
Discovering the Most Influential Sites over
Uncertain Data: A Rank-Based Approach

Kai Zheng, Zi Huang, Member, IEEE, Aoying Zhou, Member, IEEE, and Xiaofang Zhou, Member, IEEE

Abstract—With the rapidly increasing availability of uncertain data in many important applications such as location-based services,

sensor monitoring, and biological information management systems, uncertainty-aware query processing has received a significant

amount of research effort from the database community in recent years. In this paper, we investigate a new type of query in the context

of uncertain databases, namely uncertain top-k influential sites query (UTkIS query for short), which can be applied in a wide range of

application areas such as marketing analysis and mobile services. Since it is not so straightforward to precisely define the semantics of

topk query with uncertain data, in this paper we introduce a novel and more intuitive formulation of the query on the basis of expected

rank semantics. To address the efficiency issue caused by possible worlds exploration, we propose effective pruning rules and a

divide-and-conquer paradigm such that the number of candidates as well as the number of possible worlds to be considered can be

significantly reduced. Finally, we conduct extensive experiments on real data sets to verify the effectiveness and efficiency of the new

methods proposed in this paper.

Index Terms—Uncertain data, reverse nearest neighbor query, top-k query

Ç

1 INTRODUCTION

QUERY processing over uncertain data has gained a lot of
attentions from the database community recently, due

to the imprecise nature in the data generated from a variety
of real-world applications, such as sensor network, location-
based service, market analysis, and the like. Generally, two
types of uncertain data have been considered in previous
work according to the cause of uncertainty. The first type is
usually caused by the limitations of data collection
techniques, such as data transmission delay, measurement
accuracy, etc. For example, in sensor networks, collected
sensor data might be distorted by environmental factors or
pocket losses, and thus deviating from their actual values.
For the second type, data uncertainty is caused by the
multiple values that inherently exist in an object. The NBA
data set [1] is a typical example of such a database, in which
the performance of each player varies in different games.
Due to its essential difference with precise data, traditional
query processing techniques cannot be applied to handle
uncertain data. Therefore, it is crucial to design novel
approaches to efficiently answer queries over uncertain
data and produce meaningful results. Up to now, many
types of queries have been studied in the context of
uncertain databases, such as range query [2], [3], [4], [5],
(K-)NN query [3], [6], [7], [8], RNN query [9], (reverse)
skyline query [1], [10], and similarity join [11], [12].

In this paper, we study another interesting query,
finding top-k influential sites (TkIS for short), in the context

of uncertain databases. TkIS [13] extends the bichromatic
reverse nearest neighbor (RNN) query [14] in the sense that,
instead of retrieving the RNNs for a particular query site, it
returns the top-k sites which own the most RNNs (or most
influential). More formally, given a spatial query region Q

and a set of weighted objects, TkIS finds the top-k sites
inside Q having the largest influences, where the influence of
a site s is defined to be the sum of weights of the RNNs of s.
Consider Fig. 1a as an example where the solid and blank
circles represent sites and objects with equal weight, and
query region is the entire space. By definition, the top-1
influential site should be s1 whose influence is three. TkIS
query is very useful in applications like mobile service
(finding the wireless stations that have the most mobile
users around) and market analysis (finding the super-
markets that have the most residential buildings nearby).

By careful investigations, we observe that TkIS query is
also meaningful in the scenarios where the objects are
uncertain. More specifically, in our new problem settings,
we assume that each object is characterized by multiple
instances as in [1], and the sites remain deterministic. Fig. 1b
exemplifies this setting, in which there are four sites and
three uncertain objects. In the sequel, we showcase the
usefulness of TkIS query in uncertain object set and identify
the new challenges for answering this query.

1.1 Motivating Examples

As an extension of reverse nearest neighbor queries, TkIS
query can also be useful in many real applications [14], [15],
[16], such as decision support, resource allocation, army
strategic planning, and mixed-reality games.

Decision support. Consider an example that a business
owner plan to develop a new series of product (e.g., laptop).
Before doing that, they want to know which of the new
product is most likely to be popular among others. To this
end, they represent their new products as points in a

2156 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 12, DECEMBER 2012

. K. Zheng, Z. Huang and X. Zhou are with the School of Information
Technology and Electrical Engineering, University of Queensland,
Brisbane 4072, Australia. E-mail: {kevinz, huang, zxf}@itee.uq.edu.au.

. A. Zhou is with the Software Engineering Institute, East China Normal
University, Shanghai 200060, China. E-mail: ayzhou@sei.ecnu.edu.cn.

Manuscript received 7 Nov. 2010; revised 18 Feb. 2011; accepted 3 May 2011;
published online 26 May 2011.
Recommended for acceptance by Q. Li.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2010-11-0583.
Digital Object Identifier no.10.1109/TKDE.2011.121.

1041-4347/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society



multidimensinal space, where each dimension corresponds
to an attribute of this product (e.g., price range, color,
weight, performance, etc.). Besides, they also need to know
what people like, i.e., their preferences. However, the
preferences are very subjective and usually equivocal in
reality. A practical way to capture the preferences is design
some questionnaire form and collect the feedback. Another
approach is to infer the preference from previous purchase
records. But, by either means, the derived preferences may
not be precisely unique, since multiple purchase records
may be kept for the same person. Motivated by this, we can
naturally model the preferences as uncertain objects with
multiple instances, and a TkIS query can be issued to find
the most popular products.

Resource allocation. Another application is to monitor
the ships in an ocean for rescue tasks. A ship having rescue
task may be interested in those ships that have itself as their
nearest neighbors. The reason is that, in case those ships
encounter emergency, the rescue ship is the closest one to
reach them and save lives of crews. However, the positions
of ships can be also uncertain, due to various reasons such
as the changed moving speed, transmission delay, or even
the accuracy of the positioning devices. In such a case, the
location of each ship can be inferred from its previously
reported position, moving direction, and maximum speed,
which results in a constrained uncertain region. Practically,
the probability density function (PDF) in this uncertain
region is often unavailable explicitly. Instead, a set of
samples are drawn or collected in the hope of approximat-
ing the PDF. Correspondingly, we can model the position of
each ship as a set of multiple points as its instances. Then, a
TkIS query can be issued to find the rescuing ships with the
potentially heaviest workload, so that reallocation of
resources can be arranged if necessary.

By treating each instance as a possible representative of
the object, we can obtain the influence of each site in some
possible world. Since the influence may be different across all
the possible worlds, it can be represented as a random
variable or uncertain value. Then, the TkIS query can be
transformed to an uncertain top-k (ranking) problem in
which the sites to be ranked have influences as their
uncertain attributes.

Top-k query over uncertain data has been studied in few
works [17], [18], [19], [20], [21], [22]. In [17], five important
properties including exact-k, containment, unique ranking,
value invariance, and stability are proposed to evaluate the
“goodness” of the top-k semantics. This motivates us to
apply the expected rank semantic proposed in [17] to rank the
uncertain influences of sites in our problem, as it is the only

existing top-k semantic which meets all those properties.
However, as we shall see in Section 3, directly applying the
techniques, AE-rank [17], does not lead to a correct solution
because the uncertain influences of sites are not independent
of each other. Therefore, in this paper, we aim to develop
correct and IO/CPU efficient algorithm to find the top-k
influential sites based on their expected ranks.

Expected rank versus expected score. Another simple
approach for ranking the sites with uncertain influences is to
just compute the expected score (influence) of each site, and
rank by this score, then take the top-k. It is easy to verify that
such an approach directly implies exact-k, containment,
unique ranking, and stability. However, as stated in [17], it
violates value invariance property. Consider a site which
has very low probability but a score that is orders of
magnitude higher than others—then it gets to the top of the
ranking since it has the highest expected score, even though
it is unlikely. But, if we reduce this score to being just greater
than the next highest score, this site will drop down the
ranking. On the contrary, expected rank can avoid this
problem since it relies on the ranks of the sites rather than
the values in each possible world. Therefore, it can generally
produce more stable results than the expected scores.

1.2 Contributions

To summarize, we make the following major contributions
in this paper:

. We identify the potential application and usefulness
of a novel query, uncertain top-k influential sites
(UTkIS) query, in the context of uncertain databases.

