
19

Searching Activity Trajectories by Exemplar

ZHONG YANG, BOLONG ZHENG, and GUOHUI LI, Huazhong University

of Science and Technology

NGUYEN QUOC VIET HUNG, Griffith University

GUANFENG LIU, Macquarie University

KAI ZHENG, University of Electronic Science and Technology of China

The rapid explosion of urban cities has modernized the residents’ lives and generated a large amount of data
(e.g., human mobility data, traffic data, and geographical data), especially the activity trajectory data that
contains spatial and temporal as well as activity information. With these data, urban computing enables to
provide better services such as location-based applications for smart cities. Recently, a novel exemplar query
paradigm becomes popular that considers a user query as an example of the data of interest, which plays
an important role in dealing with the information deluge. In this article, we propose a novel query, called
searching activity trajectory by exemplar, where, given an exemplar trajectory τq , the goal is to find the top-
k trajectories with the smallest distances to τq . We first introduce an inverted-index-based algorithm (ILA)
using threshold ranking strategy. To further improve the efficiency, we propose a gridtree threshold approach
(GTA) to quickly locate candidates and prune unnecessary trajectories. In addition, we extend GTA to support
parallel processing. Finally, extensive experiments verify the high efficiency and scalability of the proposed
algorithms.

CCS Concepts: • Information systems → Spatial-temporal systems; Information retrieval query pro-

cessing; Retrieval models and ranking; Similarity measures;

Additional Key Words and Phrases: Spatio-temporal trajectory, activity trajectory, trajectorys similarity, ex-
emplar query, query processing

ACM Reference format:

Zhong Yang, Bolong Zheng, Guohui Li, Nguyen Quoc Viet Hung, Guanfeng Liu, and Kai Zheng. 2020. Search-
ing Activity Trajectories by Exemplar. ACM/IMS Trans. Data Sci. 1, 3, Article 19 (September 2020), 18 pages.
https://doi.org/10.1145/3379561

Z. Yang and B. Zheng contributed equally to the article.

This research is partially supported by NSFC (Grants No. 61902134, 61572215, 61972069, 61836007, 61832017, and 61532018)

and the Fundamental Research Funds for the Central Universities (HUST: Grants No. 2019kfyXKJC021 and 2019kfyXJJS091).

Authors’ addresses: Z. Yang, B. Zheng (corresponding author), G. Li, Huazhong University of Science and Technology,

Wuhan, China; emails: {zhongyang90, bolongzheng, guohuili}@hust.edu.cn; N. Q. V. Hung, Griffith University, Gold coast,

Australia; email: henry.nguyen@griffith.edu.au; G. Liu, Macquarie University, Sydney, Australia; email: guanfeng.liu@

mq.edu.au; K. Zheng (corresponding author), University of Electronic Science and Technology of China, Chengdu, China;

email: zhengkai@uestc.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

2577-3224/2020/09-ART19 $15.00

https://doi.org/10.1145/3379561

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 19. Publication date: September 2020.

https://doi.org/10.1145/3379561
mailto:permissions@acm.org
https://doi.org/10.1145/3379561

19:2 Z. Yang et al.

1 INTRODUCTION

In recent years, the rapid explosion of urban cities has modernized residents’ lives while increas-
ingly generating a large amount of data such as human mobility data, traffic data, geographical
data, and trajectory data. Besides, due to the prevalence of spatial web applications on the Internet
and mobile techniques, a large amount of activity trajectory data is uploaded and shared by users
in online services such as Foursquare and Gowalla, which consists of locations, timestamps, and
activity keywords. With these rich information, the activity trajectory data enables urban comput-
ing that helps tackle the challenges engendered by the urbanization and provides better services
for smart cities. For example, it provides better trip planning and trip recommendation services.

In the existing work, two kinds of trajectory search have been explored. One is the spatial-
textual trajectory search [25, 29, 30] that concerns spatial and textual information, and the other is
the spatial-temporal trajectory search [5, 7, 23, 24] that concerns spatial and temporal information.
Nevertheless, only a few work considers all the three dimensions of spatial, temporal, and textual
information at the same time. Although an activity trajectory is modeled as an ordered sequence of
locations with activity information [12, 22, 28]; however, this ordered sequence model is not always
reasonable. People commonly check-in their locations and activities at the landmarks, Internet
celebrity restaurants, and places in their daily life. Different from the vehicle GPS trajectory, the
correlation among points within an activity trajectory can be weak. For instance, the spatial and
temporal distances between adjacent points can be too large, which leads the activity trajectory to
be more like a “group of points” rather than a “sequence.” Therefore, the distance measure between
activity trajectories requires a different and careful design.

Recently, a novel exemplar query paradigm [18] emerges that considers a user query as an
example of the data in which the user is interested. Traditional activity trajectory query assumes
that users are aware of the characteristics of activity trajectories and are able to describe them in
the query, but the users may not know how to describe the specifications of the activity trajectories
in practical scenarios. With the help of exemplar query, the users who are not familiar with activity
trajectories can have an exemplar query as starting point related to their real requirements. Having
observed these issues, we propose a novel query of searching activity trajectories by exemplar
(SATE), which incorporates three dimensions into a coherent definition and concerns more about
points and activities.

To this end, a top-k SATE query is defined as follow: Given a set of activity trajectories, an exem-

plar trajectory, and an integerk , we aim to retrieve the top-k trajectories ranked by the match distances

w.r.t the exemplar trajectory. In the top-k SATE query, we consider the match of location, time, and
activity at the same time. Besides the applications of trip planning and recommendation, our query
results can also be applied to some scenarios in social network, such as community detection [16]
and partner recommendation. Consider a user query, the top-k SATE returns trajectories of the
other users that have nearby locations, close timestamps and the same activities to the query user.
These users in the results may be potential trip partners of the user.

To answer a top-k SATE query, we are faced with two main challenges. First, it is difficult to
evaluate the activity trajectory distance. Although various distance measures have been proposed
in the existing work, only few of them takes spatial, temporal, and activity into consideration
at same time. Therefore, a novel and suitable distance measure is required. Second, the brute-
force approach that employs a pointwise similarity computation has a quadratic time cost. It is
challenging to design an efficient index structure and algorithm to answer the top-k SATE query.

Contribution. The principal contributions of this article can be summarized as follows.

(1) We introduce a novel query called SATE and define a proper designed distance measure
to evaluate the distance between activity trajectories.

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 19. Publication date: September 2020.

Searching Activity Trajectories by Exemplar 19:3

(2) We first develop an inverted-index-based approach (ILA) by using a heap-based method.
Then we propose a GridTree Threshold algorithm (GTA) to answer the top-k SATE query
more efficiently. In GTA, we develop an AGI structure to quickly locate the candidate
points and utilize a priority queue to sequentially process them. A threshold is used to
ensure the process terminates as soon as possible, hence improving the search efficiency.
In addition, we propose a parallel version of GTA (PGTA) that utilizes a global threshold
to terminate all threads, further improving the performance.

(3) Our experimental evaluation demonstrates the efficiency of proposed algorithms and in-
dex structures for processing the top-k SATE query on three datasets. The results show
the superiority of GTA in answering the top-k SATE query when compared with ILA.

