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Discovery of Path Nearby Clusters
in Spatial Networks
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Abstract—The discovery of regions of interest in large cities is an important challenge. We propose and investigate a novel query
called the path nearby cluster (PNC) query that finds regions of potential interest (e.g., sightseeing places and commercial districts)
with respect to a user-specified travel route. Given a set of spatial objects O (e.g., POls, geo-tagged photos, or geo-tagged tweets) and
a query route g, if a cluster ¢ has high spatial-object density and is spatially close to ¢, it is returned by the query (a cluster is a circular
region defined by a center and a radius). This query aims to bring important benefits to users in popular applications such as trip
planning and location recommendation. Efficient computation of the PNC query faces two challenges: how to prune the search space
during query processing, and how to identify clusters with high density effectively. To address these challenges, a novel collective
search algorithm is developed. Conceptually, the search process is conducted in the spatial and density domains concurrently. In the
spatial domain, network expansion is adopted, and a set of vertices are selected from the query route as expansion centers. In the
density domain, clusters are sorted according to their density distributions and they are scanned from the maximum to the minimum. A
pair of upper and lower bounds are defined to prune the search space in the two domains globally. The performance of the PNC query
is studied in extensive experiments based on real and synthetic spatial data.

Index Terms—Path nearby cluster, efficiency, optimization, spatial networks, spatiotemporal databases

1 INTRODUCTION

HE continued proliferation of GPS-equipped mobile

devices [44] (e.g., vehicle navigation systems and smart
phones) and the proliferation of online map-based services
(e.g., Google Maps,' Bing Maps,” and MapQuest’) enable
people to acquire their current geographic positions in real
time and to retrieve spatial information relevant to their
trips. In this paper, we aim to provide fundamental geo-
graphic functionality that is relevant to a range of services.

1. http:/ /maps.google.com/
2. http:/ /www.bing.com/maps/
3. http:/ /www.mapquest.com
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Specifically, we propose and investigate a novel query, the
path nearby cluster (PNC) query, that identifies clusters of
spatial objects with respect to a user-specified travel route.
Spatial objects can be points of interest, e.g., supermarkets,
restaurants, and fashion shops, or they can be geo-tagged
photos, micro-blog posts, and tweets from location-based
social media, such as Flickr,¥ Weibo,” Twitter,® and
Foursquare.”

Given a set of spatial objects O, a cluster is a subset of
objects in O that contains at least a threshold number of
objects and such that the objects fall within a circular region
with a radius that does not exceed a threshold radius. Given
a query route g, the PNC query intuitively returns a cluster
that is both dense and close to ¢. For example, when plan-
ning a travel route in an unfamiliar city (e.g., when traveling
overseas), travelers may wish to know about potential
regions of interest (e.g., sightseeing places, commercial dis-
tricts, dining area) along their route. Intuitively, clusters
with high spatial-object density (e.g., POls, geo-tagged pho-
tos, or geo-tagged tweets) are assumed to be more attractive
to travelers than low-density clusters. Also, a cluster located
close to their route is more accessible and thus more attrac-
tive than a further-away cluster. The PNC query aims to
find potential regions of interest along the travel route and
recommend them to travelers. We believe that this query
can benefit users in many popular applications such as trip
planning and location (region) recommendation.

To the best of our knowledge, this is the first work that
investigates the path nearby cluster query in spatial

4. http:/ /www flickr.com/
5. http:/ /weibo.com/

6. https:/ /twitter.com/
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1041-4347 © 2014 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1506

e : a spatial object in O

Fig. 1. An example of path nearby cluster query.

networks while taking spatial-object density into account.
Previous studies (e.g., the Path Nearest Neighbor (NN)
query [6]) use spatial distance as the sole factor when com-
puting results and assume that a query route is a network
shortest path. In contrast, the PNC query takes both spatial
proximity and density into account and supports arbitrary
query routes. A linear combination method (e.g., [5], [8]) is
adopted to combine the spatial and density domains, and a
distance-and-density evaluation score is defined corre-
spondingly; thus, the PNC query is also different from sky-
line queries (e.g., [3], [24]).