. By reviewing the properties of different uncertain
top-k semantics, we adopt the expected rank [17] as
the ranking function to define the order of the sites
with probabilistic influences.

. To remedy the efficiency issues caused by the
correlation among the sites’ influences, we propose
a general filter-refine style approach which includes
efficient PRNN search, effective pruning schemes,
and divide-and-conquer-based refinement. More
over, though our algorithms are proposed for the
UTkIS query, they can be applied to other problems
which adopt the expected rank as their ranking
function.

. We present experimental observations which de-
monstrate the benefits of our proposed methodolo-
gies and optimizations.

The rest of this paper is organized as follows: Section 2
briefly reviews the related research efforts. In Section 3, we
gather necessary background and formally defines the UTkIS
query. Section 4 overviews our three-phase approach for
processing the query, the details of which are elaborated in
Sections 5, 6, and 7, respectively. Section 8 presents our
experimental observations. Finally, in Section 9, we give some
concluding remarks and outline directions for future work.

2 RELATED WORK

The potential application and challenges of uncertain
databases have inspired numerous work on this topic,
making it impossible to review them all with limited space.

ZHENG ET AL.: DISCOVERING THE MOST INFLUENTIAL SITES OVER UNCERTAIN DATA: A RANK-BASED APPROACH 2157

Fig. 1. TkIS query on certain and uncertain databases.



Since our work aims at applying top-k semantics to solve a
spatial query over uncertain data, we mainly review the
previous work from two aspects: spatial queries and top-k
queries.

2.1 Spatial Queries over Uncertain Data

Many important spatial queries as well as their processing
algorithms have been extended to uncertain databases.
Among those work, nearest neighbor query is still the most
flourishing topic. Particularly, Cheng and Chen [2] is the
first to propose the concept of probabilistic nearest neighbor
(PNN) query, which returns the objects that have nonzero
qualification probabilities to be the nearest neighbor of the
query point. Another method for evaluating a PNN is
proposed in [8], where each object is represented as a set of
points sampled from the object’s continuous pdf. In order to
improve the evaluation of qualification probabilities, Cheng
et al. [6] propose a variant of 1-PNN that uses a probability
threshold as an answering criterion, and have developed
efficient verification methods for deriving lower and upper
bounds of an object’s qualification probabilities. To general-
ize 1-PNN to k-PNN (k > 1), Cheng et al. [7] propose
probability threshold k-NN (T-k-PNN) query, which returns a
k-subset whose qualification probability is not less than T .
More recently, Zhang et al. [23] employ a rank-based
approach to process k-PNN query, where k closest objects
are returned according to their expected ranks.

In addition to nearest neighbor queries, more complex
queries over uncertain data have also been proposed such
as reverse nearest neighbor queries [9], group nearest
neighbor queries [24], skyline queries [1], reverse skyline
queries [10] and so on. Besides, novel indexing structures
like U-tree [5] are also developed to facilitate processing
probabilistic queries.

Inspired by these work, we identify the application and
usefulness of another interesting query, TkIS query, in the
context of uncertain databases and propose efficient
algorithms to answer it.

2.2 Top-k Queries over Uncertain Data

Top-k query is an important topic in traditional databases.
However, under the setting of uncertain data, the answering
criterion is not straightforward, triggering different top-k
semantics and algorithms proposed. The work in [20] is the
first to identify the importance of top-k query processing in
uncertain database and to propose methods to address it. In
particular, they present two different definitions for top-k
queries, U-Topk and U-kRanks. The first one returns the set
of tuples with the highest aggregated probability to be the
top-k tuples across all possible worlds, while the tuple
returned by the second query is the most probable tuple to
appear at a given rank over all possible worlds. Their
algorithm maps each configuration to a node of a super large
graph and search over this graph with some generic, A�-like
approach. Although this model can capture any correlation
between tuples, the cost is exponential in both space and
time. Later, Yi et al. [21] follow up this definition and
propose more efficient algorithms under the x-relation
model. Other than that, Zhang and Chomicki [22] propose
a Global-Topk semantics, which returns k highest ranked
tuples according to their probability of being in the top-k

answers over all possible worlds. Hua et al. [25] present a
different approach called probabilistic threshold top-k query,
which finds the set of records where each takes a probability
of at least T to be in the top-k lists in the possible worlds.
Recently, Cormode et al. [17] propose expected rank, which
provably satisfies a set of nice properties of ranking queries
over certain data. Ge et al. [18] define another new top-k
semantics, called c-Typical-Topk, which returns c top-k
vectors such that the actual top-k result (drawn according
its distribution) is close to at least one of the c vectors.

Despite of so many proposals of top-k semantics over
uncertain data, few work has applied them to other
problems. In this sense, our work shares the motivation in
common with [23], which also adopts the expected rank to
model kNN query. Whereas in our paper, we focus on a
entirely different query that is computationally more
intensive than the nearest neighbor queries and thus requires
the processing algorithms to be designed more dedicatedly.

3 PROBLEM STATEMENT

In this section, we briefly introduce the definition of
expected rank and the list of top-k properties it meets.
Then, we describe the uncertainty model and define the
uncertain TkIS query based on expected rank. The notations
and their definitions used in the paper is summarized in
Table 1.

3.1 Preliminary: Expected Rank

We denote the uncertain relation as D. In the attribute-level
uncertainty model, an uncertain relation is instantiated into
a possible world by taking one independent value for each
tuple’s uncertain attribute according to its distribution.
Denote a possible world as W and the value for
ti’s uncertain attribute in W as tiðWÞ, then the probability
that W occurs is PrðWÞ ¼

QN
j¼1 Pr½tj ¼ tjðWÞ�.

Definition 1. The rank of a tuple ti in a possible world W is
defined to be the number of tuples whose score is higher than ti
(so the top tuple has rank 0), i.e.,

rankW ðtiÞ ¼ jftj 2W j tjðWÞ > tiðWÞgj:

The expected rank of a tuple ti is defined to be

erðtiÞ ¼
X
W2W

PrðWÞ � rankW ðtiÞ:

2158 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 12, DECEMBER 2012

TABLE 1
Summary of Notations



Among all the uncertain top-k semantics proposed
recently, expected rank is the only one that meets all the
following properties migrated from certain databases:

. Exact-k: The top-k list should contain exactly k items;

. Containment: The top-ðkþ 1Þ list should contain all
items in the top-k;

. Unique-ranking: Within the top-k, each reported item
should be assigned exactly one position: the same
item should not be listed multiple times within the
top-k.

. Value-invariance: The scores only determine the
relative behavior of the tuples: changing the score
values without altering the relative ordering should
not change the top-k;

. Stability: Making an item in the top-k list more likely
or more important should not remove it from the list.

Remark. With uncertain data, there are two distinct orders
to work with: score and probability. There are many
possible ways of combining these two, leading to quite
different results. Also, as pointed out in [26], ranking in
probabilistic databases is inherently a multicriteria
optimization problem. So, there seems no “one-fit-all”
top-k definition for uncertain data and semantic compar-
ison of them is out of the scope of our work. In this
paper, we focus on efficient solution for finding the top-k
influential sites given an uncertain object set based on the
expected ranks of sites.

3.2 Uncertainty Model

In previous work of uncertain databases, two major classes
of uncertainty models are assumed: tuple- and attribute-
uncertainty. We use the attribute-uncertain model through-
out the paper. In our problem, there are two types of data,
namely site and object. As the sites usually represent servers
or buildings whose locations do not frequently change, we
keep the site data set deterministic (precise points). On the
other hand, we model an uncertain object U as a set of
points (or instances) in the data space, denoted by
U ¼ fu1; u2; . . . ; ulg. The reason we adopt the discrete form
to represent uncertain objects rather than probability density
function is that, as discussed in [1], [23], the PDF is often
explicitly unavailable in practice and thus approximated by
drawing instance samples.