The remainder of this article is organized as follows. We position our work with respect to the
related literature in Section 2 and formulate the problem of searching activity trajectory query by
exemplar in Section 3. We first provide an inverted-list index-based approach ILA as baseline in
Section 4, and then we propose a gridtree-based approach GTA to answer the top-k SATE query
more efficiently in Section 5 and a parallel version PGTA to further improve the performance in
Section 6. We report on our experimental observations in Section 7. Finally, we draw a conclusion
in Section 8.

2 RELATED WORK

In the past decades, the trajectory search has received significant attentions. There are a large
number of trajectory distance measures, such as Euclidean distance, DTW [27], LCSS [24], EDR
[5], and ERP [4]. DTW is originally introduced for signal processing, which allows time-shifting
in comparison and now is widely applied in time sequence retrieval and trajectory retrieval. LCSS
is proposed based on the concept of the longest common subsequence, which is robust to noise by
allowing skip of some sample points. EDR is based on the edit distance using a threshold parameter
to determine whether two points are matched while considering penalties to gaps, which is also
robust against noise and addresses some deficiencies in LCSS. ERP aims to combine the merits of
DTW and EDR, by using a constant reference point for computing distance.

The problem of spatial-temporal trajectory search that concerns only spatial and temporal in-
formation has been addressed in the existing work [7, 8, 23]. Chen et al. [7] investigate the problem
of discovering the most popular route between two locations, they introduce an absorbing Markov
chain model to analysis the traveling behaviors of historical traveling. Chen et al. [8] study a new
k-BCT trajectory searching problem, in which the query is only a small set of locations while the
target is to find thek Best-Connected Trajectories, such that the results best connect the designated
locations geographically. Sherkat et al. [23] study the problem of efficiently evaluating similarity
queries on histories, where a history is a d-dimensional time series. There are some solutions for
time-series and spatial-temporal trajectories where d ≤ 3, while they examine the problem for
larger values of d .

Several recent papers have explored the problem of spatial-textual trajectory search using var-
ious measures in the textual domain. Liu et al. [14] infer the future locations of a moving object
from its similar trajectories in which the semantic similarity adopted LCSS approach. Zheng et al.
[29] explore the problem of approximate keyword search in the context of semantic trajectories.
Wang et al. [25] search semantic trajectories in the textual domain with a TF-IDF model while
Liu et al. [15] search semantic trajectories in the textual domain with a probabilistic topic model.
Meanwhile, a lot of studies appear in spatial-textual search using novel spatial-textual indexes. Fe-
lipe et al. [11] propose IR2-tree, which combines an R-Tree with superimposed text signatures to
answer Boolean keyword queries. Cong et al. [9] and Li et al. [13] integrate R-tree and inverted files

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 19. Publication date: September 2020.

19:4 Z. Yang et al.

(IR-tree) for text retrieval and spatial proximity querying. However, an IR-tree can be inefficient as
the retrieve strategy scans a few leaf nodes that attached with many unrelated points that do not
match any query keywords [17]. Zheng et al. [30] propose a grid index called GAT, which utilizes
both spatial information and query keywords to reduce the search space. Rocha et al. [19] propose
a mapping of pairs of data and feature objects to a distance-score space to speed up the perfor-
mance of top-k spatial preference queries. Chen et al. [3] provide a survey of 12 state-of-the-art
spatial-textual indexes of the spatial keyword query performance.

In addition, various novel trajectory queries have been proposed in some work. Cao et al. [1]
propose a new type of query, the Location-aware top-k Prestige-based Text retrieval (LkPT) query,
which retrieves the top-k spatial web objects ranked according to both prestige-based relevance
and location proximity. Shang et al. [20] investigate a novel query type named trajectory search
by regions of interest (TSR), which takes a set of regions of interest as a parameter and returns
the trajectory with the highest spatial-density correlation to the query regions. The personalized
trajectory matching query [21] takes a trajectory with user-specified weights for each sample point
in the trajectory as its argument. Cao et al. [2] address the problem of a collective spatial keyword
query, in which the group’s keywords cover the query’s keywords and the results have the lowest
inter-object distances. Chen et al. [6] introduce a query of searching trajectories with activities
and corresponding ranking information. Wen et al. [26] consider arbitrary text descriptions as
keywords of user query, and design a keyword extraction module to classify the POI-related tags
for effective matching with query keywords. Zheng et al. [28] propose a personalized route query
that includes some clues describing the spatial context between PoIs along the route.

Different from aforementioned studies, only a few of them take all the three dimensions of
spatial, temporal and activity information into consideration at the same time. Moreover, between
prior work and our work in terms of query and data models, the query keywords, the distance
measures and result output are not exactly the same. The hybrid indexes and the corresponding
algorithms are also not suitable to our query. So, we propose novel algorithms with customized
indexes.

3 PRELIMINARIES

This section formalizes the setting and defines the problem of top-k SATE query. Frequently used
notations are summarized in Table 1.

3.1 Settings

Definition 3.1 (Activity Trajectory). An activity trajectory τ is a sequence of activities, i.e., τ =
{p1, . . . ,pn }, where each activity is denoted as pi = (l , t ,φ), i ∈ [1,n], with l being a location, t
being a timestamp, and φ being a set of keywords describing the activity.

To avoid clutter, we follow common practice and simply use trajectory and point to respectively
represent activity trajectory and activity when this does not cause ambiguity.

Definition 3.2 (Match). Given two trajectories τ1 and τ2, for a pointpi ∈ τ1 and a pointqj ∈ τ2, we
say thatpi is a match of qj , i.e.,pi ⇔ qj , if we havepi .φi ∩ qj .φ j � ∅. In addition, the point-to-point
matching distance between pi and qj is computed as follows:

Dist(pi ,qj) = α · dS (pi .vi ,qj .vj) + (1 − α) · dT (pi .ti ,qj .tj), (1)

where dS (pi .vi ,qj .vj) is the Euclidean distance between pi .vi and qj .vj , dT (pi .ti ,qj .tj) = |pi .ti −
qj .tj | is the temporal distance, and α ∈ [0, 1] is a user-specified parameter that used to adjust the
relative importance of the spatial and temporal distance. It is worth noting that ifpi .φi ∩ qj .φ j = ∅,
we consider that pi and qj are unmatched and non-relevant.

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 19. Publication date: September 2020.

Searching Activity Trajectories by Exemplar 19:5

Table 1. Summary of Notations

Notation Definition

τ = {p1, . . . ,pn } An activity trajectory τ
pi = (li , ti ,φi) A point pi in an activity trajectory
pi ⇔ qj The point pi matches the point qj

dS (pi ,qj) The spatial distance between pi and qj

dT (pi ,qj) The temporal distance between pi and qj

Dist(·, ·) The point-to-point, point-to-trajectory, and trajectory-to-trajectory distance
Di, j An abbreviation of the distance Dist(pi ,qj)
LBD(τ1,τ2) A lower bound for the distance between τ1 and τ2

LBDtmp (τ1,τ2) A temporary lower bound for the distance between τ1 and τ2

H (·) A binary encoding of activities contained in a node or a point.
Ni (qn) A search region node Ni of a query point qn

pm (qn) A candidate points-pair in the priority queue for a query point qn

C The set of candidate trajectories.
R The set of top-k results.
R.max The maximum value in the result set R.

Without loss of generality, we assume that both dS (pi .vi ,qj .vj) and dT (pi .ti ,qj .tj) are normal-
ized by a monotonic increasing function, then we have Dist(pi ,qj) ∈ [0, 1].