An example PNC query is shown in Fig. 1. Here, ¢ is a
query route, and spatial objects are distributed in the spatial
network. Vertices p;, p2, and ps are center points of clusters
c1, ¢2, and c3, respectively. In the query route ¢, vertices py,
ps, and pg are the closest vertices to p;, p2, and ps, respec-
tively. The distance between a cluster and a query route is
the shortest spatial network distance between the cluster
center and the route (e.g., dist(cs,q) = dist(p2,ps)). If only
the spatial distance is considered (e.g., as in related work
[6]), c2 is the cluster closest to q. However, when considering
also the density of spatial objects, ¢, is less attractive than c;
due to its sparser spatial-object distribution. Specifically
although c; is not as good as ¢, according to spatial distance,
we consider ¢; as the best choice for location (region) recom-
mendation when taking both spatial distance and cluster
density into account.

The proposed PNC query is applied in spatial networks,
since in a large number of practical scenarios, users (e.g.,
pedestrians and vehicles) move in such networks (e.g.,
roads and railways) rather than in a euclidean space. Here,
a spatial network is modeled by a connected and undirected
graph G, and a query route is a path in G. Users can specify
a query route on a digital map, or they can consult travel
histories of other users and select a travel route accordingly.
For each vertex p in GG, we maintain the number of spatial
objects that have p as their nearest vertex as an attribute of
p. When formulating a cluster ¢, two system-defined thresh-
olds are considered. The one is the cluster size threshold z.s,
which defines the minimum cardinality of a cluster (i.e., a
cluster must contain at least 7.s spatial objects). The other is
the cluster radius threshold z.r, which defines the maxi-
mum spatial extent of a cluster (c.r < tr.r, where c.r is the
radius of a cluster ¢, i.e., the largest network distance from
the cluster center to the cluster boundary). These two
thresholds define the minimum requirements of clusters
that qualify for a PNC query.

To enable efficient processing of the PNC query, density
based pre-computation is conducted. For each vertex p in G,
we pre-compute the number of spatial objects that are
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covered by a circular region defined by (p, r.r), where p is
the center and t.r is the radius. These counts are useful in
pruning the search space during query processing. Based
on pre-computation, we develop two algorithms to process
the PNC query efficiently. Spatial-first cluster search (SF for
short) is a straightforward approach that uses network
expansion (i.e., Dijkstra’s expansion [10]) to explore the spa-
tial network and uses the two end vertices of a query route
as expansion centers. A pair of distance-based upper and
lower bounds are proposed to prune the search space. For
the clusters in the explored region, we compute exact densi-
ties and distances to the query route. By combining these
results, the best cluster in terms of density and location rela-
tive to the query route is found. The main drawback of SF is
that the search space can be large. Density-based bounds
are not effective at pruning the search space in both the spa-
tial and density domains, which results in the algorithm
having to process a large number of clusters. As a result, the
PNC query can often not be answered in interactive time
with SF.

To the best of our knowledge, there is no existing
approach that can compute the PNC query efficiently. We
note that PNC finds clusters with the highest density in the
density domain, while existing online clustering methods
(e.g., DBScan [11]) formulate clusters based on an estimated
density distribution (i.e., they find clusters whose densities
are higher than the estimated density); thus, they are not
suitable for PNC query processing.

To achieve better performance than does SF, an adaptive
collective cluster search algorithm is developed. Conceptu-
ally, the search process is conducted in the spatial and den-
sity domains concurrently. In the spatial domain, network
expansion is adopted to explore the spatial network, and
we carefully select a set of vertices from the query route as
expansion centers. In the density domain, clusters are sorted
according to density, and they are considered from maxi-
mum to minimum. A pair of upper and lower bounds are
defined for both distance and density to prune the search
space in the two domains globally. Compared to SF, the col-
lective algorithm has smaller search space and avoids
devoting unnecessary search efforts to clusters that cannot
be the query results.