According to our uncertainty model, an uncertain
object may be influenced by multiple sites instead of one
as the deterministic case, where by “A influences B” we
mean that B is a reverse nearest neighbor of A. In other
words, for a site s, each of its RNNs is probabilistic. We let
PRNNðsÞ to be this probabilistic RNN set of s, i.e.,
PRNNðsÞ ¼ fðU; PrsðUÞÞ j PrsðUÞ > 0g, where PrsðUÞ is
the probability of U being influenced by s and can be
computed as

PrsðUÞ ¼
X

u2U;u2RNNðsÞ
PrðuÞ:

Consequently, the influence of a site s, denoted as IðsÞ, is
not a unique value any more. Instead, IðsÞ becomes a
random variable whose value can vary depending on the

distribution of the PRNNðsÞ. The probability mass function
(pmf) of IðsÞ can be computed by the following equation:

fsðxÞ ¼ Pr½IðsÞ ¼ x�
¼

X
�2�sðxÞ

Y
U2�

PrsðUÞ �
Y

U2PRNNðsÞn�
ð1� PrsðUÞÞ; ð1Þ

where �sðxÞ is all the subsets of PRNNðsÞ in which the sum
of weights of the objects are equal to x, i.e.,

�sðxÞ ¼ 8A � PRNNðsÞ j
X
U2A

wðUÞ ¼ x
( )

:

Example 1. Consider the example illustrated in Fig. 1b
where the weights of all objects are assumed to be 1.
Then, the PRNN and probabilistic influence of each site
are listed in the following table.

3.3 Uncertain TkIS Query

By viewing the influence of a site as its uncertain attribute,
we can naturally adopt the expected rank to define the
uncertain TkIS query.

Given a set of sites S, a set of uncertain objects U and a
query region Q, we define all sites inside Q as the candidate
sites, i.e., Cs ¼ fs j s 2 Qg, and all objects influenced by
candidate sites as the candidate objects Cu ¼ fU j 9s 2 Cs;
U 2 PRNNðsÞg. A possible world W is obtained by
independently instantiating each uncertain object U to one
of its possible instances uwith the probability of PrðuÞ. Then,
we observe that for an uncertain object, all the instances
which are the reverse nearest neighbors of the same site are
equivalent with respect to computing the influences. There-
fore, we can regard those instances as a group so that the total
number of possible worlds will be reduced. For a particular
possible world W , the rank of a site s 2 Cs in W is defined to
be the number of candidate sites whose influence is greater
than s, i.e.,

rW ðsÞ ¼ jfs0 2 Cs j IW ðs0Þ > IW ðsÞgj;

where IW ðsÞ is the influence of site s in possible world W .
The expected rank of a site is the expectation of its ranks
across all possible worlds, i.e.,

erðsÞ ¼
X
W2W

rW ðsÞ � PrðW Þ: ð2Þ

The smaller erðsÞ is, the higher s ranks.

Definition 2. Given a set of sites S, a set of uncertain objects U, a
query region Q, and a natural number k, the uncertain top-k
influential site query returns the top-k sites in Q according
to their expected ranks.

Example 2. Continuing the Example 1, we aim to get the
expected ranks of all the sites. The possible worlds, as
well as their probabilities and rank of each site are listed
in the table below.

ZHENG ET AL.: DISCOVERING THE MOST INFLUENTIAL SITES OVER UNCERTAIN DATA: A RANK-BASED APPROACH 2159



Then, the expected ranks of each site can be computed
by (2):

erðs1Þ ¼ 0:3� 0þ 0:2� 0þ 0:3� 0þ 0:2� 0 ¼ 0

erðs2Þ ¼ 0:3� 1þ 0:2� 2þ 0:3� 0þ 0:2� 3 ¼ 1:3

erðs3Þ ¼ 0:3� 2þ 0:2� 1þ 0:3� 3þ 0:2� 0 ¼ 1:7

erðs4Þ ¼ 0:3� 3þ 0:2� 3þ 0:3� 0þ 0:2� 0 ¼ 1:5:

To process the UTkIS query, it seems natural to adopt the

A-ERank algorithm [17] since it can evaluate the expected

ranks in OðN logNÞ time without exploring the possible

worlds. However, their algorithms are based on the assump-

tion that the attributes of tuples to be sorted are independent

of each other, which does not hold in our case. We can use a

simple example to illustrate this property. Consider the

probabilistic influences calculated in the Example 1, and we

have Pr½Iðs1Þ ¼ 4� � Pr½Iðs4Þ ¼ 3� ¼ 25%. But actually, it is

impossible for Iðs1Þ to be 4 and Iðs4Þ to be 3 at the same time,

i.e., Pr½Iðs1Þ ¼ 4 \ Iðs4Þ ¼ 3� ¼ 0, since they share a common

object C as PRNN. Therefore, to guarantee the correctness of

the algorithm, we have to evaluate the ranks of the sites in

every possible world, the cost of which is prohibitive even

when the data set is fairly large. This requires us to design

more elaborate algorithms, so that the query can be answered

more efficiently.

4 APPROACH OVERVIEW

To answer the UTkIS query, we propose a pruning-
refinement style approach that consists of three steps. In
this section, we just give an overview of the approach,
leaving more details elaborated in the following sections.

4.1 PRNN Search

Naturally, to find the most influential sites, we need to
know the influences of the sites, which requires us to
retrieve the PRNN set for each site inside Q. As a common
strategy for processing RNN queries [14], [27], [28], [16],
[29], we can index the instances of objects with R-tree and
then issue an RNN query for each site against the whole
instance set. However, since the size of instance set is
usually large, the cost of this method can be very high. In
Section 5, we will present several optimization mechanisms
to improve its performance.

4.2 Pruning

Since only the top-k sites are needed, where k is usually small
compared to the total number of sites, it is not necessary to
exhaustively evaluate the expected ranks for all sites.
Motivated by this, we develop several pruning rules to
eliminate the sites with no hope to be top-k. Specifically, the
simple pruning (SP) rule only makes use of the extreme values
of the sites’ influence hence has limited pruning power. The
probabilistic pruning (PP) rule is based on the more sophisti-
cated probabilistic bounds of the influence. We also exploit
Hoeffding’s inequality to approximate the probabilistic
bounds efficiently. Finally, an iterative pruning (IP) algorithm
is proposed which will iteratively apply the probabilistic
pruning rule to enhance the pruning effects. According to the
empirical study of [17], though it is impossible to obtain a
precise order on their final ranks without inspecting all sites
in the original candidate set, the expected rank of each site in
the curtailed set is an excellent surrogate. Hence, we return
the top-k of these as the query result.

4.3 Rank Evaluation

After all, the expected ranks of the sites which cannot be
pruned still need to evaluated. Since straightforwardly
unfolding possible worlds on the whole candidate set is
very time consuming, we propose to divide all the
candidate sites into independent partitions, in which local
expected ranks can be calculated more efficiently. Then, the
global expected rank can be obtained by summing up its local
ranks in each partition. In addition, by using the partial
expected ranks, we can eliminate more sites and diminish the
possible worlds further.

5 PRNN SEARCH

Although the general approach follows the branch-and-
bound paradigm with the facilitation of R-tree, we propose
several optimizations to improve the efficiency of this step.

First, we assume the uncertain regions of objects are
indexed by a global R-tree (gR). To avoid loading all
instances of an object into memory during computation,
its instances are also organized by an instance aR-tree (iR),
with the fraction of instances recorded in every node. Each
leaf node of gR contains a pointer to an iR of the object.

2160 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 12, DECEMBER 2012

Fig. 2. Approach overview.



Voronoi Diagram is usually used to speed up the

determination of the nearest point to a given query. Ideally,

if we precompute and store the Voronoi Cell of all the sites,

determining whether a point belongs a site’s RNN just

requires a Point-in-Polygon Test. However, explicitly storing

the original Voronoi Cells needs OðNdd=2eÞ space that is

exponential with the object dimension. Therefore, we only

keep the MBR of each Voronoi Cell and index them with

another site R-tree (sR). Fig. 3 illustrates the object and site

R-trees.
For a given region Q, we first find all the candidate sites Cs

by issuing a window query in the sR to get all the sites

inside Q. For each site s 2 Cs, we search the gR for the

candidate objects of s whose uncertain region (MBR of leaf

node) intersects with the MBR of s. From the property of

Voronoi Cell, only those object are possible to be the PRNN

of s. The last step is to refine the qualification probability

PrsðUÞ for all candidate objects. In order to avoid repetitive

search over the instance R-tree of a particular object,

we maintain a set ISðUÞ of influencing site for each candidate

object U , consisting of sites having U as their candidate in

previous step. Then, we traverse the iR of U from root to

leaf once. During this process, if the encountered node falls

inside the MBR of some site s 2 ISðUÞ only, all the instances

inside this node are guaranteed to the RNNs of s; otherwise,

we need to recursively move downwards to the child

nodes. When the leaf node is reached and still cannot be

resolved, we have to probe the instances of this node and

calculate their distances with the sites of ISðUÞ. Since the

number of objects is much less than the number of

instances, this approach can achieve better performance

by avoiding repetitive search over the entire instance set.