Definition 3.3 (Point-to-Trajectory Distance). Given two trajectories τ1 and τ2, for a point pi ∈ τ1

and τ2, the point-to-trajectory distance is computed as follows:

Dist(pi ,τ2) = min
qj ∈τ2,pi⇔qj

Dist(pi ,qj). (2)

The intuition of Equation (2) is that the distance from a point pi to a trajectory τ2 is the distance
from pi to its best matched point in τ2.

Definition 3.4 (Activity Trajectory Distance). Given two trajectories τ1 and τ2, the activity trajec-
tory distance is computed as follows:

Dist(τ1,τ2) = max{max
pi ∈τ1

Dist(pi ,τ2),max
qj ∈τ2

Dist(qj ,τ1)}. (3)

From Equation (3), we have the following observations:

(i) This function captures the largest point-to-trajectory distance, which implies that the
activity trajectory distance bounds the worst case point-to-trajectory distance.

(ii) We assume that the distance function between τ1 and τ2 is symmetrical, such that
Dist(τ1,τ2) = Dist(τ2,τ1).

(iii) Let τ .φ be the set of keywords that τ covers. If τ1.φ ∩ τ2.φ = ∅, then we consider that τ1

and τ2 are unmatched, and Dist(τ1,τ2) is not applicable.

3.2 Problem Definition

Given a distance function Dist(τ1,τ2) that measures the dissimilarity/similarity between two tra-
jectories τ1 and τ2, we study the problem of SATE.

Definition 3.5 (Top-k SATE). Given a trajectory set D, an exemplar trajectory τq , and an integer
k . The top-k SATE query finds a set R of k trajectories with smallest distance w.r.t. τq , i.e., ∀τ ∈ R,
and ∀τ ′ ∈ D − R, Dist(τq ,τ) < Dist(τq ,τ

′).

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 19. Publication date: September 2020.

19:6 Z. Yang et al.

3.3 Computing Activity Trajectory Distance

Matrix Representation (MR). Given τ1 and τ2, we employ a matrix representation to interpret
the distance computation as shown in Equation (4). Suppose |τ1 | =m and |τ2 | = n, we obtain a
m × n matrix D, where each element Di, j denotes the point-to-point matching distance between
pi ∈ τ1 and qj ∈ τ2. We denote Di, : as the minimum value of all elements in row i , and D:, j as the
minimum value in column j, respectively. In other words, Di, : is the point-to-trajectory distance
between pi and τ2, and D:, j is the distance between qj and τ1,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1,1 D1,2 · · · D1,n

D2,1 D2,2 · · · D2,n

...
...
. . .

...
Dm,1 Dm,2 · · · Dm,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

min−→ D1, :

min−→ D2, :
...

...
min−→ Dm, :

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪
⎭

maxDi, :,

↓ min ↓ min · · · ↓ min
D:,1 D:,2 · · · D:,2︸��������������������������︷︷��������������������������︸

maxD:, j

(4)

Therefore, Equation (3) can be reformalized as follows:

Dist(τ1,τ2) = max{maxDi, :,maxD:, j }. (5)

To compute Dist(τ1,τ2), a brute-force method is to compute all the elements in D, which costs
O (mn) time. To reduce the time cost, we consider the following observation: Suppose we already
obtain Di, : of row i , and an element Di′, j in row i ′. If Di′, j is no larger than Di, :, then the enu-
meration on row i ′ can be skipped. This is because we can easily determine Di′, : ≤ Di, :, since
Di′, : ≤ Di′, j . That is, Di′, : has no chance to contribute the distance between τ1 and τ2.

Lemma 3.6. Given Di, : or D:, j , if there exists an element Di′, j′ with Di′, j′ ≤ Di, : or Di′, j′ ≤ D:, j ,

then we need not to enumerate the elements in row i ′ or in column j ′.

Computing Exact Distance. Instead of exhaustively enumerating all elements, we propose an
ExactDist method to compute the exact distance by skipping unnecessary rows and columns. We
first enumerate the elements row by row, and then column by column. From Equation (5), we know
that any Di, : or D:, j is a lower bound for the distance between two trajectories. Therefore, we can
take an arbitrary Di, : or D:, j as a lower bound, denoted by LBD(τ1,τ2). Once we complete the scan
on a row or column, we update the lower bound if a larger value is obtained. If an element Di′, j′ is
no larger than the current lower bound, then both row i ′ and column j ′ can be safely dismissed.

4 INVERTED LIST-BASED ALGORITHM

The inverted list-based algorithm (ILA), as shown in Algorithm 1, builds an inverted index I for
the keywords in the trajectories. Let I (w) be the inverted list for keyword w , which includes
all the trajectories that contain w , and |I (w) | be the length of I (w). For simplicity, we assume
that the trajectories in each I (w) are already ordered in ascending order of their IDs. Given an
exemplar τq , to obtain the candidate trajectories C , the first step is to merge the inverted lists of
all the keywords in τq . This step can be accomplished by using an existing heap-based method
[10], which costs O (

∑ |I (w) |) time, where w ∈ ⋃p.φ and p ∈ τq . The second step is to estimate
the distance between τq and each candidate by computing a lower bound distance. The third step
simply applies a threshold algorithm (TA), which processes each candidate in ascending order
on the lower bound. For the next unprocessed candidate, we exactly compute its distance to τq

by ExactDist and add it to R if its distance is smaller than the current largest distance in R. The

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 19. Publication date: September 2020.

Searching Activity Trajectories by Exemplar 19:7

algorithm terminates when the current largest distance in R is smaller than the lower bound of the
next unprocessed candidate.

ALGORITHM 1: InvertedListAlgorithm (ILA)

Input: D: all the trajectories, τq : a query exemplar
Output: R: a set of top-k trajectories

1 Initialize R ← ∅;
2 W ← w ∈ ⋃p.φ and p ∈ τq ;

3 C ← merge I (w) of all w ∈W ;

4 foreach τ ∈ C do

5 Compute LBD(τq ,τ);

6 Sort τ ∈ C in ASC by LBD(τq ,τ);

7 foreach τ ∈ C do

8 if Dist(Rk) ≤ LBD(τq ,τ) then

9 break;

10 Dist(τq ,τ) ← ExactDist();

11 Update R if necessary;

12 return R;

Computation Analysis. Compared with the brute-force enumeration method, ILA is more
efficient. Although ILA traverses all candidate trajectories and computesLBDs , it avoids computing
the exact distances between query trajectory and candidate trajectories. In the best case, only k
exact distances of the candidate trajectories are required, thus a large amount of computation
can be saved; even in the worst case, the method ends after all the exact distances of candidate
trajectories are computed, and the time cost equals to that of the brute-force method.

5 GRIDTREE THRESHOLD APPROACH

In ILA, an inverted index is applied to find the candidate trajectories whose activities intersect with
that of the query trajectory. However, the candidate trajectories may be retrieved multiple times in
different activity posting lists, especially when the number of activities contained in the candidate
trajectories is large. Moreover, it suffers from retrieving all candidate trajectories and computing
a LBD for each of them. Therefore, we propose a GridTree Threshold Approach (GTA) to prune
the trajectories that are far away from the query trajectory such that avoids duplicate retrieval. In
GTA, we develop an Activity GridTree Index to quickly locate the candidate points that match with
the query trajectory points. Meanwhile, we utilize a priority queue to process the candidate points
sequentially. To determine when to calculate the match distance between the candidate trajectory
and the query trajectory, each candidate trajectory is annotated by using a Scan Flag that records
whether it is scanned partially or fully by the query trajectory. The thresholds are used to prune
points and determine the early stop of the query processing.