To sum up, the main contributions are as follows:

e We define a new path nearby cluster query accord-
ing to a proposed spatial-and-density ranking
function. It provides new spatial functionality and
holds the potential to benefit users of popular
mobile applications such as trip planning and loca-
tion recommendation.

e We propose a set of new metrics to evaluate the dis-
tance-and-density evaluation score of clusters.

e We develop an adaptive collective search algorithm
to process the PNC query efficiently with the sup-
port of upper and lower bounds.

e We conduct extensive experiments on real and syn-
thetic data to investigate the performance of the pro-
posed algorithms.

The rest of the paper is organized as follows. Section 2

introduces spatial networks, query routes, and the distance
metrics used in the paper; and it also gives problem
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Fig. 2. An example of spatial object pre-processing.

definitions. A baseline method is introduced in Section 3,
and collective PNC query processing is covered in Section
4, which is followed by a coverage of experimental results
in Section 5. Related work is covered in Section 6, and con-
clusions are drawn in Section 7.

2 PRELIMINARIES

2.1 Network Modeling and Preprocessing

A spatial network is modeled as a connected and undirected
graph G(V, E, F, W), where Visa vertexsetand £ C V x V'is
an edge set. A vertex v; € V represents a road intersection or
an end of a road. An edge ¢, = (v;,v;) € E is defined by two
vertices and represents a road segment that enables travel
between vertices v; and v;. Function F': V U E' — Geometries
records geometrical information of the spatial network G. In
particular, it maps a vertex and an edge to the point location
of the corresponding road intersection and to a polyline repre-
senting the corresponding road segment, respectively.

Function W : E — R is a function that assigns a real-val-
ued weight to each edge. The weight W (e) of an edge e rep-
resents the corresponding road segment’s length or some
other relevant property such as its travel time [12] or fuel
consumption [14], [40], which may be obtained by mining
historic traffic data. Given two vertices p, and p; in a spatial
network, the network shortest path between them (i.e., a
sequence of edges linking p, and p, where the accumulated
weight is minimal) is denoted by SP(p,,ps), and its length
is denoted by sd(p,, py). When weights model aspects such
as travel time and fuel consumption, the lower bound of
network distance is not necessarily the corresponding
euclidean distance; thus spatial indexes such as the R-tree
[15] are not effective.

Spatial objects may not be located on edges or vertices in
a spatial network. We assume that all spatial objects have
already been mapped to the spatial network (on edges or
vertices) according to some map-matching algorithm [2],
[4], [13], [22], [23], [37]. Then, each spatial object is attached
to its nearest vertex. For each vertex p € G.V, the number of
spatial objects that are attached to p is maintained as an
attribute of p, denoted by p.g. A vertex and its attached spa-
tial objects make up the minimum unit in spatial-object den-
sity computations, and thus we do not need to access
individual spatial objects during PNC query processing.

An example of this pre-processing is shown in Fig. 2.
Here, p1,p2, . .., ps are vertices in G.V, and spatial objects are
mapped to the edges and vertices. Each spatial object is
attached to its nearest vertex according to network distance.
We see that four spatial objects are attached to ps; thus
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p3.g = 4. The region of the minimum unit of vertex p is also
called its control region, denoted by p.cr. In Fig. 2, the con-
trol region of vertex ps intersects its four adjacent edges and
that it is defined by (a, p3), (b,ps3), (¢, ps), and (d, p3), where
a,b, ¢, and d are the centers of edges (p1,ps), (p2,p3), (P3,P4),
and (p3,pg), respectively. The size of ps’s control region is
called its control area, denoted by ps.ca, and ps.ca is com-
puted as follows

1
p3ca=g Z Wie). (1)

ecps.adj

Here, p3.adj is a set of adjacent edges of vertex ps, and W (e)
is the weight of edge e. As an example, in Fig. 2, the value of
ps.ca is calculated by

1
p3.cr =5 (W(p1,p3) + W(p2,p3) + W(ps,pa) + W(ps3,pe))-
2.2 Evaluation Functions and Problem Definition
We define a query route as follows.