6 PRUNING SCHEME

It is prohibitively expensive to unfold all the possible
worlds and calculate the expected rank for each candidate
site. In this section, we investigate several novel pruning
schemes that can exclude a portion of sites without
knowing their expected ranks.

6.1 Simple Pruning

By scanning the PRNN set of each candidate site, we can
derive the simple upper and lower bounds of the influence by
the following equation:

IþðsÞ ¼
X

U2PRNNðsÞ
wðUÞ;

I�ðsÞ ¼
X

fU2PRNNðsÞjPrsðUÞ¼1g
wðUÞ:

ð3Þ

For any two sites s and s0, if I�ðs0Þ > IþðsÞ, then in every
possible world, the influence of s will be less than s0; hence,
the expected rank of s will be larger than s0. Therefore, with
the simple bounds of influences, we can immediately
eliminate some sites that are impossible to be the results
by the following lemma.

Lemma 3. A site s cannot be a result of UTkIS if there exist at
least k sites s0 satisfying I�ðs0Þ > IþðsÞ.

Example 3. Suppose we want to find the top-2 among the
five candidate sites listed the Table 2. Note that
we assume the weights of objects are 1, so only the
probability of the PRNN is given for the sake of
briefness. The simple upper and lower bounds of the
influences are shown in Fig. 4a. By Lemma 3, site B can
be pruned immediately since its upper bound is lower
than the lower bound of site A and E. No other sites can
be pruned any more by simple pruning method.

6.2 Probabilistic Pruning

In general, the simple pruning rule is only able to eliminate
a small number of disqualifying sites, since the strict

ZHENG ET AL.: DISCOVERING THE MOST INFLUENTIAL SITES OVER UNCERTAIN DATA: A RANK-BASED APPROACH 2161

TABLE 2
Example of Pruning Scheme

Fig. 4. Pruning methods.

Fig. 3. Indexing of objects and sites.



comparison criteria limits its pruning power at large. Is it

possible to relax the Lemma 3 “a little bit”? In other words,

even if IþðsÞ � I�ðs0Þ, can we still prune s without knowing

their exact ranks? We first introduce the following theorem

which states that s may still rank lower than s0 if the chance

for IðsÞ exceeding Iðs0Þ is small enough.

Theorem 4. Given a set of candidate sites Cs, erðsÞ is guaranteed

to be larger than erðs0Þ if the probability of IðsÞ being greater

than Iðs0Þ is not above 1
jCsj , i.e.,

Pr½IðsÞ > Iðs0Þ� 	 1

jCsj
:

Proof. First, we divide the set of all possible worlds W into

two groups, Ws0 in which Iðs0Þ > IðsÞ and Ws in which

Iðs0Þ 	 IðsÞ

. For each possible worldW 2 Ws0 , let rW ðs0Þ denote
the rank of s0 in W , then rW ðsÞ � rW ðs0Þ þ 1.

. For each possible world W 2 Ws, rW ðs0Þ 	 jCsj �
1 and rW ðsÞ � 0.

Then, we can get the upper bound of the erðs0Þ and the
lower bound of the erðsÞ as follows:

erðs0Þ 	 erðs0Þþ

¼
X

W2Ws0

PrðWÞ � rW ðs0Þ þ
X
W2Ws

PrðWÞ � ðjCsj � 1Þ

erðsÞ � erðsÞ�

¼
X

W2Ws0

PrðWÞ � ðrW ðs0Þ þ 1Þ þ
X
W2Ws

PrðWÞ � 0

¼
X

W2Ws0

PrðWÞ � ðrW ðs0Þ þ 1Þ:

Since

Pr½IðsÞ � Iðs0Þ� 	 1

jCsjX
W2Ws

PrðWÞ 	 1

jCsjX
W2Ws0

PrðWÞ > 1� 1

jCsj

erðs0Þþ ¼
X

W2Ws0

PrðW Þ � rW ðs0Þ þ ðjCsj � 1Þ
X
W2Ws

PrðWÞ

	
X

W2Ws0

PrðW Þ � rW ðs0Þ þ ðjCsj � 1Þ � 1

jCsj

¼
X

W2Ws0

PrðW Þ � rW ðs0Þ þ 1� 1

jCsj

<
X

W2Ws0

PrðW Þ � rW ðs0Þ þ
X

W2Ws0

PrðWÞ

¼
X

W2Ws0

PrðW Þ � ðrW ðs0Þ þ 1Þ

¼ erðsÞ�

So, erðs0Þ < erðsÞ, which means the expected rank of s0 is

sure to be smaller than that of s. tu

According to Theorem 4, we can define the probabilistic

upper and lower bounds for the influence of a site.

Definition 5. For any candidate site s 2 Cs, its probabilistic

upper and lower bound can be defined as

I"ðsÞ ¼ min v 2 IRjPrðIðsÞ � vÞ 	 1

jCsj

� �

I#ðsÞ ¼ max v 2 IRjPrðIðsÞ 	 vÞ 	 1

jCsj

� �
:

ð4Þ

Corollary 6. Given two sites s and s0, it is guaranteed that

erðsÞ > erðs0Þ, if they satisfy either 1) I�ðs0Þ > I"ðsÞ, or

2) I#ðs0Þ > IþðsÞ.
Proof. We first prove the case when they satisfy 1:

Pr½IðsÞ > Iðs0Þ�

¼
Z
v2IR

Pr½IðsÞ ¼ v�Pr½Iðs0Þ < v j IðsÞ ¼ v�dv

¼
Z
v	I"ðsÞ

Pr½IðsÞ ¼ v�Pr½Iðs0Þ < v j IðsÞ ¼ v�dv

þ
Z
v>I"ðsÞ

Pr½IðsÞ ¼ v�Pr½Iðs0Þ < v j IðsÞ ¼ v�dv

¼ 0þ
Z
v>I"ðsÞ

Pr½IðsÞ ¼ v�Pr½Iðs0Þ < v j IðsÞ ¼ v�dv

	
Z
v>I"ðsÞ

Pr½IðsÞ ¼ v�dv

¼ Pr½IðsÞ � I"ðsÞ� 	 1

jCsj
:

ð5Þ

By analogy, the case 2 can be proved. tu
Compared to the simple bounds, the probabilistic

bounds are tighter since they do not bound all the possible
influence values as the simple bounds do. Instead, they just
bound the “most likely values.”

Now, the only problem left is, given the PRNNðsÞ, how
to calculate the probabilistic bounds in Definition 5. A
straightforward method is to calculate the probability mass
function of IðsÞ in (1). To do that, we need to explore all the
combinations of the elements in PRNNðsÞ, the complexity
of which is exponential with the size of PRNNðsÞ. Actually,
deriving the pmf of IðsÞ can be inducted to the subset-sum

problem which is a classic NP-complete problem [30]. So,
we need to develop a more efficient way to compute these
bounds. Fortunately, as these bounds are just used for
pruning, it is not necessary to get their exact values. An
approximated bounds can still guarantee the correctness of
Corollary 6 as long as it is looser than the original one.

In the sequel, we aim to conservatively approximate
I"ðsÞ and I#ðsÞ by applying Hoeffding’s inequality.

Approximating I"ðsÞ and I#ðsÞ by tail bound. In
probability theory, several tail bounds have been developed
such as Markov inequality, Chebyshev inequality, Hoeffd-
ing inequality, Chernoff bound, etc., to estimate the
probability on tail distribution of random variables. Gen-
erally, the more information (e.g., mean, variance) they
require, the tighter bounds they give. In this paper, we adopt
the Hoeffding inequality because it gives exponentially

2162 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 12, DECEMBER 2012



decreasing bounds while Markov inequality and Chebyshev
inequality only yield polynomial bounds. Besides, all the
information required can be obtained in our problem.

