduced in Section 4.1.

Each worker corresponds to several types of caches. From the

storage medium perspective, the entire cache can be divided into

two types: memory cache and local cache. The query involved small

size of indexes are cached into memory, including meta data, high-

frequency word hash table, etc. Other indexes are cached to the

local cache, including Bloom filters, approximate inverted indexes,

etc. From the perspective of cache mode, the entire cache can be

divided into two types: online cache and offline cache. Online cache

primarily caches the indexes involved in currently executed queries

to increase the likelihood of hitting the cache when querying the

same content again within a short time range. The offline cache

primarily utilizes a time sliding window approach to offline cache

the complete indexes related to queries executed in the recent time

range. This is done to increase the likelihood of hitting the cache

when querying content related to recent activities.

3 LOG INDEX FRAMEWORK
To simultaneously meet the demands of swift and accurate access to

extensive log data, supporting diverse common queries, and ensur-

ing low and controllable costs, we design a log index framework for

ESTELLE Log Engine. Next, we introduce its overview, ESTELLE

Log Bloom filter, and Approximate Inverted Index.

Shard

Meta
Data

Log
Data

Log
Indexes

Bloom Filter

Prefix Bloom Filter

… …

Approximate
Inverted Index

one-to-one correspondence

Provide Mapping Schemes

Sample

Mapping
Schemes

Offline
Update

High-frequency
Word Hash Tables

Hash Function

Blocks

Block
Offset

Block
Length

Min/Max
Timestamp

Block Row
Number

Figure 4: Storage Layout at Shard Level

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, Chile. Yupu Zhang et al.

3.1 Index Framework Overview
As illustrated in Figure 4, the index framework is primarily designed

at the shard level. The following is an overview of its components.

Meta Data. The Meta Data in a shard stores the information for

each block, including the block’s minimum and maximum times-

tamp, data row number, size, and offset within the shard. The size of

each block’s metadata is fixed, eliminating the need for additional

metadata index. The primary roles of these metadata of blocks in

accelerating query speed are as follows:

• Min/Max Timestamps: They enable a time filter on block-

level to accelerate query for the targeted time range.

• Block Row Numbers: They speed up indexing by enabling

quick results for histogram queries without any condition.

• Block Lengthes and Block Offsets: These facilitate the
swift identification of a block’s location and determination

of its length, enabling the quick, selective retrieval of only

the necessary blocks into memory.

Log Data. The log data rows are primarily stored in blocks, with

the compressed state stored in OBS and the uncompressed state in

SFS. Each data row stores one log entry.

Log Indexes. Each block corresponds to a pluggable and cost-

controllable index set, mainly comprising two types: Bloom filter

and Approximate Inverted Index. Both types of these indexes are

stored in row-store format in memory and SFS, and in columnar-

store format in OBS, which is in detail in Section 3.2.1 and Sec-

tion 3.3. The foundational version of the index set includes only

a ESTELLE Log Bloom filter (abbreviated as EL-BF), which is in-

troduced in Section 3.2.1. To optimize histogram queries for high-

frequency words and AND queries for low-frequency words, two

EL-BFs are combined to form a Frequency Division Bloom filter

(abbreviated as ELFD-BF), storing high and low-frequency words

separately. Each ELFD-BF is paired with an approximate inverted

index. The related content is introduced in Section 3.3. For con-

structing indexes for prefix fuzzy queries, an additional EL-BF is

added as a Prefix Bloom filter, which can be found in Section 3.2.2.

Mapping Schemes. The operation of Bloom filters and approx-

imate inverted indexes relies on the Mapping Schemes module that

include a Hash Function and multiple versions of High-frequency

Word Hash Tables. This Mapping Schemes module is shared across

all shards that store the log data for the same business. The function

of the hash function is to map a word to a 64-bit unsigned integer.

High-frequency word hash tables classify words as high or low

frequency to guide their allocation to the respective sections of the

ELFD-BF. A hash table stores high-frequency words from recent

logs of a business, updated by the Offline Task (Section 2.3.2). Due

to the extremely low proportion of high-frequency words in most

of log data, the space occupied by these high-frequency word hash

tables is also minimal, allowing them to be resident in memory.

3.2 ESTELLE Log Bloom Filter
To our knowledge, ESTELLE Log Bloom filter (abbreviated as EL-

BF) is the first Bloom filter variant designed for the log engine of

cloud-native architecture. In this sub-section, we firstly introduce

the design of EL-BF, then introduce how to apply it flexibly to

enhance various queries.

3.2.1 ESTELLE Log Bloom Filter Design. This section primarily

includes the workflow of the EL-BF, its columnar-store format, rea-

sons why it is more suitable for cloud-native frameworks compared

to standard Bloom filter, and its theoretical false positive rate.

XXX Bloom filter

ESTELLE Log Bloom filter

𝑤𝑜𝑟𝑑
Hash

Function

ℎ𝑎𝑠ℎ(𝑤𝑜𝑟𝑑) (64 bit)

8 bytes
data field

𝑜𝑓𝑓𝑠𝑒𝑡
𝑜𝑓𝑓𝑠𝑒𝑡𝐿1 𝑜𝑓𝑓𝑠𝑒𝑡𝐿2 𝑜𝑓𝑓𝑠𝑒𝑡𝐻1 𝑜𝑓𝑓𝑠𝑒𝑡𝐻2

High 4 bytesLow 4 bytes

𝑓
𝑓𝐿 𝑓𝐻

1 1 1 1

Figure 5: The Workflow of ESTELLE Log Bloom filter

Workflow. The workflow of the EL-BF is illustrated in Figure 5.

It involves an array of 2
𝑥+8 bytes, a hash functionℎ𝑎𝑠ℎ(·), and three

mapping functions (i.e., 𝑓 , 𝑓𝐿, 𝑓𝐻). In the production environment,

we use MurmurHash3 algorithm [4]. It is used for mapping a word

(denoted as𝑤𝑜𝑟𝑑) to a 64-bit hash value (denoted as ℎ𝑎𝑠ℎ(𝑤𝑜𝑟𝑑)).
Each mapping function only consists of shift operations. The func-

tion 𝑓 is used to extract the first 𝑥 bits of ℎ𝑎𝑠ℎ(𝑤𝑜𝑟𝑑) as an 𝑜 𝑓 𝑓 𝑠𝑒𝑡
on EL-BF. Starting from 𝑜 𝑓 𝑓 𝑠𝑒𝑡 , an 8-byte data field is obtained by

retrieving the next eight bytes in the EL-BF. All subsequent opera-

tions related to𝑤𝑜𝑟𝑑 are then conducted on this data field, which

is denoted as 𝑑 𝑓 . The function 𝑓𝐻 is used to extract bits 𝑥 + 1 to

𝑥 + 9 of ℎ𝑎𝑠ℎ(𝑤𝑜𝑟𝑑), and based on these bits, two offsets, 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐻1

and 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐻2, are obtained by indexing a pre-set array. These two

offsets correspond to the high four bytes of 𝑑 𝑓 and their values

range from 0 to 31. Similarly, the function 𝑓𝐿 generates two offsets,

𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐿1 and 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐿2, corresponding to the low four bytes of 𝑑 𝑓 ,

based on the information from bits 𝑥 + 10 to 𝑥 + 18 of ℎ𝑎𝑠ℎ(𝑤𝑜𝑟𝑑).
When adding 𝑤𝑜𝑟𝑑 to the EL-BF, the four bits corresponding to

𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐿1, 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐿2, 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐻1, and 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝐻2 in 𝑑 𝑓 are set to one.