Definition (Query Route). A query route is a sequence of verti-
ces (p1, p2, - .., pn), Where p; and p; ., are adjacent vertices in
G,i=12...,n—1

Given a query route g and a vertex p in a spatial network,
the distance d(p, q) between them is defined as

d(p,q) = min{sd(p, pi)}, 2
Pi€q

where p; is a vertex belonging to g.

Given a set of spatial objects O, a cluster is a subset of
objects in O that contains at least a threshold r.s number of
objects and such that the objects fall within a circular region
with a radius that does not exceed a threshold radius .r.
The circular region that is defined by two parameters, a
cluster center c.m and a cluster radius c.r, where c.m is a
vertex in G.V and c.r is the distance from c.m to the cluster
boundary. A cluster c has an associated subgraph c.;, which
contains the vertices c.y and edges c.p from G that are in the
circular region.

The density c.p of cluster c is defined as

> ey P9
ZBG(LE W(e) '

where p is a vertex in c.y and p.g is the number of spatial
objects that are attached to p; and e is an edge in c.p and
W (e) is its weight.

Given a cluster c and a query route ¢, a distance-evalua-
tion function E(c,q) and a density-evaluation function
E,4(c) are defined in Equations (4) and (5). A Sigmoid func-
tion [25] is adopted here to normalize the values of E;(c, q)
and Ey(c) to the range [0, 1]

c.p= 3)

2
E5 (C, q) = 1 ¥ efd(c.'m“q) - 17 (4)
—2_ 1 if ecr<trAcs>rts
— TtecP = jl )
Ea(c) { 1 ‘ if er >rtrves<rts. )

Here, z.r and 1.s are cluster radius and size thresholds,
respectively.
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TABLE 1
A List of Notions
Notion Description
GV the set of vertices in graph G
G.E the set of edges in graph G
We) the weight of edge e
p.g the number of spatial objects attached to p
p.cr the control region of p
cm the center of cluster ¢
c.p the spatial object density of cluster c
T.r the cluster radius threshold
7.8 the cluster size threshold
sd(pa,pp) network distance between vertices p, and p;
d(p,q) network distance between vertex p and
trajectory ¢
E(),Ea(),Esal) distance, density, and distance-and-density
evaluation functions
UB,LB global upper and lower bounds

By combining Equations (4) and (5), the distance-and-
density evaluation function E(c, 7) is defined as:

Eg(e,t) = A Es(e,7) + (1 = X) - Ey(e), (6)

where parameter A € [0,1] is used to adjust the relative
importance of the density and the distance. We allow users
to adjust the parameter ) at the query time.

Table 1 offers an overview of the notation used in the

paper.

Problem Definition. Given a set of spatial objects O, a query
route q, a cluster size threshold t.s and a radius threshold t.r,
and an importance parameter ), the path nearby cluster query
finds the cluster ¢ C O with c¢.s > t.s and c.r < t.r such that
Ve CO(d #£cNds > 1sNdor < tr = Fyle,q) < Ey

(¢, q)).

3 BASELINE METHOD

3.1 Basicldea
To enhance the performance of path nearby cluster query
processing, a density based pre-computation technique is
applied. For each vertex p € G.V, we pre-compute the num-
ber of spatial objects that are covered by the circular region
defined by (p, 7.r), where p is the center point and t.r is the
radius. Region (p,7.r) is the maximum range of a cluster
centered at p, and the number of spatial objects covered by
(p, t.r) is denoted by p.maz. These counts are useful in esti-
mating upper and lower bounds of density-evaluation
scores (Equation (5)) and in pruning the search space during
PNC query processing. It is possible to generalize the use of
one radius and count to the use of multiple radiuses and
counts. Then an application has a choice of possible parame-
ter settings for the radius each time a user invokes the func-
tionality through the application. For simplicity, we assume
a single radius and corresponding count in the sequel.
Spatial-First (denoted by SF for short) is a straightfor-
ward approach to computing the PNC query, which
includes two steps. First, it explores the spatial network and
finds clusters located close to the query route and estimates
their density-evaluation scores. Second, it uses a pair of dis-
tance-based upper and lower bounds to constrain a cluster
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vertices p; and p; are expansion centers

Fig. 3. An example of spatial-first cluster search.

candidate set and refines each candidate by computing its
exact density and distance to the query route. By integrating
these results, the cluster with the minimum distance-and-
density evaluation score is found.