Hoeffding inequality [31] gives an upper bound on
probability for the sum of independent random variables to
deviate from its expected value. Let X1; . . . ; Xn be indepen-
dent and almost surely bounded random variables, i.e., for
1 	 i 	 n that

Pr½Xi � EðXiÞ� 2 ½ai; bi�Þ ¼ 1:

Then, for the sum of these variables, s ¼ X1 þ � � � þXn, we
have the following inequalities for any positive values t,

Prðs � EðsÞ þ ntÞ 	 exp � 2n2t2Pn
i¼1ðbi � aiÞ

2

 !
;

Prðs 	 EðsÞ � ntÞ 	 exp � 2n2t2Pn
i¼1ðbi � aiÞ

2

 !
:

ð6Þ

In the light of this theory, if we treat each object U in
the PRNN set of site s as a random variable, which has
two possible values, wðUÞ and 0, with probabilities of
PrsðUÞ and 1� PrsðUÞ respectively, IðsÞ is actually the
sum of these independent and bounded random variables,
i.e., IðsÞ ¼

P
U2PRNNðsÞ U . We use EðUÞ and �ðUÞ to denote

the expected value and the difference of extreme values of
U , then

EðUÞ ¼ PrsðUÞ � wðUÞ

�ðUÞ ¼
wðUÞ; if 0 < PrsðUÞ < 1

0; if PrsðUÞ ¼ 1:

� ð7Þ

By letting the right sides of (6) to be 1
jCsj , we have

nt ¼ �½IðsÞ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln jCsj

2
:

r

Then, the probabilistic bounds of IðsÞ can be approximated
by the following equations:

I"�ðsÞ ¼ E½IðsÞ� þ �½IðsÞ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ln jCsj

2

r
;

I#�ðsÞ ¼ E½IðsÞ� � �½IðsÞ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ln jCsj

2

r
:

ð8Þ

Although I"�ðsÞ and I#�ðsÞ are just approximations,
Corollary 6 can still apply, since the inequality Pr½IðsÞ �
I"�ðsÞ� 	 1

jCsj and Pr½IðsÞ 	 I#�ðsÞ� 	 1
jCsj still stand. If, in

some cases, the approximated upper (lower) bound is
greater (less) than the simple upper (lower) bound, we use
the simple upper (lower) bound to do pruning. Evaluation
of (8) only requires one scan of the PRNN set for each site.
So, the complexity is linear to the size of PRNN set. Once
the approximated probabilistic bounds have been derived,
we can treat them as simple bounds, and prune the site s
whenever there are k sites s0 such that I#�ðs0Þ > I"�ðsÞ.
Example 4. Now, we apply the probabilistic pruning

method to the four sites left from Example 3. By
computing the E½IðsÞ� and �½IðsÞ� according to Fig. 2,
and substituting jCsj with 4, we can get the probabil-
istic bounds for each site, as shown in Fig. 4b. Since

I"�ðDÞ < I�ðAÞ and I"�ðDÞ < I�ðEÞ, site D will be
pruned by Corollary 6.

6.3 Iterative Pruning

By examining (8) carefully, we observe that the probabilistic
bounds get improved as the number of candidate sites
decreases. This motivates us to devise an iterative pruning
algorithm, which can be described by the following steps:

1. The approximated probabilistic bounds are evalu-
ated based on the cardinality of candidate set Cs.

2. Prune the disqualifying sites.
3. If any site gets pruned in step 2, jCsj will reduce. So,

we go to step 1 to reevaluate the bounds based on
the newly updated candidate set. Since the prob-
abilistic bounds get tighter, more sites might be
pruned. However, if no site gets pruned in this step,
the algorithm can terminate.

Example 5. Continuing the Example 3, this time we use
the iterative pruning algorithm to verify the advantages
of our method. The first round is exactly the same as
the Example 4 after which D gets pruned. Since the
candidate set Cs has changed, we reevaluate the
probabilistic bounds of the three sites left by substitut-
ing jCsj with 3. The updated probabilistic bounds are
displayed in Fig. 4c. Then, site C can be safely
removed, as I#�ðAÞ > IþðCÞ and I#�ðEÞ > IþðCÞ, leav-
ing A and E as the final results.

Correctness. Recall that according to the empirical study
of [17], it is impossible to obtain a precise order on their
final ranks without inspecting all sites in the original
candidate set. In other words, in each iteration of pruning,
the expected ranks of the sites may slightly fluctuate due to
the change of the cardinality. However, we claim that our
iterative pruning scheme is correct, in the sense that it will
not prune any site that is the top-k result in the original data
set. Formally, we will prove the following corollary.

Corollary 7. A site that is removed by the iterative pruning
method cannot belong to the top-k results of the original data
set.

Proof. Suppose in the ith iteration, s1 is one of the pruned
sites, s2 is one of the top-k sites that contribute to prune
s1, and jCj is the cardinality of the site set. Clearly,
erðs2Þ < erðs1Þ. We will show that in the i� 1th
iteration, erðs2Þ < erðs1Þ still holds. Now, we randomly
restore one of the pruned sites s3 back to the data set.
According to the pruning rule, Pr½Iðs2Þ > Iðs1Þ� < 1=jCj,
Pr½Iðs3Þ > Iðs1Þ� < 1=ðjCj þ 1Þ. Then, we need to deal
with the following possible cases:

1. Iðs1Þ > Iðs2Þ; Iðs3Þ > Iðs2Þ: In this case, the ex-
pected ranks of s1 and s2 change to erðs1Þ þ 0:5
and erðs2Þ þ 1;

2. Iðs1Þ > Iðs2Þ; Iðs3Þ 	 Iðs2Þ: In this case, the ex-
pected ranks of s1 and s2 remains the same;

3. Iðs1Þ 	 Iðs2Þ; Iðs3Þ > Iðs2Þ: In this case, the ex-
pected ranks of s1 and s2 change to erðs1Þ þ 1 and
erðs2Þ þ 1;

ZHENG ET AL.: DISCOVERING THE MOST INFLUENTIAL SITES OVER UNCERTAIN DATA: A RANK-BASED APPROACH 2163



4. Iðs1Þ 	 Iðs2Þ; Iðs3Þ 	 Iðs2Þ: In this case, the ex-
pected ranks of s1 change to erðs1Þ þ 0:5.

To simplify the proof, we consider a situation which is
the best for the rank of s1 to be promoted in the i� 1th
iteration, that is Pr½Iðs2Þ > Iðs1Þ� ¼ 1=jCj, Pr½Iðs3Þ >
Iðs1Þ� ¼ 1=ðjCj þ 1Þ. By taking the four cases into
consideration, the new expected ranks of s1 and s2

change to

er0ðs1Þ ¼ erðs1Þ þ
jCj2 þ jCj � 1

2jCjðjCj þ 1Þ

er0ðs2Þ ¼ erðs2Þ þ
1

jCj þ 1
:

Now, we have

er0ðs1Þ � er0ðs2Þ ¼ erðs1Þ � erðs2Þ þ
jCj2 � jCj � 1

2jCjðjCj þ 1Þ :

So, er0ðs1Þ > er0ðs2Þ holds for any jCj > 1. We can apply
the above procedure while restoring more removed sites
in previous iterations until the data set is recovered to
the original one, which means s1 cannot belong to the
top-k in the original data set. tu

7 RANK EVALUATION

This phase evaluates the expected ranks for the sites that
cannot be eliminated by the pruning phase. However,
straightforwardly computing the expected ranks on the
whole candidate set can be very time consuming, due to the
exponential number of possible worlds. Suppose there are n
objects in Cobj and each object is influenced by m sites on
average, then the total number of possible worlds to be
unfolded is about mn, which can be extremely large even for
a moderate n. So, in this section, we provide a divide-and-
conquer algorithm to reduce the number of possible worlds.
Based on that, a sorted access optimization is also proposed,
in order to return the top-k without checking all sites.

7.1 Independent Partition

First, we define the independent partition as follows:

Definition 8. Two sites s and s0 are called independent if they
do not share common objects in their PRNN sets. Given a
candidate set Csite, its independent partition is a set of
nonoverlapping groups of sites, i.e., Psite ¼ fP1; P2; . . . ; Pmg
such that any two sites from different groups are independent
of each other.