When checking if the EL-BF contains𝑤𝑜𝑟𝑑 , if the four bits are all

set to 1,𝑤𝑜𝑟𝑑 is considered to be present in the EL-BF, vice versa.

Columnar-Store Format. In order to minimize EL-BF I/O and

make the most of sequential read capability of OBS during queries,

we design a columnar-store format for EL-BF. Figure 5 depicts a row-

store format EL-BF, typically stored in memory and SFS. During the

log writing process, when the row-store Bloom filters in memory

accumulate to a quantity of 𝑔, forming a group, this group of row-

store Bloom filters is converted into columnar-store format and

flushed to OBS. The left side of Figure 6 is a group of row-store EL-

BFs, and the right side is a group of columnar-store EL-BFs. Dashed

arrows indicate their storage order in their respective storage media.

Starting from the beginning of the EL-BF, each consecutive eight

bytes are split into one piece. Therefore, each EL-BF has a total

of ℎ = (2𝑥 + 8)/8 pieces. If we denote the j-th piece of the i-th

Bloom filter in the group as 𝑝𝑖𝑒𝑐𝑒𝑖 𝑗 (1 <= 𝑖 <= 𝑔 ∧ 1 <= 𝑗 <=

ℎ), then the storage order of this group of row-store EL-BFs is

𝑝𝑖𝑒𝑐𝑒11 → 𝑝𝑖𝑒𝑐𝑒12 → · · · → 𝑝𝑖𝑒𝑐𝑒
1ℎ → 𝑝𝑖𝑒𝑐𝑒21 → · · · → 𝑝𝑖𝑒𝑐𝑒𝑔ℎ ,

and for this group of columnar-store EL-BFs, its storage order is

𝑝𝑖𝑒𝑐𝑒11 → 𝑝𝑖𝑒𝑐𝑒21 → · · · → 𝑝𝑖𝑒𝑐𝑒𝑔1 → 𝑝𝑖𝑒𝑐𝑒12 → · · · → 𝑝𝑖𝑒𝑐𝑒𝑔ℎ .

ESTELLE: An Efficient and Cost-effective Cloud Log Engine SIGMOD-Companion ’24, June 9–15, 2024, Santiago, Chile.

Columnar Storage Bloom filter

Row-Store

8 bytes

……

𝑝𝑖𝑒𝑐𝑒1ℎ

𝑝𝑖𝑒𝑐𝑒2ℎ

𝑝𝑖𝑒𝑐𝑒𝑔ℎ 𝑝𝑖𝑒𝑐𝑒1ℎ𝑝𝑖𝑒𝑐𝑒2ℎ 𝑝𝑖𝑒𝑐𝑒𝑔ℎ……

𝑝𝑖𝑒𝑐𝑒11

𝑝𝑖𝑒𝑐𝑒21

𝑝𝑖𝑒𝑐𝑒𝑔1

𝑝𝑖𝑒𝑐𝑒12

𝑝𝑖𝑒𝑐𝑒22

𝑝𝑖𝑒𝑐𝑒𝑔2

𝑝𝑖𝑒𝑐𝑒12 𝑝𝑖𝑒𝑐𝑒22 𝑝𝑖𝑒𝑐𝑒𝑔2……

𝑝𝑖𝑒𝑐𝑒11 𝑝𝑖𝑒𝑐𝑒21 𝑝𝑖𝑒𝑐𝑒𝑔1……

……

……

……

……

𝑃𝑖𝑒𝑐𝑒ℎ

𝑃𝑖𝑒𝑐𝑒ℎ

8 bytes

Columnar-Store

𝑑𝑓1 𝑑𝑓2

Figure 6: A Group of ESTELLE Log Bloom filters

ESTELLE Log Bloom Filter VS. Standard Bloom Filter. Com-

pared to the standard Bloom filter, the advantages of the EL-BF

are quite evident. When using the standard Bloom filter, there are

two ways to check whether a word (denoted as 𝑤𝑜𝑟𝑑) exists in

the Bloom filter. The first method involves completely sequentially

scanning OBS, fetching all the entire Bloom filters into memory.

However, this approach incurs significant I/O overhead. The second

method uses random access to only retrieve the𝑤𝑜𝑟𝑑 related bits

from all the Bloom filters. It’s worth noting that in object storage

like OBS, sequential access is several tens to several hundreds of

times faster than random access. Therefore, the latency of fetch-

ing the relevant bits using this method is also comparatively high.

When utilizing the EL-BF, a single sequential I/O operation enables

the retrieval of all the𝑤𝑜𝑟𝑑 related parts of a group of Bloom filters

from OBS, thereby enhancing efficiency. Since the 𝑜 𝑓 𝑓 𝑠𝑒𝑡 may land

on the boundary or in the middle of a piece, there are two possible

scenarios. When the data field in the EL-BF corresponding to𝑤𝑜𝑟𝑑

precisely overlaps with a certain piece, only a sequential retrieval

of one group of pieces is required. However, when the data field

spans two pieces, it is necessary to sequentially retrieve two groups

of pieces. For a concrete example, let’s assume that in a group of EL-

BFs, 𝑃𝑖𝑒𝑐𝑒 𝑗 is denoted as the collection comprising the 𝑗-th pieces of

all Bloom filters, i.e., 𝑃𝑖𝑒𝑐𝑒 𝑗 = {𝑝𝑖𝑒𝑐𝑒1, 𝑗 , 𝑝𝑖𝑒𝑐𝑒2, 𝑗 , · · · , 𝑝𝑖𝑒𝑐𝑒𝑔,𝑗 }. As
shown in Figure 6, if𝑤𝑜𝑟𝑑 corresponds to the data field 𝑑 𝑓2 in each

EL-BF, it is sufficient to fetch 𝑃𝑖𝑒𝑐𝑒ℎ into memory which sequen-

tially reads 8 · 𝑔 · ℎ bytes. If𝑤𝑜𝑟𝑑 corresponds to 𝑑 𝑓1, both 𝑃𝑖𝑒𝑐𝑒1
and 𝑃𝑖𝑒𝑐𝑒2 need to be fetched into memory, requiring a sequential

read of 16 · 𝑔 · ℎ bytes.

False Positive Rate. Next, we present the theoretical false posi-
tive rate of the EL-BF. With this information, we can determine the

appropriate size of the Bloom filter based on the requirements of

the log business, striking a balance between performance and cost.