3.2 Upper and Lower Bounds

Consider the example in Fig. 3. Path ¢ is a query route, and
vertices p; and p; are adjacent expansion centers in the
query route. In SF, we use the source vertex p, and the desti-
nation vertex p; of the query route ¢ as expansion centers
(pi = ps and p; = py, as in PNN query processing [6]). To
explore the spatial network and find clusters close to the
query route (i.e., with the smaller values of d(p, q), refer to
Equation (2)), Dijkstra’s expansion [10] is adopted. From
each expansion center, network expansion is performed
using Dijkstra’s algorithm, and their expansion speeds are
the same. The explored circular regions are shown in Fig. 3,
where the radiuses are the shortest network distances from
expansion centers p; and p; to the corresponding expansion
boundaries, respectively, denoted as rs; and rs;. Here,
rs; = rs;j since the expansion speeds are the same.

To prune the search space in the spatial domain, a pair of
upper and lower bounds are developed to estimate the min-
imum network distance from a vertex p to the query route g.
An example is shown in Fig. 3, where vertex p has been
scanned by the network expansions from expansion centers
p; and p;. Thus, the network distances sd(p, p;) and sd(p, p;)
are known. The upper bound of d(p, q) is estimated as

d(p, q).ub = min{sd(p, p;), sd(p, p;)}- ()

We estimate the lower bound of d(p, q) based on the triangle
inequality of the shortest-path distance. The triangle
inequality in spatial networks is represented as follows

sd(vy,v9) + sd(ve,v3) > sd(vy,vs3),
sd(v1,v9) — sd(ve,v3) < sd(vy,v3).

Here, vy, vy, and v3 are vertices in G.V, and v, is not on the
shortest path from v; to vs. Otherwise, we have that sd
(v1, v2) + sd(va,v3) = sd(vy,vs3).

In Fig. 3, we assume that ps € ¢ is the vertex closest to p
(i.e., d(p, q) = sd(p, p3)). According to the triangle inequality,
we have the following inequalities

sd(p,ps) > sd(pi,p) — sd(pi, ps),



SHANG ET AL.: DISCOVERY OF PATH NEARBY CLUSTERS IN SPATIAL NETWORKS

sd(p,p3) > sd(p;,p) — sd(p;, p3)- ®)

The path between p; and p; along ¢ is not necessary a short-
est path (different from [6], which only supports the shortest
path), and its distance is denoted as d(p;,p;). Thus, d(p;,
ps) > sd(p;,ps) and d(p;,p3) > sd(pj, p3). Substituting them
into Equation (8), the lower bound of d(p, ¢) becomes:

_ sd(pi,p) + sd(p;,p) — dpi,p;) ©)

d(p, q).lb .
(p,q) 5

Cluster c is a cluster centered at vertex p (i.e., c.m = p). By
substituting Equations (7) and (9) into Equation (4), the
upper and lower bounds of the distance-evaluation score
Saist(¢, q) are as follows

d(p, q).ub = min{sd(p, p;), sd(p,p;)} > d(p,q)

P - 2 . (10)
= 5(07 Q)'u - 1+ e—min{sd(p,m),sd(p,pj)} -

2
Ey(c,q).b = 2 1
= B0 = i s o dmayE

d(p,q)-1b =

<d(p,q)
11)

Here, ¢ is a cluster centered at vertex p, and p has been
scanned by network expansions from p; and p;.