If we treat all candidate sites as the nodes of a graph, and
link two nodes by an edge if they are not independent,
partitioning all the sites is equivalent to finding all
components (maximally connected subgraph) of the graph.
For example, Fig. 5 illustrates a graph consisting of nine
sites which initially cannot be partitioned. However, after
the candidate selection phase, three sites get pruned (blank
circle). By simple depth-first traversal of this graph, we can
obtain three independent partitions (components).

The benefit of independent partition is that, we can
calculate the expected rank of a site s in some partition P ,

called local expected rank, by exploring fewer possible worlds

since the numbers of both sites and objects are smaller.

Then, by following lemma, it is also simple to calculate the

erðsÞ, once its local ranks in all partitions have been

obtained.

Lemma 9. The expected rank of a site s is the sum of its local

ranks in all partitions, i.e.,

erðsÞ ¼
X

P2Psite
lerP ðsÞ: ð9Þ

Proof. Given a possible world W , we decompose it into m

elements, W ¼ fW1; . . . ;Wmg, where Wi corresponds to

the possible world instantiated based on partition Pi.

Since each partition is independent of others, we have

PrðWÞ ¼ PrðW1Þ � � � � � PrðWmÞ. Similarly, we can also

represent the set of all possible worlds W ¼ fW1; . . . ;

Wmg. We let rWi
ðsÞ to denote the local rank of s in

partition Pi and possible world Wi.
The global expected rank of site s can be rewritten as

erðsÞ ¼
X
W2W

PrðWÞ � rW ðsÞ

¼
X

W12W1;...;Wm2Wm

ðPrðW1Þ � � � � � PrðWmÞÞ

� ðrW1
ðsÞ þ � � � þ rWm

ðsÞÞ
¼ �1 þ � � � þ �m;

ð10Þ

where

�i ¼
X

W12W1;...;Wm2Wm

ðPrðW1Þ � � � � � PrðWmÞÞ � rWi
ðsÞ:

Without loss of generality, we investigate the term �1,
which can be rewritten as

�1 ¼
X

W12W1

ðPrðW1Þ � rW1
ðsÞÞ

�
X

W22W1;...;Wm2Wm

ðPrðW2Þ � � � � � PrðWmÞÞ

¼ lerP1
ðsÞ �

X
W22W2

PrðW2Þ � � � � �
X

Wm2Wm

PrðWmÞ

¼ lerP1
ðsÞ:

ð11Þ

Therefore,

erðsÞ ¼ lerP1
ðsÞ þ � � � þ lerPmðsÞ:

tu

2164 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 12, DECEMBER 2012

Fig. 5. Independent partition.



Depending on whether the site s belongs to the partition

P or not, two cases must be treated differently:

. If s 2 P , the local expected rank of s have to be
calculated by exploring the possible worlds based on
the sites in partition P .

. If s 62 P , since s is independent of all the sites in P ,
we can apply the following equation to evaluate the
local expected rank of s:

lerP ðsÞ ¼
X
s02P

Pr½Iðs0Þ > IðsÞ�: ð12Þ

Let U be the universe of all the influence values in P .

We can precompute qðtÞ ¼
P

v2U;v>t PrðvÞ for all t 2
U by a linear pass after sorting the elements of U .

Then, (12) can be evaluated within constant time, by

lerP ðsÞ ¼
P

t2IðsÞ PrðtÞ � qðtÞ.
By dividing the candidate set into several partitions

with smaller sizes, the number of possible worlds we need

to explore can be considerably reduced. We can show the

benefit gain by a simple analysis. If, after independent

partitions, the n candidate objects are uniformly divided

into d groups, then the total number of possible worlds

will be d�mn=d. To make a concrete comparison, we

assume n ¼ 30;m ¼ 2; d ¼ 3. Initially, jWj ¼ 230 
 109, but

after the partitioning, jWj ¼ 3� 210 < 104, which is less

than 0.01 percent of the original size.

7.2 Partial Expected Ranks

For some site s 2 Pi, its local expected ranks in any partition

Pj 2 P=Pi can be evaluated efficiently without unfolding

the possible worlds. We call the sum of the local expected

ranks of s in all partition except Pi the partial expected rank of

s, denoted by perðsÞ

perðsÞ ¼
X

Pj2P=Pi
lerPjðsÞ:

Following Lemma 9, we can immediately get that the

partial expected rank of s is a lower bound of its actual

expected rank, i.e.,

er�ðsÞ ¼ perðsÞ 	 erðsÞ:

To get an upper bound of erðsÞ, we estimate its local

expected rank in Pi in the most pessimistic way, which is

the largest possible rank lerþPiðsÞ ¼ ni � 1, where ni is the

number of sites in Pi. So,

erþðsÞ ¼ perðsÞ þ ni � 1 � erðsÞ:

These bounds lead immediately to the following

algorithm:

1. Divide the candidate set Cs into independent
partitions, and calculate er�ðsÞ and erþðsÞ for each
site s 2 Cs.

2. We find the kth smallest erþðsÞ value, denoted by
erþk and compare this to every er�ðsÞ. If er�ðsÞ > erþk ,
we know for sure that site s cannot be the top-k
hence can be pruned.

3. If some sites get pruned in step 2, we go to step 1;
otherwise, we have to evaluate the local expected
rank for each site on its own partition.

Improving erþ and er� by sampling possible worlds.

The estimation for the upper and lower bounds of expected

rank is loose since we know nothing about its rank

distribution without looking through the possible worlds.

Here, we use sampling to extract some information on its

rank distribution.
Suppose the set of all possible worlds based on partition

Pi isWi. We samplem0i elements fromWi, the set of which is

denoted as W0i. For site s 2 Pi, its local rank in the sampled

possible world is known. For all other possible worlds, we

still use 0 and ni � 1 as the lower and upper bounds. Then,

we have the estimation for the local expected rank

ler�PiðsÞ ¼
X
W2W0

PrðWÞrPiW ðsÞ

lerþPiðsÞ ¼ ler
�
Pi
ðsÞ þ ðni � 1Þ 1�

X
W2W0

PrðW Þ
 !

:

By sampling more possible worlds, the
P

W2W0 PrðWÞ part

will be raised; hence, the estimation is more accurate. But

increasing sampling rate also has an adverse impact on the

performance that it will incur extra cost to examine more

possible worlds. We will investigate the effect of sampling

rate in the experiments later.

8 EXPERIMENTS

In this section, we present results of our empirical study to

verify the effectiveness and efficiency of the proposed

techniques in this paper. In the following experiments, we

use the data of the Digital Chart of the World from the R-tree-

Portal [32]. We take one data set which consists of

9,203 cultural landmarks in North America as the sites.

The other data set consisting 24,493 populated places in

North America is employed to represent the centers of

uncertain objects, whose uncertain regions are circles with

radius r. Within each uncertain region, we generate m

instances which follow three popular distributions Uniform,

Constrained Normal with � ¼ 0:3� r and Zipf with z ¼ 0:5.

The sites and the uncertain regions of objects are indexed by

R-tree with default settings. For each workload, we issue

100 queries and measure their performance by average. All

algorithms are implemented in Java and run on a PC with

Intel P4 2.4 GHz and 1 GB memory. Table 3 summarizes the

parameters and their default values used in the experiments.

ZHENG ET AL.: DISCOVERING THE MOST INFLUENTIAL SITES OVER UNCERTAIN DATA: A RANK-BASED APPROACH 2165

TABLE 3
Parameter Settings



8.1 PRNN Search Performance

In this section, we compare the proposed optimizations for
the PRNN search step with two baseline approaches. The
first one, called repetitive RNN, organizes all the instances of
object set with a single R-tree and issues the traditional
RNN query for each site inside the query region. The
second method, called repetitive NN, indexes all the sites
with an R-tree. For each uncertain object within the query
region, it performs a batch NN search for the instances of
the object to identify the sites that may influence this object.