Lemma 3.1. Assuming that the hash function ℎ𝑎𝑠ℎ(·) and function
𝑓 select each position of data field 𝑑 𝑓 with equal probability and the
process of adding any two words is mutually independent, given a
EL-BF with a length of 2𝑥 +8 bytes, after adding 𝑛 distinct hash values
to it, its false positive rate is:

𝜖 = (1 − (2 · 4

2
𝑥

·
(
31

2

)(
32

2

) + 2
𝑥 − 8

2
𝑥

· 1)𝑛)4 (2)

Proof. Due to the equiprobable mapping of 𝑤𝑜𝑟𝑑 to any data

field, and with a total of 2
𝑥
available data fields, the probability

of𝑤𝑜𝑟𝑑 being mapped to a specific data field 𝑑 𝑓 is established as

1

2
𝑥 . Therefore, the probabilities of a particular bit being mapped

to the high four bytes of 𝑑 𝑓 , to the low four bytes of 𝑑 𝑓 , and not

being mapped to 𝑑 𝑓 are
4

2
𝑥 ,

4

2
𝑥 , and

2
𝑥−8
2
𝑥 , respectively. According

to classical probability theory, after writing𝑤𝑜𝑟𝑑 into the EL-BF,

the probability that a specific bit in the high four bytes or low four

bytes of 𝑑 𝑓 remains 0 is given by

(31
1
)

(32
2
) . The probability that a bit

outside of 𝑑 𝑓 remains 0 is 1. Therefore, according to the Law of

Total Probability, the probability that any specific bit in the EL-BF

remains 0 after writing 𝑤𝑜𝑟𝑑 into it is represented by 𝑝0, where

𝑝0 =
4

2
𝑥 · (

31

2
)

(32
2
) +

4

2
𝑥 · (

31

2
)

(32
2
) +

2
𝑥−8
2
𝑥 · 1. Furthermore, since adding any

two words to the EL-BF is mutually independent, the probability

that a specific bit remains 0 after adding 𝑛 distinct words to the

EL-BF is 𝑝𝑛
0
, and the probability that the bit becomes 1 is 1 − 𝑝𝑛

0
.

The event of a false positive for a specific word in the EL-BF occurs

as follows: after inserting 𝑛 distinct hash values, a word not present

in the EL-BF is queried, and it is found that the four bits in its

associated data field are all set to 1. The probability of this event is

𝜖 = (1 − 𝑝𝑛
0
)4. The lemma is proven.

3.2.2 Applications. To support optimizing histogram queries, AND

queries, prefix fuzzy queries, we make small modifications or apply

flexible adaptations to the EL-BF according to the specific needs.

ELFD-BF is introduced in Section 3.3. Here, we only introduce how

to utilize the Prefix Bloom filter to expedite prefix fuzzy queries.

Prefix Bloom Filter. A straightforward approach is to aug-

ment the basic index set, which only contains a single EL-BF, with

an additional EL-BF dedicated to storing word prefixes. This ap-

proach not only preserves the efficiency of log writes but also

enables a trade-off between cost and efficiency by controlling the

size of the Prefix Bloom filter and setting an upper limit on the

length of prefixes written to it. Taking the MurmurHash3 algo-

rithm as an example of a hash function, when calculating the

hash value for a given word, the algorithm traverses each byte.

It converts the current byte into a 64-bit unsigned integer and

performs a bitwise XOR operation with the previous result to ob-

tain the updated result. For example, calculating the hash value

for the word ℎ𝑒𝑟𝑜 undergoes the following process: ℎ𝑎𝑠ℎ(ℎ) =

ℎ𝑎𝑠ℎ(ℎ) ⊕ 0 → ℎ𝑎𝑠ℎ(ℎ𝑒) = ℎ𝑎𝑠ℎ(𝑒) ⊕ ℎ𝑎𝑠ℎ(ℎ) → ℎ𝑎𝑠ℎ(ℎ𝑒𝑟) =

ℎ𝑎𝑠ℎ(𝑟) ⊕ ℎ𝑎𝑠ℎ(ℎ𝑒) → ℎ𝑎𝑠ℎ(ℎ𝑒𝑟𝑜) = ℎ𝑎𝑠ℎ(𝑜) ⊕ ℎ𝑎𝑠ℎ(ℎ𝑒𝑟). There-
fore, inserting the intermediate results to the Prefix Bloom filter

has minimal impact on the efficiency of write calculations. On the

other hand, the number of hash values written into the Bloom filter

and the size of the Bloom filter itself affect its false positive rate.

We can control the number of hash values written into the Prefix

Bloom filter by only writing the first 𝑙 prefixes of each word into

it. The trade-off between the size of the Prefix Bloom filter and the

false positive rate can be balanced according to Equation 2.

3.3 Approximate Inverted Index.
Approximate inverted index is used to optimize histogram queries

for high-frequency words and AND queries for low-frequency

words. Histogram queries for high-frequency words often come

with significant I/O overhead and query latency. However, in most

cases, such as routine inspections, users are generally interested in

an approximate aggregate result rather than an extremely precise

value. Therefore, in ESTELLE Log Engine, histogram queries are

designed to be progressive mode. Upon receiving a histogram query

request, the log engine quickly returns an approximate histogram

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, Chile. Yupu Zhang et al.

result, and users can choose to stop the query at this point, reducing

the scan volume and saving costs. For cases requiring extremely

precise histogram query results, such as generating statistical re-

ports, the log engine, after returning an approximate histogram

result to the user, iteratively refines the result through multiple

rounds to provide an accurate value. However, to achieve progres-

sive approximate histogram queries, the rapid return of a pretty

accurate approximate result is crucial. For AND queries of low-

frequency words, there is often a multitude of false positives. In a

basic index set containing only one EL-BF, if two low-frequency

words simultaneously appear in a block but not in the same log

data row, that block will still be loaded into memory for scanning,

introducing significant scan latency. However, recording the row

numbers that low-frequency words appear in a block in an inverted

index during log writing process allows for quick intersection of

the corresponding inverted lists during AND queries. This enables

the rapid determination of whether there are log data rows in the

block that simultaneously contain both words. Moreover, it swiftly

returns the row numbers of data rows that satisfy the conditions of

the AND query within the block, thereby circumventing a portion

of the line-by-line scanning process. Unfortunately, however, di-

rectly creating an inverted index for each block would result in an

index size comparable to the block’s size. This not only increases

the cost of storing the index but also introduces significant I/O

overhead during queries.

To address these two challenges, as shown in Figure 7, we de-

sign a fixed-size Approximate Inverted Index. The high-frequency

part is used to quickly return an approximate histogram result,

while the low-frequency part is utilized to optimize AND queries

for low-frequency words. Next, this section will sequentially in-

troduce the ELFD-BF upon which the approximate inverted index

depends, the layout of the approximate inverted index, its work-

flow, its columnar-store format, and the theoretical values of the

probabilities of determining whether there are data rows in a block

that meet the query criteria using only the approximate inverted

index in low-frequency word AND queries.Approximate inverted index layout

Approximate
Inverted Index

Bloom
filter

……

……
𝑘 Row

numbers

𝑞ℎ bytes

……

count2 bytes

……

𝑞𝑙 bytes

…
…

2 bytes

High-frequency Part
Approximate Inverted Index

Low-frequency Part
Approximate Inverted Index

High-frequency
Part Bloom filter

Low-frequency
Part Bloom filter

Figure 7: Approximate Inverted Index

Frequency Division Bloom filter. As shown in the upper

part of Figure 7, the Frequency Division Bloom filter (abbreviated

as ELFD-BF) is essentially formed by concatenating two EL-BFs,

where the sizes of the high-frequency and low-frequency parts are

2
𝑥ℎ + 8 and 2

𝑥𝑙 + 8 bytes, respectively. The number of hash values

for high-frequency words in a block is significantly smaller than

the number for low-frequency words, so generally, 𝑥ℎ is less than

𝑥𝑙 . The specific values of 𝑥ℎ and 𝑥𝑙 can be determined based on

Equation 2. For instance, setting 𝑥ℎ to 13 (approximately 8KB for

the high-frequency part) results in a false positive rate lower than

7.8386 × 10
−4

after writing fewer than 3000 distinct hash values

of high-frequency words. Setting 𝑥𝑙 to 18 (approximately 256KB

for the low-frequency part) leads to a false positive rate less than

4.0083 × 10
−6

after writing fewer than 24000 distinct hash values

of low-frequency words.