On the other hand, if a vertex is partly scanned in the
spatial domain (i.e., it is scanned by only one network
expansion, e.g., vertex p; in Fig. 3), we have that
sd(p;,p2) > rs; (where rs; is the network distance from p; to
the corresponding expansion boundary), since Dijkstra’s
algorithm always selects the vertex with the minimum dis-
tance for expansion. Then, we use the value of rs; to replace
that of sd(p;, p) in Equation (9). The lower bound of d(p», q)
is computed as follows

sd(pi,p2) + rs; — d(pi, pj
(s, q).1b = (pi, p2) o (pispj)

(12)

Here, p, is a partly scanned vertex in the spatial domain.
Network expansions from different expansion centers are at
the same speed, thus we have rs = rs; = rs;.

Cluster ¢’ is a cluster centered at vertex ps (i.e., ¢.m = po).
By substituting Equation (12) into Equation (4), the lower
bound of E,(¢, ¢) is computed as

2

1 + e~ (sd(pispa)+rs—d(pi.pj)/2 -1

Ey(d,q).lb= , (13)
where ¢’ is a cluster whose center vertex c.m is partly
scanned in the spatial domain (e.g., c.m = py). Among all
partly scanned vertices in the spatial domain, we define a
global lower bound LB as

LB =min{E(c,q).lb}, (14)

where LB is a dynamic value and is continuously updated
during PNC query processing.

To reduce the computation and storage load, we only
compute and maintain the lower bounds of partly scanned
vertices in the spatial domain. Unscanned vertices (i.e., ver-
tices outside the scanned region, e.g., vertex p; in Fig. 3)
must not have distance upper bounds that exceed those of
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partly scanned vertices. For instance, in Fig. 3, vertex ps is a
partly scanned vertex, and p; is an unscanned vertex in the
spatial domain. We use the value of rs to replace that of
sd(pi,p) and sd(p;.p) in Equation (9). The lower bound of
d(p1, q) is estimated by

d(pi,p;)

2rs — d(p;, p;
d(p1,q).lb = #

Because Sd(pi"p2)+gsfd(pi’p") < 2r57d2<p”pj>, we have that d(ps, q).
Ib < d(p1,q).lb, where clusters ¢; and ¢, are centered at verti-
ces p; and p,, respectively. By substituting the values of
d(p2,q).lb and d(p1,q).lb into Equation (4), we have that
Eg(ca,q).0b < Ey(c1,q).1b.

Once a vertex p is scanned by the network expansions
from both p; and p; (e.g., p in Fig. 3), we compute the upper
and lower bounds of its distance to the query route ¢
according to Equations (10) and (11), respectively. Then, we
estimate the spatial-object density for the clusters centered
at vertex p. The number of spatial objects covered by the cir-
cular region (p,t.r) is pre-computed, denoted by p.max
(refer to Section 3.1). If the value of p.max is less than the
cluster size threshold t.s, the clusters centered at p can be
pruned safely. Otherwise, the density for clusters centered
at p is estimated as follows

p.max

fep} > P
EVee(p,rJ') c.w

max
c.m=pAc.r<t.rAc.s>T1.s

Ch.p =
Here, c is a cluster centered at p (i.e., c.m = p), and ¢, is the
cluster with the highest density among all qualifying clus-
ters centered at p. According to Equation (5), the upper
bound of the density-evaluation score is computed as fol-
lows

2

Eylep) < ————=—
d(C}) 1+ e(pAn,/ZeAux)

—1= Ed(ch).ub. (15)

By combining the upper bounds of the distance-evaluation
score E,(c, q).ub and the density-evaluation score Eqy(cy,).ub,
the upper bound of the distance-and-density evaluation
score Eg(c, q).ubis computed as

Esa(cn, q).ub=X- Ey(c,q).ub+ (1 —X) - Eq(cp).ub,  (16)

where ¢, is the cluster with the highest density centered at p.

Among all vertices that have been scanned by the net-
work expansions from both p; and p;, we define a global
upper bound UB as follows

UB = min{ E4(cp, q).ub}, amn

where the center of cluster ¢, is a vertex that has been
scanned by the network expansions from both p; and p;.
Similar to LB, UB changes dynamically during PNC query
processing.