Activity GridTree Index (AGI). A basic GridTree is a tree-based data structure in which each
internal node has four children decomposing parent node planar space region into four equal
quadrants, and each leaf node contains data corresponding to a specific subregion. In our problem,
given a query trajectory τq , we aim to find trajectories containing activities that match the query
trajectory activities while the distance between τq and τj is the smallest. To enable the pruning on
activities, we construct the Active GridTree as follows.

• Points Storage. First, we construct a GridTreeT with a depth of d , each node Ni in the tree
represents a space region RNi

. Then we insert points of all trajectories into leaf nodes of the

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 19. Publication date: September 2020.

19:8 Z. Yang et al.

tree: We compare the location (xp ,yp) of each point p with each child node Ni of the root
node, if (xp ,yp) ∈ RNi

, and then we continue to compare (xp ,yp) with each child node Ni
′

of the node Ni , iterating this process until node Ni
′ is a leaf node and we store the point in

the leaf node.
• Activity Encoding. Then, we map activities to a binary code with h bits utilizing an en-

coding function H . In binary code H (w), one bit is set to 1 to represent activity keyword
w . Hence, for a point p the binary code H (p) is the superposition of H (w) of all activity
keywords it contains, formally written as H (p) = ∨w ∈p .φH (w). Similarly, the binary code
of a trajectory H (τ) is the superposition of H (p) of all p ∈ τ ; and for a node N , if N is a leaf
node, then H (N) is the superposition of H (p) of all points p it contains; otherwise, H (N) is
the superposition of H (N ′) of its child nodes N ′.

Therefore, a non-zero value of H (p) ∧ H (q) indicates that p.φ ∩ q.φ � ∅, and H (p) ∧ H (q) = 0
means points p and q have no activity intersection. Likewise a non-zero value of H (N) ∧ H (q)
indicates that there exists points pi having pi .φ ∩ q.φ � ∅ stored in the descendant leaf nodes of
node N , and H (N) ∧ H (q) = 0 means there is no match points for query point q stored in the
descendants of node N . Each node contains the information of its space region coordinates and
activity binary code H (N), which provides strong support to find match points for a query point
q in its nearby regions.

Priority Queue (PQ). In our algorithm, a priority queue is used to process the nodes and points
sequentially, in which only one node or one point is accessed at each iteration. Based on AGI, the
PQ processing can be divided into two levels:

(1) In the first level, each candidate search region node for each query point qn , written
as Ni (qn), is inserted into PQ according to the distance from qn to the region of nodes
(as the node region has no temporal information, the distance between a point and the
node region is defined as Dist(qn ,Ni) = α ·minds (qn ,Ni)). That is, in each iteration of
the processing, if the top element of PQ is a non-leaf node, after popping the node, then
its childnodes are inserted into PQ according to Dist(qn ,Ni), if H (Ni) ∧ H (qn) � 0.

(2) In the second level, every candidate point for each query point qn , written as pm (qn), is
inserted into PQ according to the distance between qn and pm . That is, in each iteration
of the processing, if the top element of PQ is a leaf node, then the points pm contained in
it are inserted into PQ according to Dist(qn ,pm) if H (pm) ∧ H (qn) � 0.

An example of a simplified priority queue is shown in Figure 1 to help understanding. We con-
sider the distance between a point and a node is zero when the point locates in the node,
for example, q1 and N5 (q1). First in level 1 of Figure 1, assume N2, N3, N4, N5 are childnodes
of N0, after N0 (q1) is popped from PQ, these nodes are inserted into PQ in order of {N5 (q1),
N3 (q1), N4 (q1), N2 (q1)} as Dist(q1,N5) < Dist(q1,N3) < Dist(q1,N4) < Dist(q1,N2). Whereafter,
assume nodes N6,N7,N8,N9 are childnodes of N1, after N1 (q2) and N1 (q3) are popped from
PQ, nodes around q2 and q3 will be inserted into PQ. Assume that Dist(q1,N5) ≤ Dist(q2,N8) ≤
Dist(q3,N6) ≤ Dist(q1,N3) ≤ Dist(q2,N9) ≤ Dist(q1,N4) ≤ · · · ≤ Dist(q3,N9), then the order of
nodes in PQ of level 1 is as shown in Figure 1. Next in level 2, assume the top few nodes N5 (q1),
N8 (q2), N6 (q3) in PQ are leafnodes, points are stored in these nodes. After N5 (q1) is popped from
PQ, points inN5 (q1) are inserted into PQ in order of their distances toq1, and afterN8 (q2) is popped
from PQ, points in N8 (q2) are inserted into PQ in order of their distances to q2. Then the order
of PQ in level 2 is as shown in Figure 1 if we assume Dist(q1,p2) ≤ Dist(q2,p6) ≤ Dist(q2,p4) ≤
Dist(q1,p1) ≤ Dist(q1,p3) ≤ Dist(q2,p5) ≤ · · · ≤ Dist(q3,N9). The algorithm continues accessing

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 19. Publication date: September 2020.

Searching Activity Trajectories by Exemplar 19:9

Fig. 1. An example of the priority queue.

points in PQ until there is no item in it or until a particular condition is encountered. The partic-
ular condition is introduced later after introducing Scan Flag in this section.

Scan Flag. Since the algorithm accesses one point at each iteration, the points in each trajectory
are accessed discretely. To determine when the distance between the candidate trajectory and the
query trajectory should be calculated, a notation is required to identify whether all the points in
a candidate trajectory have been accessed by the query trajectory.

For a candidate trajectory τ :

• None-Scanned: If no points in τ has been accessed by any qi ∈ τq , then we call τ none-
scanned;

• Pre-Scanned: If a portion of points in τ has been accessed by qi , then we call τ pre-scanned
by qi ;

• Partial-Scanned: If all points in τ has been accessed by qi , then we call τ partial-scanned
by qi ;

• Full-Scanned: If τ is partial-scanned by all qi ∈ τq , then we call τ full-scanned by τq .

It can be observed in the matrix representation of Equation (4) that, once τ is partial-scanned
by qi , we achieve a temporary lower bound LBDtmp (τq ,τ) = Di, : = minDi, j , and once τ is full-
scanned by τq , we achieve the lower bound LBD (τq ,τ) = maxDi, :. A Scan Flag is similar to a
matrix representation, where each element in it, noted as SCi j (similarly to the elements Di j in
matrix representation), is not a distance but a bit of one or zero to indicate whether the candidate
point pj is scanned by the query point qi or not. All the elements are set to zero, which is the initial
status of Scan Flag that represents none-scanned. All the elements in row i are one representing
partial-scanned by qi . All elements in the Scan Flag are one indicating full-scanned by τq .

Transformation of Scan Flag. In each iteration, we transform the element SCi j in Scan Flag
from zero to one if the corresponding candidate point pj is accessed by the query point qi . It seems

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 19. Publication date: September 2020.

19:10 Z. Yang et al.

that we need to access all the points in a candidate trajectory to transform the Scan Flag elements to
ones and we must spend a lot of space to store the Scan Flag. But in practice, the transformation of
Scan Flag elements does not require all points to be actually accessed, and a strategy is introduced
in the following to quickly transform the Scan Flag to partial-scanned and significantly reduce the
space cost of the Scan Flag.