Layout of Approximate Inverted Index. As shown in Fig-

ure 7, the high-frequency and low-frequency parts of the ELFD-BF

correspond to high-frequency and low-frequency parts of the ap-

proximate inverted indexes, respectively. The high-frequency part

Bloom filter starts from the beginning, with every 𝑞ℎ bytes corre-

sponding to an approximate inverted list. Each of these lists stores

only a 2-byte count value, indicating how many hash values are

mapped to that approximate inverted list. The low-frequency part

of the Bloom filter starts from the beginning, with every 𝑞𝑙 bytes

corresponding to an approximate inverted list. Each of these lists

stores fixed length 𝑘 row numbers. Each row number consists of

2 bytes, recording which row the word corresponding to the hash

value mapped to the inverted list is within the block.

𝑤𝑜𝑟𝑑Global Hash
Function

ℎ𝑎𝑠ℎ(𝑤𝑜𝑟𝑑) (64 bits)
𝑜𝑓𝑓𝑠𝑒𝑡ℎ𝑖𝑔ℎ

High-frequency
Word Hash Table

𝑜𝑓𝑓𝑠𝑒𝑡ℎ𝑖𝑔ℎ

𝑞ℎ

Not exist

Exist

𝑜𝑓𝑓𝑠𝑒𝑡𝑙𝑜𝑤
𝑜𝑓𝑓𝑠𝑒𝑡𝑙𝑜𝑤

𝑞𝑙

Figure 8: The Workflow of Approximate Inverted Index

Workflow. The workflow of approximate inverted index is

shown in Figure 8. If a word (denoted as𝑤𝑜𝑟𝑑) exists in the high-

frequency word hash table, it is considered as a high-frequency

word, and it will be associated with the high-frequency part of both

the ELFD-BF and the approximate inverted index, vice versa. As-

suming𝑤𝑜𝑟𝑑 is a high-frequency word, by using hash function ℎ(·)
and mapping function 𝑓 , we can get an offset 𝑜 𝑓 𝑓 𝑠𝑒𝑡ℎ𝑖𝑔ℎ in its cor-

responding Bloom filter. The 𝑜 𝑓 𝑓 𝑠𝑒𝑡ℎ𝑖𝑔ℎ denotes the start position

of the data field 𝑑 𝑓ℎ𝑖𝑔ℎ associated with 𝑤𝑜𝑟𝑑 . Then, ℎ𝑎𝑠ℎ(𝑤𝑜𝑟𝑑)
can be written into 𝑑 𝑓ℎ𝑖𝑔ℎ in the Bloom filter (refer to Section 3.2.1).

At this point, we define that𝑤𝑜𝑟𝑑 corresponds to the ⌊ 𝑜 𝑓 𝑓 𝑠𝑒𝑡ℎ𝑖𝑔ℎ𝑞ℎ
⌋-

th approximate inverted list. We use the same method to write

a low-frequency word to the low-frequency part of the ELFD-BF

and obtain its corresponding approximate inverted list, i.e., the

⌊ 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑙𝑜𝑤𝑞𝑙
⌋-th list. For the list in the high-frequency part, each

time a hash value is mapped to it, its stored count value increases

by one. However, for the list in the low-frequency part, in order

to fix its length, only the row numbers corresponding to the first

𝑘 hash values mapped to it are recorded. During an AND query,

if the two lists corresponding to the two words are both full and

no qualifying data row is found after intersecting the two lists, it

ESTELLE: An Efficient and Cost-effective Cloud Log Engine SIGMOD-Companion ’24, June 9–15, 2024, Santiago, Chile.

cannot be determined that there are no qualifying data rows in

that block. Therefore, a higher 𝑘 value increases the likelihood of

definitively identifying the presence of qualifying data rows in a

block using only the approximate inverted index. The setting of

𝑘 can be referred to in Section 3.3. Parameters 𝑞ℎ and 𝑞𝑙 directly

control the number of inverted lists and can be determined based

on a consideration of the trade-off between collision rate and cost.

Each approximate inverted index has ℎℎ = ⌊ 2
𝑥
ℎ
+8

𝑞ℎ
⌋ and ℎ𝑙 = ⌊ 2

𝑥
𝑙
+8
𝑞𝑙

⌋
lists for its high-frequency and low-frequency parts, respectively.

Assuming that the hash function ℎ𝑎𝑠ℎ(·) and mapping function 𝑓

uniformly select each position in the data field of the Bloom filter,

the average number of hash values mapped into an approximate

inverted list in the high-frequency and low-frequency parts is
𝑛ℎ
ℎℎ

and
𝑛𝑙
ℎ𝑙

respectively. Here 𝑛ℎ and 𝑛𝑙 denote the number of distinct

hash values of high-frequency and low-frequency words in a block,

respectively. For high-frequency words, to avoid excessively high

recorded count values due to excessive collisions, their conflict

rate is typically kept lower. For example, with 𝑞ℎ = 2, if a block

has fewer than 3000 distinct high-frequency words, the average

hash values per approximate inverted list are under 0.7324. For

low-frequency words, mapping only one hash value on average to

each list is inefficient. Hence, setting 𝑞𝑙 higher is advisable. This

method effectively balances performance with cost-effectiveness.

Columnar-Store Format. The design goal and approach of the

columnar-store approximate inverted index are similar to that of

the EL-BF. Each approximate inverted list is considered a piece,

with further operations aligning with those in Section 3.2.1.

Theoretically Useful Probability. This value represents the
likelihood that using only the approximate inverted index can iden-

tify whether there are data rows in a block that meet the condition

of a low-frequency word AND query. It serves as the theoretical

foundation for setting the parameter 𝑘 .

Lemma 3.2. Assuming a block contains 𝑛 data rows, the proba-
bilities of a data row containing words 𝑤𝑎 and 𝑤𝑏 are 𝑝𝑎 and 𝑝𝑏
respectively, and these two events are mutually independent. Addi-
tionally, it is assumed that the low-frequency part of the approximate
inverted index’s inverted list for this block records 𝑘 row numbers.
Then the probability of misjudgment when using only the Bloom fil-
ter but being able to filter out the block using only the approximate
inverted index is:

𝑝𝑢 =

∑𝑘
𝑚

1
=1

∑𝑘
𝑚

2
=1

(𝑛
𝑚

1

)
𝑝
𝑚

1

𝑎 (1 − 𝑝𝑎)𝑛−𝑚1 ·
(𝑛−𝑚

1

𝑚
2

)
𝑝
𝑚

2

𝑏
(1 − 𝑝𝑏)𝑛−𝑚2∑𝑛

𝑚
1
=1

∑𝑛
𝑚

2
=1

(𝑛
𝑚

1

)
𝑝
𝑚

1

𝑎 (1 − 𝑝𝑎)𝑛−𝑚1 ·
(𝑛−𝑚

1

𝑚
2

)
𝑝
𝑚

2

𝑏
(1 − 𝑝𝑏)𝑛−𝑚2

(3)

Proof. Let’s define:

• Event A as:𝑤𝑎 and𝑤𝑏 do not simultaneously appear in any

data row within the block.

• Event B as:𝑤𝑎 appears𝑚1 times and𝑤𝑏 appears𝑚2 times

in the block.