Fig. 6a shows the results of the first set of experiments. It
is easy to observe that our proposed approach achieve
better performance on all data sets with different prob-
ability distributions. We also notice that the repetitive NN
method runs faster than the repetitive RNN method, which
is due to the fact that the RNN queries are more expensive
than NN queries. Besides, all three algorithms run faster on
normal and Zipf distributions than on uniform distribution,
though the impact of distribution is not very significant.

Then, we compare their performance for different sizes
of query region, the results of which are shown in Fig. 6b.
Not surprisingly, all approaches need more time to finish
for a larger query region, since more candidate sites and
objects are involved with the query. However, the perfor-
mance deterioration speed of the proposed approach is
slower than the baseline methods. This is because they need
to issue more RNN or NN queries as the query region
expands, while the voronoi diagram only needs to be
constructed once regardless the size of the query region.

The third experiment shows the relationship between
the search costs and the uncertain region of objects. From
Fig. 6c, we can see that the baseline approaches are barely
affected by this factor, since they are only affected by the
number of instances or sites. However, when the uncertain
region expands, each object is more likely to be influenced
by more sites, which means the proposed algorithm tends
to traverse more deeply into the instance R-tree and hence
costs more time.

At last, we examine how performance of each algorithm
varies when the uncertain objects have different number of
instances. As shown in Fig. 6d, the search costs of baseline

approaches increases quickly when more instances are

generated for each object. More interestingly, when the

number of instances gets even larger, the repetitive NN

method runs slower than the repetitive RNN method. The

reason lies in that, the cost of the repetitive NN method is

proportional to the number of NN queries issued which is

equivalent to the number of instances within the query

region. So, the performance of the repetitive NN method is

more sensitive to this parameter. For the proposed approach,

on the other hand, increasing instances while fixing the

uncertain region just affects the density of the nodes of

instance R-tree, which has no obvious effect on the search

performance. Higher cost is caused by the worst case

scenario, i.e., the instances within a leaf node are probed.

8.2 Effectiveness of Pruning

In this section, we compare the pruning effects of simple

pruning method with the probabilistic pruning as well as the

iterative pruning against different settings. In our experi-

ments, the pruning power is measured by the ratio between the

number of pruned sites and the number of candidate sites.
First, we test the pruning power on the data sets with

different distributions, the results of which are shown in

Fig. 7a. As expected, the simple pruning can only eliminate

about 10 percent of the candidates, which is much worse

than the other two methods, due to its strict comparison

criteria. The iterative pruning method always has the best

performance. Moreover, we observe that the pruning effects

are better are skewed distribution than uniform distribution.
Next, we investigate the impact of query size on the

pruning effects. From Fig. 7b, we can see that the pruning

power of all methods increase as the query region grows.

However, compared to the significant improvement of both

PP and IP, the change on the effect of simple pruning

method is neglectable.
Fig. 7c shows the results of pruning power with different

uncertain regions. As we can see, the effects of all pruning

methods are degrading with the increasing uncertain

regions. This is because an object will be influenced by

more sites as its uncertain region expands, which means the

2166 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 12, DECEMBER 2012

Fig. 6. Efficiency of PRNN search. Fig. 7. Effectiveness of pruning.



influence of a site may span a broader range of values,
making it more difficult to get pruned.

In the fourth set of experiments, we study the impact of
k on the pruning effects. The results are shown in Fig. 7d,
in which the power of all pruning methods degrade as
more results are required to return. This is expected since,
with larger k, it is more difficult for a site to satisfy the
pruning lemma.

8.3 Efficiency of Rank Evaluation

In this section, we compare the efficiency of different rank
evaluation methods, namely naive algorithm (NA), partition-
based algorithm (PA) and partition-pruning-based algorithm
(PPA). In the following experiments, the candidate sites and
objects are selected by the iterative pruning method.

First, we run all the algorithms on the data sets with
different distributions and show their computation time in
Fig. 8a. As we can see, by breaking the candidate sites into
independent partitions, PA outperforms NA by about two
orders of magnitude. Besides, PPA further reduce the
computation time of PA by about 50 percent. We also notice
that more time is needed on uniform distribution for all
algorithms, which is caused by the worse pruning effects.

Fig. 8b illustrates the impact of query size on the
efficiency of algorithms. When the query size is small, all
the algorithms are still comparable since there are not many
candidates. But the computation time of NA increases
exponentially with the query size. On the other hand, the
performance deterioration speed of both PA and PPA is
much slower.

In the last two sets of experiments, we study the impact
of uncertain region and k on the efficiency of algorithms,
respectively. We omit the results of naive algorithm and
show the performance of PPA with different sampling rate.
According to Fig. 8c, when the uncertain region is small, all
algorithms are comparable since there are only a few
possible worlds to be checked in each partition. However,
PPA methods gradually show advantage over PA as the
uncertain region expands. Moreover, PPA with higher
sampling rate is faster with the uncertain region because
it estimates the expected ranks more accurate. But it also

incurs extra cost which causes the performance worse than
the one with lower sampling rate when uncertain region
becomes large. From Fig. 8d, we can see that all algorithms
need more time to complete as k increases. The performance
of PPA with lower sampling rate is better when k is small,
since even a loose estimation of the expected rank can still
prune some sites. However, when k increases, its running
time gradually approaches the PA because it is more
difficult to prune by partial expected ranks.

8.4 Quality Analysis of Query Results

Due to the lack of a public available data set to examine the
quality of different uncertain top-k query semantics, we
design the following method to test the result quality.
The ground truth is obtained by computing the influences
in the original data set, i.e., the one with deterministic
objects and sites. The weight of each object is randomly set
to one of the four values ð�0; . . . ;�3Þ, where � is a
parameter and will be tuned in our experiments. Specifi-
cally, we quantify the quality of ranking results by two
measures. The rank accuracy is measured by the fraction of
the correct top-k results with respect to the ground truth.
The rank distribution is illustrated by a bar in the following
figures with high and low points, representing the worst
rank of false negative and best rank of false positive
respectively. So, a long bar stands for worse ranking quality
than a short bar. We also include two other semantics,
expected score and UTop-k [20], for comparison purpose.

First, we investigate the impact of the size of the uncertain
region, the results of which are shown in Figs. 9a and 9c. It is
observed that all query semantics can achieve high results
quality, i.e., high accuracy and similar ranks in between false
positives and false negatives, when the uncertain region is
very small. This is because, most instances of each uncertain
object are still influenced by the same sites as the original data
set. In such a case, the choice of top-k semantics does not have
obvious impact on the results quality. However, as the
uncertain region expands, the instances of an uncertain object
become more spread and may be influenced by more sites. As
a result, the ranking accuracy of expected score drops quickly
and ranks of false negatives may also be ranked far away
from its correct position. But, we can notice that UTop-k and

ZHENG ET AL.: DISCOVERING THE MOST INFLUENTIAL SITES OVER UNCERTAIN DATA: A RANK-BASED APPROACH 2167

Fig. 8. Efficiency of rank evaluation. Fig. 9. Results quality analysis.



expected rank can still deliver a relative good results since
they both adopt the possible world semantics.

Then, we vary � to see how the way of assigning the
weights affect the ranking quality. When � ¼ 1, i.e., all
the objects have equal weights, all the top-k semantics have
almost the same quality. As � increases, which means the
gap between the weights of different objects becomes
greater, the advantage of expected rank semantic gets more
significant. The reason is that both expected score and
UTop-k depends on the values, which are not as stable as
the relative ranks. Especially, when the differences among
the weights are great, an influence can be more easily biased
by an object with a large weight even it is in a very unlikely
possible world.

9 CONCLUSION AND FUTURE WORK

This paper studies a novel query on uncertain databases,
namely uncertain top-k influential site query. We formally
define this query based on the intuitive expected rank
semantics. We also propose pruning techniques and
partition-based algorithms to improve the querying perfor-
mance. Experimental results verifies the effectiveness and
efficiency of the techniques in this paper.

There are several challenges that we plan to address in
the future. One of them is to apply other uncertain top-k
semantics as reviewed in Section 2 and design efficient
processing algorithms. Another interesting problem is to
consider uncertainty in both sites and objects, which
requires more sophisticated algorithms. Finally, we plan
to extend our solution to handle tuple uncertainty as well.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers for the
comments and suggestions that have greatly improved the
paper. This work was supported by the NSFC grant
60925008, and ARC grants DP110103423 and DP0987557.