Lemma 5.1. For a query point qi and a candidate trajectory τj , if we have not accessed any points-

pairspj (qi), wherepj ∈ τj before, after we access the first points-pairpj (qi) forqi , the distance between

these two points Dist(qi ,pj) is the point-to-trajectory distance between qi and τj and it is a temporary

lower bound LBDtmp (τq ,τj) between τq and τj . Thus, τj can be labeled as partial-scanned by qi . And

other points-pairs pj (qi) for qi can be skipped in the priority queue.

Proof. As the constraint of the priority queue, we have Dist(qi ,pj) ≤ Dist(qi ,p
′
j) if the points-

pair pj (qi) is in the front of the points-pair p ′j (qi) in the queue. Thus, the first accessed points-

pair pj (qi) for qi has the minimal point-to-point distance between qi and τj , i.e., Dist(qi ,pj) =
min{Di, j } = Di, :, the distance is also a temporary lower bound LBDtmp (τq ,τj) between τq and τj . So
after we access the first points-pair pj (qi) for qi , the distance Dist(qi ,pj) is the point-to-trajectory
distance from qi to τj , and τj can be labeled as partial-scanned by qi . �

With the above lemma, the Scan Flag can be reduced to a matrix with only one column, which
significantly saves the space consumption.

Termination Threshold. Along with the iteration, the trajectories’ Scan Flag constantly up-
dates. Whenever a candidate trajectory τj is partial-scanned by a qi ∈ τq , we obtain a Di :, , and we
update the temporary lower bound LBDtmp (τq ,τj) to the larger Di :, . After τj is full-scanned, we
get the LBDtmp (τq ,τj) = LBD (τq ,τj) = maxDi :, . Then the trajectory-to-trajectory match distance
is computed and inserted into R. R always saves the minimum k results. The iteration continues
processing until there is no item in PQ or until the following condition is encountered.

Lemma 5.2. After R reserves k temporary results, the current R.max is a upper bound of the final

results, if the current R.max < Dist(qc ,pc), where pc (qc) is current points-pair in the queue, then the

query processing terminates, and all the none-scanned trajectories can be pruned.

Proof. It is easy to learn that the final R.max ≤ any approximate R.max , so the current
R.max is a upper bound of the final results. For every none-scanned trajectory τns , its points-
pairs are all behind the current top points-pair in PQ, i.e., ∀qi ∈ τq and ∀pj ∈ τns , ∃Dist(qc ,pc) <
Dist(qi ,pj). If the current R.max < Dist(qc ,pc), then R.max < Dist(qc ,pc) < Dist(qi ,pj). As we
have Dist(qi ,pj) ≤ Dist(τq ,τns). Thus, the final R.max ≤ current R.max < Dist(τq ,τns), which
means τns cannot be one of the final results and can be pruned. �

After the iteration terminates, all the non-scanned trajectories are pruned, the remaining pre-
scanned and partial-scanned trajectories and the current R require a further verification to deter-
mine the final top-k results. Fortunately, for each partial-scanned trajectories we have achieved
a lower bound LBDtmp (τq ,τ), and for all pre-scanned trajectories, we can transform them into
partial-scanned trajectories according to Lemma 5.1. Therefore, with all these LBDs , we utilize the
ILA method in Algorithm 1 to achieve the final results.

GridTree Threshold Approach (GTA). Combining AGI, PQ, Scan Flag, and the termination
strategy, we propose our GTA, shown in Algorithm 2. After initializing GridTree and PQ, the root
node of GridTree is inserted into PQ (lines 1–5). The query processing can be divided into two
levels. In the first level, nodes are processed (lines 8–13), child nodes or points contained in them
are inserted into PQ. In the second level, points are processed (lines 14–31), the encoding function
H () is employed to distinguish whether points-pair has activity intersection, then strategies are

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 19. Publication date: September 2020.

Searching Activity Trajectories by Exemplar 19:11

ALGORITHM 2: GridTree Threshold Algorithm

Input: τq : a query exemplar
Output: R: a set of top-k trajectories

1 Initialize GridTree T ;

2 Initialize Priority Queue PQ ;

3 Initialize C ← ∅;
4 Initialize R ← ∅;
5 foreach qn ∈ τq do

6 Insert T .root (qn) into PQ

7 while PQ .size > 0 do

8 if PQ .top is a node then

9 N (qn) ← PQ .top;

10 if N (qn) is non-leaf node then

11 Insert all childnodes cNi (qn) into PQ if H (cNi) ∧ H (qn) � 0;

12 else

13 Insert all pm (qn) ∈ N (qn) into PQ if H (pm) ∧ H (qn) � 0;

14 if PQ .top is a point then

15 pm (qn) ← PQ .top;

16 C ← τ where pm ∈ τ ;

17 if all pm ∈ τ is accessed by qn then

18 τ is partial-scanned by qn ;

19 Update LBD (τq ,τ) if necessary;

20 if τ is partial-scanned by all qn ∈ τq then

21 τ is full-scanned by τq ;

22 Update LBD (τq ,τ) if necessary;

23 if τ is full-scanned then

24 Dist(τq ,τ) ← ExactDist();

25 if |R | < k then

26 Insert τ into R;

27 else

28 Update R if necessary;

29 if R.max < current Dist(qn ,pm) then

30 break;

31 Same as line 6–11 in Algorithm 1;

32 return R;

utilized to update Scan Flag and prune points (lines 14–24), afterwards Lemma 5.2 terminates the
iteration (lines 30 and 31), and at last Algorithm 1 is applied to determine the final results (line 32).
Compared to ILA, our GTA is more efficient. Though the time complexity of GTA is almost the
same to that of ILA, the GridTree index and pruning strategies remarkably save the computation,
which is also proved in the experiments.

6 PARALLEL APPROACH

Through in-depth observation, we find that candidate points of each query point are processed
discretely and independently before the termination condition is encountered during the iteration.

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 19. Publication date: September 2020.

19:12 Z. Yang et al.

ALGORITHM 3: ParallelGTA algorithm

Input: τq : a query exemplar
Output: R: a set of top-k trajectories

1 Initialize GridTree T ;

2 Initialize R ← ∅;
3 foreach qi ∈ τq do

4 Initialize Priority Queue PQ (qi);

5 Find an approximate R among λk nearby trajectories;

6 foreach PQ (qi) do

7 Same as lines 7–22 in Algorithm 2 in parallel;

8 if approximate R.max < current Dist(qi ,pj) then

9 End thread;

10 if all threads end then

11 foreach τ ∈ C do

12 if τ is full-scanned then

13 Dist(τq ,τ) ← ExactDist();

14 Update R if necessary;

15 Same as lines 6–11 in Algorithm 1;

16 return R;

Therefore, the query processing can be implemented in parallel according to each query point qi .
Based on this observation, we propose a parallel approach, Parallel GridTree Threshold Approach
(PGTA), for a further improvement of k-SATE query.