Then, according to the binomial distribution, 𝑃 (𝐵) is given by:

𝑃 (𝐵) =
(
𝑛

𝑚1

)
𝑝
𝑚

1

𝑎 (1 − 𝑝𝑎)𝑛−𝑚1 ·
(
𝑛

𝑚2

)
𝑝
𝑚

2

𝑏
(1 − 𝑝𝑏)𝑛−𝑚2 (4)

From the classical probability model, the probability of Event A

occurring under the condition of Event B is given by:

𝑃 (𝐴 |𝐵) =
(𝑛
𝑚

1

)
·
(𝑛−𝑚

1

𝑚
2

)(𝑛
𝑚

1

)
·
(𝑛
𝑚

2

) (5)

Then, according to the conditional probability formula:

𝑃 (𝐴𝐵) = 𝑃 (𝐵) · 𝑃 (𝐴 |𝐵)

=

(
𝑛

𝑚1

)
𝑝
𝑚

1

𝑎 (1 − 𝑝𝑎)𝑛−𝑚1 ·
(
𝑛 −𝑚1

𝑚2

)
𝑝
𝑚

2

𝑏
(1 − 𝑝𝑏)𝑛−𝑚2

(6)

The event AB means that𝑤𝑎 appears𝑚1 times,𝑤𝑏 appears𝑚2

times in the block, and they do not simultaneously appear in any

data row within the block. When𝑚1 and𝑚2 are both greater than

0 and less than 𝑘 , we can have a misjudgment when using only

the Bloom filter, but the block can be filtered out using only the

low-frequency part of the approximate inverted index. Let 𝑃 (𝐴𝐵) =

𝑃 (𝑚1,𝑚2), then 𝑝𝑢 =

∑𝑘
𝑚

1
=1

∑𝑘
𝑚

2
=1 𝑃 (𝑚1,𝑚2)∑𝑛

𝑚
1
=1

∑𝑛
𝑚

2
=1 𝑃 (𝑚1,𝑚2) . The lemma is proven.

Based on Equation 3, setting 𝑘 to 18 ensures that in an AND

query, if the probability of both queried words appearing in a data

row does not exceed 0.0003, then the likelihood of using only the

approximate inverted index to determine whether a block contains

data rows with both words appearing simultaneously is not less

than 0.9996.

4 QUERY OPTIMIZATION
This section primarily introduces the processes of several types

of queries. Firstly, the shared query process at shard-level is intro-

duced, followed by individual descriptions of specific aspects for

each type of query.

4.1 Shard-Level Query Process
During the allocation of sub-requests, the Coordinator performs

the first-level time filtering on shards based on the information

from the Shard Group, assigning only the shards that meet the time

conditions to its subquery nodes. Within the subquery node, the

worker initially performs the second-level time filtering on blocks

based on the Min/Max Timestamp in the Meta Data. Following this,

it proceeds with word filtering on the remaining blocks, involving

two steps: index filtering and scan filtering. Index filtering is the

process of fetching relevant indexes from OBS or SFS into memory

and filtering out blocks that do not meet the query conditions.

Scan filtering involves fetching the blocks after index filtering into

memory, decompressing them, and then scanning data rows that

meet the query conditions line by line. The scan filtering provides

shard-level query results based on the query conditions. Index

filtering is a critical step for reducing query latency and represents

the most significant distinction in the query process across various

types of queries.

4.2 Full-Text and Prefix Queries
The index filtering and scan filtering logic for full-text queries and

prefix fuzzy queries is essentially the same. Taking full-text queries

as an example, each worker firstly uses ESTELLE Log Bloom filter or

Frequency Division Bloom filter to eliminate blocks that definitely

do not contain the queried word. Then, the remaining blocks are

fetched into memory, decompressed, and scanned line by line. For

prefix fuzzy queries, index filtering is done by Prefix Bloom filter.

4.3 AND Queries
When worker performs index filtering for an AND query, it firstly

uses the Frequency Division Bloom filter to filter out blocks that

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, Chile. Yupu Zhang et al.

definitely do not simultaneously contain both of the specified words.

Then, it performs a second-level filtering based on the approximate

inverted index:

• If both words are mapped to the high-frequency part or

are mapped to the high-frequency and low-frequency parts

respectively, the second-level index filtering is terminated,

and scan filtering is initiated directly.

• If bothwords aremapped to the low-frequency part, intersect

the inverted lists corresponding to the two words:

– If the intersection is empty and at least one of the two

inverted lists is not full, discard the block.

– If the intersection is empty but both inverted lists are full,

record the maximum value of the row numbers in the two

inverted lists. When the worker performs scan filtering

on this block, start scanning from the next row after that

maximum row.

– If the intersection is not empty and at least one of the in-

verted lists is not full, the block only needs to consider the

rows corresponding to the row numbers in the intersec-

tion as results during scan filtering, without any scanning

row by row.

– If the intersection is not empty and both inverted lists are

full, record the row numbers in the intersection for direct

retrieval of corresponding data rows during scan filtering,

and record the maximum value of the row numbers in the

inverted lists. During scan filtering, start scanning from

that maximum row.

4.4 Progressive Approximate Histogram
Queries

The histogram query in ESTELLE Log Engine is configured in a

progressive query mode, consisting of two phases: approximate

query and sample correction.

In the approximate query phase, each worker firstly filters out

blocks that definitely do not contain the queried word based on the

ELFD-BF. Then, it checks the approximate inverted index:

• If the word is mapped to the high-frequency part, the count

value recorded in that inverted list is directly returned. Co-

ordinator adds together these count values from all workers

and returns this result to the upper-level application.

• If the word is mapped to the low-frequency part, the worker

will firstly assess the cost of scanning the remaining blocks

after filtering:

– If the number of remaining blocks is relatively small, it

will scan all of them and return an accurate count value.

Coordinator adds together all these accurate count val-

ues and returns the aggregated result. Then, the query

execution concludes.

– If the number of remaining blocks is still significant, it

will directly enter the sample correction phase.

The sample correction phase requires multiple iterations. In each

iteration, each worker samples a proportion of data rows from each

block, scans and sums the counts, and returns the accurate count

value for that shard. The coordinator scales all obtained count values

proportionally to get the count result for the current iteration. Since

the coordinator stores the intermediate results and workers do not

resample data rows that have already been sampled, the final result

after the iterations is an accurate count.

5 EXPERIMENT EVALUATION
5.1 Experimental Setup

Device.All the experiments are performed on an ECS [10] virtual

machine in Huawei Cloud. It has 8 CPU cores and 32GB RAM.

Dataset. The logs of cluster1-worker1 from the Hadoop-14TB

logs [22] are selected as the base dataset, containing a total of 84.7

GB of data. By replicating it 10 times, we generate 1030 files with a

combined size of 847 GB, utilized as the log data for our experiment.

Baselines.We compare the following baseline log engines:

1) ES [3]. Elasticsearch is an open-source, distributed full-text

search and analytics engine, widely used in the fields of log and real-

time data analysis. We used Elasticsearch 7.6 in our experiments.

2) Doris [2]. Doris is an open-source, distributed, and scalable

big data analytics engine, commonly utilized for real-time analytics

and interactive query. We use doris 2.0.0 in our experiments.

3) CK [39].ClickHouse is an open-source, column-oriented data-

base management system designed for OLAP, which is popular in

scenarios that require fast and efficient processing of large datasets.

We use ClickHouse 22.12 in our experiments.

4) EST-b. Denotes ESTELLE-basic. This is the ESTELLE Log

Engine equipped with only an EL-BF corresponding to a block.