REFERENCES

[1] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic Skylines on
Uncertain Data,” Proc. Int’l Conf. Very Large Data Bases (VLDB),
pp. 15-26, 2007.

[2] J. Chen and R. Cheng, “Efficient Evaluation of Imprecise Location-
Dependent Queries,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 586-
595, 2007.

[3] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Evaluatizng
Probabilistic Queries over Imprecise Data,” Proc. ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD), pp. 551-562, 2003.

[4] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. Vitter, “Efficient
Indexing Methods for Probabilistic Threshold Queries over
Uncertain Data,” Proc. Int’l Conf. Very Large Data Bases (VLDB),
pp. 876-887, 2004.

[5] Y. Tao, R. Cheng, X. Xiao, W. Ngai, B. Kao, and S. Prabhakar,
“Indexing Multi-Dimensional Uncertain Data with Arbitrary
Probability Density Functions,” Proc. Int’l Conf. Very Large Data
Bases (VLDB), pp. 922-933, 2005.

[6] R. Cheng, J. Chen, M. Mokbel, and C. Chow, “Probabilistic
Verifiers: Evaluating Constrained Nearest-Neighbor Queries over
Uncertain Data,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 973-982,
2008.

[7] R. Cheng, L. Chen, J. Chen, and X. Xie, “Evaluating Probability
Threshold K-Nearest-Neighbor Queries over Uncertain Data,”
Proc. Int’l Conf. Extending Database Technology: Advances in Database
Technology (EDBT), pp. 672-683, 2009.

[8] H. Kriegel, P. Kunath, and M. Renz, “Probabilistic Nearest-
Neighbor Query on Uncertain Objects,” Proc. 12th Int’l Conf.
Database Systems for Advanced Applications (DASFAA), 2007.

[9] X. Lian and L. Chen, “Efficient Processing of Probabilistic Reverse
Nearest Neighbor Queries over Uncertain Data,” VLDB J., vol. 18,
no. 3, pp. 787-808, 2009.

[10] X. Lian and L. Chen, “Monochromatic and Bichromatic Reverse
Skyline Search over Uncertain Databases,” Proc. ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD), pp. 213-226, 2008.

[11] H. Kriegel, P. Kunath, M. Pfeifle, and M. Renz, “Probabilistic
Similarity Join on Uncertain Data,” Proc. 11th Int’l Conf. Database
Systems for Advanced Applications (DASFAA), p. 295, 2006.

[12] V. Ljosa and A. Singh, “Top-K Spatial Joins of Probabilistic
Objects,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 566-575, 2008.

[13] T. Xia, D. Zhang, E. Kanoulas, and Y. Du, “On Computing Top-T
Most Influential Spatial Sites,” Proc. Int’l Conf. Very Large Data
Bases (VLDB), p. 957, 2005.

[14] F. Korn and S. Muthukrishnan, “Influence Sets Based on Reverse
Nearest Neighbor Queries,” ACM SIGMOD Record, vol. 29, no. 2,
pp. 201-212, 2000.

[15] J. Kang, M. Mokbel, S. Shekhar, T. Xia, and D. Zhang,
“Continuous Evaluation of Monochromatic and Bichromatic
Reverse Nearest Neighbors,” Proc. Int’l Conf. Data Eng. (ICDE),
2007.

[16] Y. Tao, D. Papadias, and X. Lian, “Reverse KNN Search in
Arbitrary Dimensionality,” Proc. Int’l Conf. Very Large Data Bases
(VLDB), p. 755, 2004.

[17] G. Cormode, F. Li, and K. Yi, “Semantics of Ranking Queries for
Probabilistic Data and Expected Ranks,” Proc. Int’l Conf. Data Eng.
(ICDE), pp. 305-316, 2009.

[18] T. Ge, S. Zdonik, and S. Madden, “Top-K Queries on Uncertain
Data: On Score Distribution and Typical Answers,” Proc. 35th
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD), pp. 375-
388, 2009.

[19] C. Re, N. Dalvi, and D. Suciu, “Efficient Top-K Query Evaluation
on Probabilistic Data,” Proc. Int’l Conf. Data Eng. (ICDE), 2007.

[20] M. Soliman, I. Ilyas, and K. Chang, “Top-K Query Processing in
Uncertain Databases,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 896-
905, 2007.

[21] K. Yi, F. Li, D. Srivastava, and G. Kollios, “Efficient Processing of
Top-K Queries in Uncertain Databases with X-Relations,” IEEE
Trans. Knowledge and Data Eng., vol. 20, no. 12, pp. 1669-1682, Dec.
2008.

[22] X. Zhang and J. Chomicki, “Semantics and Evaluation of Top-K
Queries in Probabilistic Databases,” Proc. Int’l Workshop Database
Ranking (DBRank), 2008.

[23] Y. Zhang, X. Lin, G. Zhu, W. Zhang, and Q. Lin, “Efficient Rank
Based Knn Query Processing over Uncertain Data,” Proc. Int’l
Conf. Data Eng. (ICDE), 2010.

[24] X. Lian and L. Chen, “Probabilistic Group Nearest Neighbor
Queries in Uncertain Databases,” IEEE Trans. Knowledge and Data
Eng., vol. 20, no. 6, pp. 809-824, June 2008.

[25] M. Hua, J. Pei, W. Zhang, and X. Lin, “Ranking Queries on
Uncertain Data: A Probabilistic Threshold Approach,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD), pp. 673-686,
2008.

[26] J. Li, B. Saha, and A. Deshpande, “A Unified Approach to Ranking
in Probabilistic Databases,” Proc. Int’l Conf. Very Large Data Bases
(VLDB), pp. 769-780, 2009.

[27] C. Yang and K. Lin, “An Index Structure for Efficient Reverse
Nearest Neighbor Queries,” Proc. Int’l Conf. Data Eng. (ICDE),
pp. 485-492, 2001.

[28] I. Stanoi, D. Agrawal, and A. Abbadi, “Reverse Nearest Neighbor
Queries for Dynamic Databases,” Proc. ACM SIGMOD Workshop
Research Issues in Data Mining and Knowledge Discovery, pp. 44-53,
2000.

[29] Y. Tao, M. Yiu, and N. Mamoulis, “Reverse Nearest Neighbor
Search in Metric Spaces,” IEEE Trans. Knowledge and Data Eng.,
vol. 18, no. 9, pp. 1239-1252, Sept. 2006.

[30] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms. The MIT Press, 1990.

[31] W. Hoeffding, “Probability Inequalities for Sums of Bounded
Random Variables,” J. Am. Statistical Assoc., vol. 58, no. 301,
pp. 13-30, 1963.

[32] Y. Theodoridis, “The R-Tree-Portal,” http://www.rtreeportal.
org, 2003.

2168 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 12, DECEMBER 2012



Kai Zheng received the MS degree in 2009 from
Fudan University of China. He is currently
working toward the PhD degree at the University
of Queensland. His research interests include
spatial database and uncertain database while
focusing on designing efficient query processing
algorithms and effective indexing structures.

Zi Huang received the PhD degree in computer
science from The University of Queensland,
Australia, in 2007. Currently, she is a research
fellow with the DKE group, the University of
Queensland. Her research interests include
multimedia information retrieval, multimedia da-
tabase management, indexing and query pro-
cessing, and bioinformatics. She is a member of
the IEEE.

Aoying Zhou received the PhD degree from
Fudan University in 1993. Currently, he is a
professor in Software Engineering Institute at
East Normal University of China. His research
interests include web search and mining, data
stream management, uncertain data manage-
ment, distributed storage and computing, and
web service. He is a member of the IEEE.

Xiaofang Zhou received the BSc and MSc
degrees in computer science from Nanjing
University, China, in 1984 and 1987, respec-
tively, and the PhD degree in computer
science from The University of Queensland,
Australia, in 1994. He is a professor of
computer science at The University of Queens-
land. His research interests include spatial and
multimedia databases, high performance query
processing, web information systems, data

mining, bioinformatics, and e-research.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHENG ET AL.: DISCOVERING THE MOST INFLUENTIAL SITES OVER UNCERTAIN DATA: A RANK-BASED APPROACH 2169



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