Global Termination Threshold. It is worth noting that in the parallel approach, a Global
Termination Threshold that is an upper bound of result set R is required to terminate all parallel
processes. Different from GTA, we do not have to wait for the serial process producing the termina-
tion threshold R.max spontaneously after R reserves enough results, which can be seen in lines 26
and 27 in Algorithm 2. In that case, the parallel processes wait on each other, which makes im-
plementing the query in parallel meaningless. Therefore, a Global Termination Threshold should
be determined beforehand. According to lemma 5.2, any R.max can be an upper bound of R. So
if we find an approximate R in advance, the R.max can play the role of the Global Termination
Threshold. However, an arbitrary upper bound is not feasible if it is too loose to prune efficiently.
Hence, we consider to acquire the top-k results of λk trajectories nearby the query trajectory as
an approximate R by using ILA. In this approach, the larger the value of λ is, the closer the ap-
proximate R is to the final results, and the higher the pruning power is. But if the value of λ is
too large, the computation cost of finding the approximate R.max will be expensive. In summary,
when the value of λ is small, the pruning power is low while the computation cost is low. However,
the pruning power is high while the computation cost increases.

Parallel GridTree Threshold Approach (PGTA). In the PGTA, as shown in Algorithm 3, PQs
are prepared for each query points (lines 3 and 4). After an approximate R.max is found among
λk candidate trajectories near the query trajectory, PQs are processed in parallel (lines 6–9). The
approximate R.max is leveraged to terminate all the processes (lines 8 and 9). At last, ILA is applied
to determine the final results. Compared to GTA, the parallel approach improves the efficiency ex-
plicitly. Although finding the Global Termination Threshold incurs additional computation costs,
points of the λk trajectories can be skipped in the PQ procedure. In general, PGTA is more efficient
than GTA, which is also proved in experiment results.

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 19. Publication date: September 2020.

Searching Activity Trajectories by Exemplar 19:13

Table 2. Summary of Datasets

Dataset |D | |P | avд |D.P | |Φ| avд |P .φ |
CA 46000 383125 8.33 40 2.12
NY 69744 239547 3.43 661 7.46
ST 99204 981747 9.90 1033 4.37

Table 3. Choices of Parameters

Parameter Range Default Value

d 4,5,6,7,8,9,10,11,12 10
k 10,20,50,100,200 50
|q | 4,6,8,10,12 8
α 0.1,0.3,0.5,0.7,0.9 0.5
λ 10 10

7 EXPERIMENTAL STUDY

In this section, we report our experiment results and provide efficiency evaluations and analysis
from our experimental study.

7.1 Experiment Setup

Datasets. We conduct our experiments on two real-world activity trajectory datasets from
Foursquare, i.e., California (CA) and New York (NY), and a synthetic dataset (ST) generated by
a normal distribution. Table 2 summarizes the number of trajectories (D), the total number of
trajectory points (P), the average length of trajectory (avд |D.P |), the number of keywords in the
trajectories (|Φ|), and the average number of keywords in each trajectory point (avд |P .φ |). Our
experiments are conducted on a PC with a 3.90-GHz CPU and 8-GB RAM using Windows 10 and
implemented in C++ using 64 bit addressing.

Parameters. The parameter settings of the experiments are presented in Table 3. d is the depth
of GridTree, k is the value of top-k , |q | is the number of points in the query trajectory, α is the
coefficient defined in Equation (1), and λ is the approximate search region coefficient defined in
PGTA.

Algorithms for Evaluation. We compare the following approaches to process SATE query over
three datasets. (1) ILA: The baseline approach using an inverted list-based index to organize tra-
jectory data proposed in Section 4. (2) GTA: The approach using an activity gridtree index and a
priority queue to access trajectory points proposed in Section 5. (3) PGTA: The parallel version
of GTA proposed in Section 6. We use query time of above algorithms to evaluate computational
efficiency. We explore the effect of different parameters in Table 3 on overall performance.

7.2 Efficiency Evaluation

Efficiency of d . In the first set of experiments, we study the effect of different depth of the AGI.
We vary parameter d to explore the efficiency of the algorithms, and we choose the results with a
default value of α , |q | and different k , shown in Figure 2 and Figure 3, to illustrate the efficiency and
the best choice of d . Because ILA has no tree structure, so it is not displayed in these two figures.
We can observe in these two figures that the query time curves of GTA and PGTA over three
datasets are almost concave. That means, with the increase of d , the query time first decreases to a

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 19. Publication date: September 2020.

19:14 Z. Yang et al.

Fig. 2. Query time of GTA with varying d and k , α = 0.5, and |q | = 8 on the CA (left), NY (middle), and ST

(right) datasets.

Fig. 3. Query time of PGTA with varying d and k , α = 0.5, and |q | = 8 on the CA (left), NY (middle), and ST

(right) datasets.

Fig. 4. Comparison of GTA and PGTA on the query time with α = 0.5, k = 200, and |q | = 8 on the CA (left),

NY (middle), and ST (right) datasets.

trough value and then increases. For example, in Figure 2 the query time reaches the trough when
d = 6 on CA, d = 8 or 9 on NY, and d = 7 on ST. For PGTA in Figure 3, the query time reaches the
trough when d = 8 or 9 on CA and d = 5 on ST, while the query time on NY reaches the trough
aroundd = 8 to 10, which is not that obvious. The concavity of the query time curve we considered
is associated with the spatial density of points in a leafnode. When the value of d is too small, the
number of points in a leafnode is large, thus the efficiency of retrieval is low. On the contrary,
when the value of d is too large, the number of points in a leafnode is small, thus the retrieval time
of one leafnode gets shorter but more leafnodes to be accessed to find the results. In addition, the
comparison on query time of GTA and PGTA is shown in Figure 4. As shown, in the most cases
the query time of PGTA is less than that of GTA, and the minimum query time of PGTA is always

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 19. Publication date: September 2020.

Searching Activity Trajectories by Exemplar 19:15

Fig. 5. Comparison of ILA, GTA, and PGTA on the query time with α = 0.5, |q | = 8, and different k on the

CA (left), NY (middle), and ST (right) datasets.

Fig. 6. Comparison of ILA, GTA, and PGTA on the query time with α = 0.5, k = 100, and different |q | on the

CA (left), NY (middle), and ST (right) datasets.

less than that of GTA on all three datasets. It demonstrates that PGTA always achieves a better
performance than GTA does.

Efficiency of k . Next, we study the effect of the intended number of results k , the query time
with a best choice of d , a default α value and a default |q | value on the three datasets are presented
in Figure 5. We find the influence of k to the query time is not heavily, the query time of all
approaches on each dataset increases slightly when the value of k is enlarged. This is expected
that more trajectories need to be accessed as k increases. As shown in Figure 5, GTA and PGTA
outperform ILA significantly, particularly on NY and ST datasets, and they are close to one order
of magnitude faster than ILA. In addition, PGTA is always faster than GTA on CA. On NY and ST,
it performs almost the same with GTA when the value of k is small and performs better than GTA
when the value of k goes up.

Efficiency of |q |. Figure 6 shows the effect of |q | with a default α value and k = 100 over the
three datasets. As shown, the query time of ILA and GTA increases linearly while the query time
of PGTA increases slower when the value of |q | goes up. This is expected that the computation of
the query is linearly increases with the number of query points. And the parallel method PGTA is
more compatible to the increasing of |q |.