5) EST. EST denotes ESTELLE. This is the ESTELLE Log Engine

equipped with complete index set for a block, where the prefix

Bloom filter sets no limit on the length of the prefixes.

In our experiments for ESTELLE-basic and ESTELLE, we use

16GB SFS [13] as temporary storage, 1GB SSD disk as local cache

and OBS as the permanent storage of logs and indexes. For other

baselines, we use enough Ultra-high I/O EVS Disk [11] for local

cache and the permanent storage of logs and indexes, noting their

higher cost compared to OBS. We use the tokenbf_v1 for CK in-

dexing and inverted index for ES and Doris. All engines compress

data with LZ4 [28], sort by timestamps, and disable the result cache,

while ES retains other caches like index and shard-level data caches.

Load tests are conducted using Wrk [17] and Wrk2 [34].

5.2 Experimental Results
5.2.1 Writing Performance. ESTELLE-basic and ESTELLE adopt

an append write mode without compaction during the writing

process, and the other baselines write and compact concurrently.

To compare the writing performance of the mentioned log engines,

the dataset from cluster1-worker1 is written to each log engine ten

times, and the average single-core CPU write speed is calculated as

the final experimental result.

The left side of Figure 9 illustrates the single-core CPU write

speeds of the aforementioned log engines. As shown in Figure 9, the

two log engines that build inverted indexes in real-time have slower

single-core CPU write speeds. Between them, ES requires a more

detailed inverted index to support complex text analysis, resulting in

the slowest write speed. In our experiments, Doris initially achieves

a single-core write speed of nearly 20MB/s, but as data continues to

be written, its write speed decreases significantly. The other three

index-free architecture log engines have faster single-core CPU

write speeds. Due to the nearly lock-free writing process, adopting

ESTELLE: An Efficient and Cost-effective Cloud Log Engine SIGMOD-Companion ’24, June 9–15, 2024, Santiago, Chile.

CK Doris ES EST-b EST
Log Engines

0

20

40

60

80

100

120
W

ri
te

 S
pe

ed
 (M

B
/s

)

24

5 4

120

98

CK
Doris
ES
EST-b
EST

CK Doris ES EST-b EST
Log Engines

0

200

400

600

800

St
or

ag
e

C
os

t (
G

B
)

76

176

924

80
121

Figure 9: The Single-Core Write Speeds and Storage Costs

an OBS-friendly append write mode, and no compaction operation,

the single-core CPU write speeds of ESTELLE-basic and ESTELLE

are approximately 5 times and 4 times that of CK, respectively.

5.2.2 Storage Cost. To compare the storage cost of each log engine,

we use the total size of the written and compressed logs and indexes

as the evaluation criterion. The right side of Figure 9 illustrates

the storage costs of the aforementioned log engines. As shown in

Figure 9, Doris and ES, both employing inverted indexes, incur the

highest storage costs, with ES being 5.25 times that of Doris. This is

attributed to the fact that Doris optimizes its inverted index, and it

adopts the columnar storage, reducing data redundancy and being

more conducive to the effectiveness of compression algorithms.

The storage costs of the other three log engines with index-free

architecture are relatively lower. In our experiments, the size of

the Bloom filter for ESTELLE-basic and ESTELLE is set larger than

CK, and there is no compaction operation during the writing pro-

cesses of ESTELLE-basic and ESTELLE. As a result, CK has the least

storage space consumption, with ESTELLE-basic being comparable.

ESTELLE incurs slightly higher storage costs than ESTELLE-basic

due to the addition of two ESTELLE Log Bloom filters and an Ap-

proximate Inverted Index for each block. However, it’s important

to note that both ESTELLE-basic and ESTELLE use OBS as the stor-

age medium, making their overall storage costs significantly lower

compared to other log engines.

5.2.3 Query Performance. In order to assess the support of the

aforementioned log engines for various scenarios and queries, we

first construct three types of words: high-frequency words, low-

frequency words, and non-existent words. Initially, we tokenize

the entire dataset of logs and record the frequency of each word.

Subsequently, we select 20 words from the frequency range [0.1, 1]

as high-frequency words, 20 words from the frequency range (0,

0.00001] as low-frequency words, and arbitrarily choose 20 words

that do not exist in the dataset as non-existent words. The experi-

mentation for each word or word combination is repeated 50 times,

and the average of these repetitions is computed to derive the final

result. For each query, whether it’s for an individual word or a

combination of words, we use a load testing approach where we set

the concurrency to 1. We conduct a 15-minute load test and then

measure the average query latency and the average CPU usage

ratio. For the term queries in our experiments, including full-text

queries, prefix fuzzy queries, and AND queries, we use the "order

by time" in each query statement and set the limit to 10.

Full-Text Query. The performance of full-text queries is shown

in Table 1. As shown in this table, the query performance of the

two log engines with inverted index is quite stable across three

scenarios. ES has the highest overall full-text query performance.

The three log engines using the index-free architecture perform bet-

ter in high-frequency word scenarios than in low-frequency word

and non-existent word scenarios. This is because when executing

queries containing ’order by time’, it is necessary to scan Bloom

filters and blocks to find the relevant logs until the limit number of

logs is reached. However, once the limit number of logs is accumu-

lated, it is then possible to filter out many blocks that do not meet

the time criteria using only the timestamp information in the meta-

data. This avoids numerous fetches and scans of Bloom filters and

blocks. For high-frequency word queries, fewer blocks and Bloom

filters need to be scanned to accumulate the limit number of logs,

allowing for an earlier transition to the time pruning phase. In the

high-frequency words scenario, CK and ESTELLE-basic/ESTELLE

exhibit comparable query performance. However, in scenarios with

low-frequency words and non-existent words, CK’s query perfor-

mance is significantly inferior to the other two log engines. Since

CK takes an excessively long time when querying non-existent

words, it mainly suggests that CK’s Bloom filter has a higher rate of

false positives. Additionally, since the Bloom filter of CK involves

heavier I/O during queries, its performance in these two scenar-

ios is significantly worse compared to ESTELLE-basic/ESTELLE.

ESTELLE-basic/ESTELLE maintains a full-text query latency of less

than one second in all scenarios.

Table 1: Performance of Full-Text Query

Engines ES Doris CK EST-b/EST

Low

Latency(ms) 56 114 15630 765

CPU(%) 1.25 2.25 92.25 85

High

Latency(ms) 23 225 122 156

CPU(%) 3 3.75 5 2

Non

Latency(ms) 15 174 214000 135

CPU(%) 1.9 2.4 70.8 50

Prefix Fuzzy Query. The performance of prefix fuzzy queries

is shown in Table 2. We do not find commands related to prefix

fuzzy queries in Doris’s documentation, therefore we only com-

pared the other four log engines. CK and ESTELLE-basic are not

optimized for prefix queries, and they can only perform brute-force

scans. As shown in Table 2, ES achieves the best performance in all

scenarios. In our experiments, we find that the latency of the first

query in each scenario for ES is greater than or equal to 40 seconds.

Its minimal query latency is mainly due to its numerous unclosed

caches. However, this approach is not practical in scenarios with

massive amounts of data. Among the three log engines using the

index-free architecture, ESTELLE offers the best support for prefix

fuzzy queries. In scenarios with low-frequency prefixes, the CPU

usage of all three engines is comparable, but the latency of CK and

ESTELLE-basic is much higher than that of ESTELLE. This means

that the presence of Prefix Bloom filter can significantly reduce the

amount of line-by-line scan filtering. CK and ESTELLE-basic lack

support for scenarios involving non-existent prefixes, whereas ES-

TELLE can handle them. In high-frequency prefix scenarios, nearly

all block meet the query condition. As a result, ESTELLE involves

an additional step of scanning the prefix Bloom filter compared to

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, Chile. Yupu Zhang et al.