Efficiency of α . We vary the coefficient parameter α to compare the efficiency of GTA and ILA
with a default value of k and |q | over three datasets. The results are shown in Figure 7. The query
time of GTA and ILA reduces synchronously whenα increases. That means, if users want to specify
more weight on spatial similarity, the efficiency improves. And if users want a spatial-only query,
setting α = 1, then our approach is still feasible. However, if users want to specify more weight
on temporal similarity, then the efficiency of our approach reduces, but it is still better than the
baseline.

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 19. Publication date: September 2020.

19:16 Z. Yang et al.

Fig. 7. Comparison of ILA and GTA on the query time with k = 50, |q | = 8, and different α on the CA (left),

NY (middle), and ST (right) datasets.

Efficiency of λ. We use a fixed value of λ for the experiments shown in Table 3. λ is the search
region coefficient in PGTA to find an approximate R.max as the global upper bound. If λ is too
small, then the pruning efficiency is low; if λ is too large, then the time consumption of finding
the approximate R.max is expensive. So a suitable value of λ improves the performance of PGTA.
Henceforth, we set λ = 10.

Analysis behind Efficiency. Through all the comparison of experiments, we observe that our
algorithms GTA and PGTA preform well and stably on ST and perform noticeably well except for
a few fluctuations on NY and perform not that outstanding on CA compared to other two datasets.
On ST, PGTA always outperforms the GTA, and it is less sensitive than GTA to the value of |k | and
|q |. On NY, the query times of PGTA and GTA are both low, less than 100 ms in the most cases,
and reach 20 ms in the best case. Sometimes GTA even performs better than PGTA, although a
few milliseconds. On CA, PGTA is always faster than GTA, but they are only 2× to 3× faster than
ILA. Generally speaking, PGTA always performs well while GTA is more sensitive to dataset. It
seems that there is no relationship between the performance of our algorithms and the statistic
of datasets shown in Table 2. ST has the maximum number of trajectories, points, keywords, and
average points of each trajectory, and NY has the maximum number of average keywords of each
point. We consider the difference in performance of our algorithms is related to two more aspects:
(1) the data distribution and (2) the final upper bound when query processing terminates. ST is
generated by a normal distribution, and the distribution of CA is more concentrated than that of
NY. The final upper bound is determined in advance in PGTA, while it is produced spontaneously
in the PQ process, which is unpredictable in GTA. To summarize, compared to ILA, GTA and PGTA
have better performance with less query time in all settings.

8 CONCLUSION

In this article, we study a novel problem of searching trajectories by exemplar with activities and
spatial and temporal information. To process the problem efficiently, we first propose an inverted-
index-based approach ILA, which traverses all the candidates to achieve a lower bound of each can-
didate. This approach suffers from redundant computation. Then, we develop an algorithm named
GTA to compute the ranking of trajectory matching more efficiently. In this method, an activity
gridtree index is utilized to organize trajectories data and prune the search space, a priority queue
is used to process points sequentially. Furthermore, a parallel version PGTA is provided to improve
the performance. Our algorithms are able to handle both spatial-only search and spatial-temporal
search. The results of experimental studies show both the proposed gridtree-based algorithms are
capable of answering the top-k SATE query efficiently, while PGTA achieves higher efficiency and
scalability.

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 19. Publication date: September 2020.

Searching Activity Trajectories by Exemplar 19:17

REFERENCES

[1] Xin Cao, Gao Cong, and Christian S. Jensen. 2010. Retrieving Top-k prestige-based relevant spatial web objects. Proc.

VLDB 3, 1 (2010), 373–384. DOI:https://doi.org/10.14778/1920841.1920891

[2] Xin Cao, Gao Cong, Christian S. Jensen, and Beng Chin Ooi. 2011. Collective spatial keyword querying. In Proceedings

of the ACM SIGMOD International Conference on Management of Data (SIGMOD’11). ACM, 373–384. DOI:https://doi.

org/10.1145/1989323.1989363

[3] Lisi Chen, Gao Cong, Christian S. Jensen, and Dingming Wu. 2013. Spatial keyword query processing: An experi-

mental evaluation. Proc. VLDB 6, 3 (2013), 217–228. DOI:https://doi.org/10.14778/2535569.2448955

[4] Lei Chen and Raymond T. Ng. 2004. On the marriage of lp-norms and edit distance. In Proceedings of the 30th Inter-

national Conference on Very Large Data Bases. Morgan Kaufmann, 792–803.

[5] Lei Chen, M. Tamer Özsu, and Vincent Oria. 2005. Robust and fast similarity search for moving object trajectories.

In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, 491–502. DOI:https://doi.

org/10.1145/1066157.1066213

[6] Wei Chen, Lei Zhao, Jiajie Xu, Kai Zheng, and Xiaofang Zhou. 2014. Ranking based activity trajectory search. In

Proceedings of the 15th International Conference on Web Information Systems Engineering (WISE’14), Lecture Notes in

Computer Science, Vol. 8786. Springer, 170–185. DOI:https://doi.org/10.1007/978-3-319-11749-2_14

[7] Zaiben Chen, Heng Tao Shen, and Xiaofang Zhou. 2011. Discovering popular routes from trajectories. In Proceedings

of the 27th International Conference on Data Engineering (ICDE’11). IEEE Computer Society, 900–911. DOI:https://doi.

org/10.1109/ICDE.2011.5767890

[8] Zaiben Chen, Heng Tao Shen, Xiaofang Zhou, Yu Zheng, and Xing Xie. 2010. Searching trajectories by locations: An

efficiency study. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’10).

ACM, 255–266. DOI:https://doi.org/10.1145/1807167.1807197

[9] Gao Cong, Christian S. Jensen, and Dingming Wu. 2009. Efficient retrieval of the Top-k most relevant spatial web

objects. Proc. VLDB 2, 1 (2009), 337–348. DOI:https://doi.org/10.14778/1687627.1687666

[10] Dong Deng, Yufei Tao, and Guoliang Li. 2018. Overlap set similarity joins with theoretical guarantees. In Proceedings

of the 2018 International Conference on Management of Data (SIGMOD’18). ACM, 905–920. DOI:https://doi.org/10.

1145/3183713.3183748

[11] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. 2008. Keyword search on spatial databases. In Proceedings of the

24th International Conference on Data Engineering (ICDE’08). IEEE Computer Society, 656–665. DOI:https://doi.org/

10.1109/ICDE.2008.4497474

[12] Kaiyang Guo, Rong-Hua Li, Shaojie Qiao, Zhenjun Li, Weipeng Zhang, and Minhua Lu. 2017. Efficient order-sensitive

activity trajectory search. In Proceedings of the 18th International Conference on Web Information Systems Engineering

(WISE’17) Lecture Notes in Computer Science, Vol. 10569. Springer, 391–405. DOI:https://doi.org/10.1007/978-3-319-

68783-4_27

[13] Zhisheng Li, Ken C. K. Lee, Baihua Zheng, Wang-Chien Lee, Dik Lun Lee, and Xufa Wang. 2011. IR-tree: An efficient

index for geographic document search. IEEE Trans. Knowl. Data Eng. 23, 4 (2011), 585–599. DOI:https://doi.org/10.

1109/TKDE.2010.149

[14] Hechen Liu and Markus Schneider. 2012. Similarity measurement of moving object trajectories. In Proceedings

of the 3rd ACM SIGSPATIAL International Workshop on GeoStreaming (IWGS@SIGSPATIAL’12). ACM, 19–22. DOI:
https://doi.org/10.1145/2442968.2442971

[15] Huiwen Liu, Jiajie Xu, Kai Zheng, Chengfei Liu, Lan Du, and Xian Wu. 2017. Semantic-aware query processing

for activity trajectories. In Proceedings of the 10th ACM International Conference on Web Search and Data Mining

(WSDM’17). ACM, 283–292. DOI:https://doi.org/10.1145/3018661.3018678

[16] Siyuan Liu and Shuhui Wang. 2017. Trajectory community discovery and recommendation by multi-source diffusion

modeling. IEEE Trans. Knowl. Data Eng. 29, 4 (2017), 898–911. DOI:https://doi.org/10.1109/TKDE.2016.2637898

[17] Joel Mackenzie, Farhana Murtaza Choudhury, and J. Shane Culpepper. 2015. Efficient location-aware web search.

In Proceedings of the 20th Australasian Document Computing Symposium (ADCS’15). 4:1–4:8. DOI:https://doi.org/10.

1145/2838931.2838933

[18] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas. 2016. Exemplar queries: A new way of

searching. VLDB J. 25, 6 (2016), 741–765. DOI:https://doi.org/10.1007/s00778-016-0429-2

[19] João B. Rocha-Junior, Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørvåg. 2010. Efficient processing of Top-k

spatial preference queries. Proc. VLDB 4, 2 (2010), 93–104. DOI:https://doi.org/10.14778/1921071.1921076

[20] Shuo Shang, Lisi Chen, Christian S. Jensen, Ji-Rong Wen, and Panos Kalnis. 2017. Searching trajectories by regions

of interest. IEEE Trans. Knowl. Data Eng. 29, 7 (2017), 1549–1562. DOI:https://doi.org/10.1109/TKDE.2017.2685504

[21] Shuo Shang, Ruogu Ding, Kai Zheng, Christian S. Jensen, Panos Kalnis, and Xiaofang Zhou. 2014. Personalized tra-

jectory matching in spatial networks. VLDB J. 23, 3 (2014), 449–468. DOI:https://doi.org/10.1007/s00778-013-0331-0

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 19. Publication date: September 2020.

https://doi.org/10.14778/1920841.1920891
https://doi.org/10.1145/1989323.1989363
https://doi.org/10.1145/1989323.1989363
https://doi.org/10.14778/2535569.2448955
https://doi.org/10.1145/1066157.1066213
https://doi.org/10.1145/1066157.1066213
https://doi.org/10.1007/978-3-319-11749-2_14
https://doi.org/10.1109/ICDE.2011.5767890
https://doi.org/10.1109/ICDE.2011.5767890
https://doi.org/10.1145/1807167.1807197
https://doi.org/10.14778/1687627.1687666
https://doi.org/10.1145/3183713.3183748
https://doi.org/10.1145/3183713.3183748
https://doi.org/10.1109/ICDE.2008.4497474
https://doi.org/10.1109/ICDE.2008.4497474
https://doi.org/10.1007/978-3-319-68783-4_27
https://doi.org/10.1007/978-3-319-68783-4_27
https://doi.org/10.1109/TKDE.2010.149
https://doi.org/10.1109/TKDE.2010.149
https://doi.org/10.1145/2442968.2442971
https://doi.org/10.1145/3018661.3018678
https://doi.org/10.1109/TKDE.2016.2637898
https://doi.org/10.1145/2838931.2838933
https://doi.org/10.1145/2838931.2838933
https://doi.org/10.1007/s00778-016-0429-2
https://doi.org/10.14778/1921071.1921076
https://doi.org/10.1109/TKDE.2017.2685504
https://doi.org/10.1007/s00778-013-0331-0

19:18 Z. Yang et al.

[22] Mehdi Sharifzadeh, Mohammad R. Kolahdouzan, and Cyrus Shahabi. 2008. The optimal sequenced route query. VLDB

J. 17, 4 (2008), 765–787. DOI:https://doi.org/10.1007/s00778-006-0038-6

[23] Reza Sherkat and Davood Rafiei. 2008. On efficiently searching trajectories and archival data for historical similarities.

Proc. VLDB 1, 1 (2008), 896–908. DOI:https://doi.org/10.14778/1453856.1453953

[24] Michail Vlachos, Dimitrios Gunopulos, and George Kollios. 2002. Discovering similar multidimensional trajectories.

In Proceedings of the 18th International Conference on Data Engineering, Rakesh Agrawal and Klaus R. Dittrich (Eds.).

IEEE Computer Society, 673–684. DOI:https://doi.org/10.1109/ICDE.2002.994784

[25] Sheng Wang, Zhifeng Bao, J. Shane Culpepper, Timos Sellis, Mark Sanderson, and Xiaolin Qin. 2017. Answering Top-

k exemplar trajectory queries. In Proceedings of the 33rd IEEE International Conference on Data Engineering (ICDE’17).

IEEE Computer Society, 597–608. DOI:https://doi.org/10.1109/ICDE.2017.114

[26] Yu Ting Wen, Jinyoung Yeo, Wen-Chih Peng, and Seung-won Hwang. 2017. Efficient keyword-aware representative

travel route recommendation. IEEE Trans. Knowl. Data Eng. 29, 8 (2017), 1639–1652. DOI:https://doi.org/10.1109/

TKDE.2017.2690421

[27] Byoung-Kee Yi, H. V. Jagadish, and Christos Faloutsos. 1998. Efficient retrieval of similar time sequences under time

warping. In Proceedings of the 14th International Conference on Data Engineering. IEEE Computer Society, 201–208.

DOI:https://doi.org/10.1109/ICDE.1998.655778

[28] Bolong Zheng, Han Su, Wen Hua, Kai Zheng, Xiaofang Zhou, and Guohui Li. 2017. Efficient clue-based route search on

road networks. IEEE Trans. Knowl. Data Eng. 29, 9 (2017), 1846–1859. DOI:https://doi.org/10.1109/TKDE.2017.2703848

[29] Bolong Zheng, Nicholas Jing Yuan, Kai Zheng, Xing Xie, Shazia Wasim Sadiq, and Xiaofang Zhou. 2015. Approximate

keyword search in semantic trajectory database. In Proceedings of the 31st IEEE International Conference on Data

Engineering (ICDE’15). IEEE Computer Society, 975–986. DOI:https://doi.org/10.1109/ICDE.2015.7113349

[30] Kai Zheng, Shuo Shang, Nicholas Jing Yuan, and Yi Yang. 2013. Towards efficient search for activity trajectories. In

Proceedings of the 29th IEEE International Conference on Data Engineering (ICDE’13). IEEE Computer Society, 230–241.

DOI:https://doi.org/10.1109/ICDE.2013.6544828

Received June 2019; revised December 2019; accepted December 2019

ACM/IMS Transactions on Data Science, Vol. 1, No. 3, Article 19. Publication date: September 2020.

https://doi.org/10.1007/s00778-006-0038-6
https://doi.org/10.14778/1453856.1453953
https://doi.org/10.1109/ICDE.2002.994784
https://doi.org/10.1109/ICDE.2017.114
https://doi.org/10.1109/TKDE.2017.2690421
https://doi.org/10.1109/TKDE.2017.2690421
https://doi.org/10.1109/ICDE.1998.655778
https://doi.org/10.1109/TKDE.2017.2703848
https://doi.org/10.1109/ICDE.2015.7113349
https://doi.org/10.1109/ICDE.2013.6544828