ESTELLE-basic, ESTELLE’s query latency is slightly higher than

ESTELLE-basic’s. However, this difference of a few hundred mil-

liseconds is negligible in terms of user experience.

Table 2: Performance of Prefix Fuzzy Query

Engines ES CK EST-b EST

Low Latency(ms) 15 16780 6483 745

CPU(%) 0.46 89 85 85

High Latency(ms) 50 438 134 623

CPU(%) 1 3.8 3.1 4.3

Non Latency(ms) 16

Timeout Timeout

1100

CPU(%) 0.15 98.75

And Query. The performance of AND queries is shown in Ta-

ble 3. As shown in this table, in scenarios involving AND queries

between low-frequency words, the performance of the two log en-

gines using inverted indexes is higher than that of the three log en-

gines using the index-free architecture. In scenarios involving AND

queries between high-frequency words, the performance of both

is comparable. Among the three log engines using the index-free

architecture, CK and ESTELLE-basic have comparable performance,

while ESTELLE-basic offers a slightly better user experience. The

use of approximate inverted indexes makes ESTELLE’s query la-

tency in low-frequency word AND query scenarios far superior to

both, even comparable to ES, which uses inverted indexes, resulting

in a good user experience.

Table 3: Performance of AND Query

Engines ES Doris CK EST-b EST

Low&Low Latency(s) 4.18 0.095 193 149.76 5.74

CPU(%) 1.96 1.37 91.37 83.75 93.75

High&High Latency(s) 5.8 0.18 0.486 0.11 0.17

CPU(%) 3.37 3.81 5 5 4

Histogram Query. The performance of histogram queries for

high-frequency words is shown in Table 4. As shown in this table,

due to the heavy and high false positive rate of CK’s Bloom filter, it

incurs additional I/O overhead during queries, making it the least

supportive for histogram queries among these five log engines.

Apart from ES, all other engines use a vectorized execution engine.

Therefore, Doris, ESTELLE-basic, and ESTELLE have lower latency

in querying exact histogram values compared to ES. Doris achieves

the best performance in exact histogram queries due to its lighter in-

verted list during queries. However, as the volume of data increases,

the latency for exact histogram queries rapidly rises for all log en-

gines, while the latency for approximate queries remains relatively

stable. In our experiments, ESTELLE returns relatively accurate

results for approximate queries in less than 1 second. The average

errors between these 20 approximate query results and the accurate

count values for high-frequency words are all less than 0.02. This

is because, after deduplication, the proportion of high-frequency

words in each block is extremely low, averaging less than 0.07 in

our experimental dataset. In the experiments, each block’s corre-

sponding Frequency Division Bloom filter for the high-frequency

part has ample space to store these high-frequency words, resulting

in a extremely low conflict rate. Therefore, the values returned by

fast approximate queries are relatively accurate.

Table 4: Performance of Histogram Query

Engine Latency(s) CPU(%)

ES 39 27

Doris 7.9 14.5

CK 192 93.12

EST-b

apx 1.59 1

acrt 24 97.5

EST

apx 0.3 98

acrt 24 97.5

6 RELATEDWORK
We categorize existing log engines into three types: no-index,

index-based, and index-free architectures. No-index engines, like

Scalyr [23], prioritize writing speed but lack query optimization.

Loki [18] indexes only log tags, while SLS [9] offers a no-indexmode.

Most engines, including Doris [2], Splunk [24], ElasticSearch [3],

SLS [9], LogStore [7] and TencentCLS [40], use inverted indexes

for quick querying but face high storage costs and I/O overhead

due to data volume and the variable length nature of inverted

lists. Cloud-native engines like LogStore and TencentCLS support

various inverted indexes [21, 33] but are not open source. Click-

House [39] represents an index-free approach, using Bloom filters

for efficient indexing with minimal impact on writing speed.

Over decades, various Bloom filter variants have emerged for

different needs. The standard Bloom filter [6] is a compact structure

for set membership tests, with innovations like the Counting Bloom

filter [15] allowing for element deletion, the Compressed Bloom

filter [30] reducing storage needs, the Partitioned Bloom filter [8]

lowering false positives and aiding parallelism, and the Dynamic

Bloom filter [20] adjusting to dataset size changes. Recent develop-

ments include machine learning-enhanced filters [36] for accuracy

and elastic filters [38] for flexibility and deletability. Despite these

advancements, no variant specifically addresses cloud-native log

engines, a gap our ESTELLE Log Bloom filter aims to fill.

7 CONCLUSION
In this paper, we propose a cost-effective cloud-native log engine,

called ESTELLE, equipped with a low-cost pluggable log index

framework. The use of Object Storage (OBS) enables this log engine

to achieve low storage costs. Its design of an near-lock-free writing

process allows for high single-core CPU write speeds. Tailor-made

ESTELLE Log Bloom filters and approximate inverted indexes en-

sure low query latency across various scenarios and queries. Overall,

the ESTELLE Log Engine is exceptionally suitable for cloud-based

log scenarios involving massive data with high-frequency writing

and storage, and low-frequency querying and analysis, offering

excellent cost-effectiveness.

ACKNOWLEDGMENTS
This work is partially supported by ShenzhenMunicipal Science and

Technology R&DFunding Basic Research Program (JCYJ2021032413

3607021), and Municipal Government of Quzhou under Grant (No.

2022D037, 2023D044), and Key Laboratory of Data Intelligence and

Cognitive Computing, Longhua District, Shenzhen.

ESTELLE: An Efficient and Cost-effective Cloud Log Engine SIGMOD-Companion ’24, June 9–15, 2024, Santiago, Chile.

REFERENCES
[1] Giuseppe Aceto, Alessio Botta, Walter De Donato, and Antonio Pescapè. 2013.

Cloud monitoring: A survey. Computer Networks 57, 9 (2013), 2093–2115.
[2] Apache. 2023. Doris. https://doris.apache.org/

[3] Apache. 2023. ElasticSearch. https://www.elastic.co/cn/elastic-stack

[4] Austin Appleby. 2016. Murmurhash3. https://github.com/aappleby/smhasher/

wiki/MurmurHash3

[5] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2016. Microservices ar-

chitecture enables devops: Migration to a cloud-native architecture. Ieee Software
33, 3 (2016), 42–52.

[6] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable

Errors. Commun. ACM 13, 7 (1970), 422–426. https://doi.org/10.1145/362686.

362692

[7] Wei Cao, Xiaojie Feng, Boyuan Liang, Tianyu Zhang, Yusong Gao, Yunyang

Zhang, and Feifei Li. 2021. Logstore: A cloud-native andmulti-tenant log database.

In Proceedings of the 2021 International Conference on Management of Data. 2464–
2476.

[8] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-

lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.

Bigtable: A distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26, 2 (2008), 1–26.

[9] Alibaba Cloud. 2023. SLS. https://www.alibabacloud.com/product/log-service

[10] HuaWei Cloud. 2023. ECS. https://www.huaweicloud.com/intl/zh-cn/product/

ecs.html

[11] HuaWei Cloud. 2023. EVS. https://www.huaweicloud.com/intl/en-us/product/

evs.html

[12] HuaWei Cloud. 2023. OBS. https://www.huaweicloud.com/intl/zh-cn/product/

obs.html

[13] HuaWei Cloud. 2023. SFS. https://www.huaweicloud.com/intl/zh-cn/product/

sfs.html

[14] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly

detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC conference on computer and communications security.
1285–1298.

[15] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. 2000. Summary cache:

a scalable wide-area web cache sharing protocol. IEEE/ACM transactions on
networking 8, 3 (2000), 281–293.

[16] Kaniz Fatema, Vincent C Emeakaroha, Philip D Healy, John P Morrison, and

Theo Lynn. 2014. A survey of cloud monitoring tools: Taxonomy, capabilities

and objectives. J. Parallel and Distrib. Comput. 74, 10 (2014), 2918–2933.
[17] Will Glozer. 2021. wrk. https://github.com/wg/wrk

[18] Grafana. 2023. Loki. https://grafana.com/docs/loki/latest/

[19] Haryadi S Gunawi, Mingzhe Hao, Riza O Suminto, Agung Laksono, Anang D

Satria, Jeffry Adityatama, and Kurnia J Eliazar. 2016. Why does the cloud stop

computing? lessons from hundreds of service outages. In Proceedings of the
Seventh ACM Symposium on Cloud Computing. 1–16.

[20] Deke Guo, Jie Wu, Honghui Chen, Ye Yuan, and Xueshan Luo. 2009. The dynamic

bloom filters. IEEE Transactions on Knowledge and Data Engineering 22, 1 (2009),

120–133.

[21] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. 2007. A simple

optimistic skiplist algorithm. In Structural Information and Communication Com-
plexity: 14th International Colloquium, SIROCCO 2007, Castiglioncello, Italy, June

5-8, 2007. Proceedings 14. Springer, 124–138.
[22] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. 2010. The

HiBench benchmark suite: Characterization of the MapReduce-based data anal-

ysis. In 2010 IEEE 26th International Conference on Data Engineering Workshops
(ICDEW 2010). 41–51. https://doi.org/10.1109/ICDEW.2010.5452747

[23] Scalyr inc. 2023. Scalyr home page. https://www.dataset.com/

[24] Splunk inc. 2023. Splunk Enterprise. https://www.splunk.com/

[25] Shashank Mohan Jain. 2020. Linux Containers and Virtualization. A Kernel
Perspective (2020).

[26] Joanna Kosińska, Bartosz Baliś, Marek Konieczny,Maciej Malawski, and Sławomir

Zielinśki. 2023. Towards the Observability of Cloud-native applications: The

Overview of the State-of-the-Art. IEEE Access (2023).
[27] Joanna Kosińska and Krzysztof Zieliński. 2022. Experimental evaluation of

rule-based autonomic computing management framework for cloud-native ap-

plications. IEEE Transactions on Services Computing 16, 2 (2022), 1172–1183.

[28] lz4. 2023. lz4. https://github.com/lz4

[29] Nicolas Marie-Magdelaine. 2021. Observability and resources managements in
cloud-native environnements. Ph. D. Dissertation. Bordeaux.

[30] Michael Mitzenmacher. 2001. Compressed bloom filters. In Proceedings of the
twentieth annual ACM symposium on Principles of distributed computing. 144–150.

[31] Diego Ongaro and John Ousterhout. 2014. In search of an understandable con-

sensus algorithm. In 2014 USENIX annual technical conference (USENIX ATC 14).
305–319.

[32] Claus Pahl, Antonio Brogi, Jacopo Soldani, and Pooyan Jamshidi. 2017. Cloud

container technologies: a state-of-the-art review. IEEE Transactions on Cloud
Computing 7, 3 (2017), 677–692.

[33] Octavian Procopiuc, Pankaj K Agarwal, Lars Arge, and Jeffrey Scott Vitter.

2003. Bkd-tree: A dynamic scalable kd-tree. In Advances in Spatial and Tem-
poral Databases: 8th International Symposium, SSTD 2003, Santorini Island, Greece,
July 2003. Proceedings 8. Springer, 46–65.

[34] Jon Richards. 2019. wrk2. https://github.com/giltene/wrk2

[35] Hassan Jamil Syed, Abdullah Gani, Raja Wasim Ahmad, Muhammad Khurram

Khan, and Abdelmuttlib Ibrahim Abdalla Ahmed. 2017. Cloud monitoring: A

review, taxonomy, and open research issues. Journal of Network and Computer
Applications 98 (2017), 11–26.

[36] Kapil Vaidya, Eric Knorr, Tim Kraska, and Michael Mitzenmacher. 2020. Parti-

tioned learned bloom filter. arXiv preprint arXiv:2006.03176 (2020).
[37] JunyuWei, Guangyan Zhang, Junchao Chen, YangWang,Weimin Zheng, Tingtao

Sun, Jiesheng Wu, and Jiangwei Jiang. 2023. LogGrep: Fast and Cheap Cloud

Log Storage by Exploiting both Static and Runtime Patterns. In Proceedings of
the Eighteenth European Conference on Computer Systems. 452–468.

[38] Yuhan Wu, Jintao He, Shen Yan, Jianyu Wu, Tong Yang, Olivier Ruas, Gong

Zhang, and Bin Cui. 2021. Elastic bloom filter: deletable and expandable filter

using elastic fingerprints. IEEE Trans. Comput. 71, 4 (2021), 984–991.
[39] Yandex. 2023. ClickHouse. https://clickhouse.com/

[40] Muzhi Yu, Zhaoxiang Lin, Jinan Sun, Runyun Zhou, Guoqiang Jiang, Hua Huang,

and Shikun Zhang. 2022. TencentCLS: the cloud log service with high query

performances. Proceedings of the VLDB Endowment 15, 12 (2022), 3472–3482.
[41] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin Xiang, and

Chuan He. 2019. Latent error prediction and fault localization for microservice

applications by learning from system trace logs. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 683–694.

https://doris.apache.org/
https://www.elastic.co/cn/elastic-stack
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://www.alibabacloud.com/product/log-service
https://www.huaweicloud.com/intl/zh-cn/product/ecs.html
https://www.huaweicloud.com/intl/zh-cn/product/ecs.html
https://www.huaweicloud.com/intl/en-us/product/evs.html
https://www.huaweicloud.com/intl/en-us/product/evs.html
https://www.huaweicloud.com/intl/zh-cn/product/obs.html
https://www.huaweicloud.com/intl/zh-cn/product/obs.html
https://www.huaweicloud.com/intl/zh-cn/product/sfs.html
https://www.huaweicloud.com/intl/zh-cn/product/sfs.html
https://github.com/wg/wrk
https://grafana.com/docs/loki/latest/
https://doi.org/10.1109/ICDEW.2010.5452747
https://www.dataset.com/
https://www.splunk.com/
https://github.com/lz4
https://github.com/giltene/wrk2
https://clickhouse.com/

	Abstract
	1 Introduction
	2 ESTELLE Log Engine
	2.1 Architecture Overview
	2.2 Storage Layout
	2.3 Writing Process
	2.4 Query Process

	3 Log Index Framework
	3.1 Index Framework Overview
	3.2 ESTELLE Log Bloom Filter
	3.3 Approximate Inverted Index.

	4 Query Optimization
	4.1 Shard-Level Query Process
	4.2 Full-Text and Prefix Queries
	4.3 AND Queries
	4.4 Progressive Approximate Histogram Queries

	5 Experiment Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