3.3 Filter and Refinement

Once the value of LB exceeds that of UB, the network
expansion in the spatial domain terminates, and the vertices
outside the scanned region can be pruned safely (i.e., the
clusters centered at such outside vertices cannot be the clus-
ter with the minimum distance-and-density evaluation
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score). Each qualifying vertex p (ie., p.maz > 1.s) in the
scanned region is put into the candidate set, and then we
refine each candidate vertex p in two steps: (1) computing
its exact network distance to the query route ¢, and (2) find-
ing the cluster with the highest density among all clusters
centered at p. By integrating these results, the cluster with
the highest distance-and-density evaluation score is found.

Step 1. We use Dijkstra’s algorithm [10] for network
expansion to compute the network distance d(p, ¢) between
a vertex p and a query route ¢. Dijkstra’s algorithm always
selects the vertex with the smallest weight for expansion, so
the first vertex v € ¢ scanned by the network expansion
from p is the vertex closest to p, and d(p, ¢) = sd(p, v).

Step 2. To find the cluster with the highest density among
all clusters centered at p, we expand from p according to
Dijkstra’s algorithm. The subgraph in the scanned region is
expanded step by step, and at each step, we compute and
record its current density as

op— Zreev VI
. ZBEC.E ew 7

where c.p is the density of the region scanned so far, p is a
vertex in the scanned region, and " p.g is the number of
spatial objects covered by the scanned region. Once the
radius of the scanned region exceeds the cluster-radius
threshold 7.7, network expansion terminates, and the cluster
with the highest density is returned.

(18)

3.4 Analysis

Correctness. The PNC query retrieves the cluster with the
minimum distance-and-density evaluation score. The SF
algorithm follows the “filter-and-refinement” paradigm.
We define a global upper bound UB and a global lower
bound LB (refer to Equations (14) and (17)) of the distance-
and-density evaluation score to prune the search space.
When the value of LB exceeds that of UB, the search termi-
nates. Clusters outside the scanned regions have lower
bounds that exceed the upper bounds of the clusters inside
the scanned region. Thus, they cannot be the cluster with
the minimum distance-and-density score, and they can be
pruned safely. Then, we refine the clusters inside the
scanned region by computing their exact distance-and-den-
sity evaluation scores, which yields the result. Because (1)
the clusters pruned in the filtering cannot be a solution and
because (2) the computation in the refinement is accurate,
the SF algorithm computes the PNC query correctly.

Time complexity. In the filtering, we perform network
expansion according to Dijkstra’s algorithm [10] to constrain
a candidate set, and the time complexity of the filtering is
O(|V|log(|V]) + |E|), where |V| is the number of vertices in
G, and |E| is the number of edges in G. In the refinement,
for each candidate, we compute its distance and density
scores using Dijkstra’s algorithm. In the worst case, the
number of candidates is equal to the number of vertices |V|,
and the time complexity of the refinement process is then

O([VPPlog(|V|) + |V||E]). The time complexity of the SF
algorithm is then O(|V|log(|V|) + |E|) + O(|V|*log(|[V]) + |V
) = O(V log(IV]) + V]| E]).

Space complexity. In the spatial domain, we maintain two
expansion trees to maintain the distance labels, and the
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space complexity of the spatial domain is O(|V]). In the den-
sity domain, no additional information is maintained. Thus,
the SF algorithm needs O(|V]) additional space to maintain
the related information, excluding the O(|V|+ |E|) space
occupied by the spatial network.

3.5 Algorithm

The Spatial-First method is detailed in Algorithm 1. The
query inputs are a graph G(V, E), a set of spatial objects O,
and a query route ¢, while the query output is the cluster ¢
with the minimum value of E(c,q). The two end vertices
of the query route are set to be expansion centers (line 2),
and network expansion is performed from each center in
turn using Dijkstra’s algorithm [10], which always selects
the vertex with the smallest weight for expansion (line 4).
For each newly scanned vertex p in the spatial domain, we
compute the upper bound of distance-and-density evalua-
tion score Eq(cy, q).ub according to Equation (16), where ¢,
is the cluster with the highest density among all qualifying
clusters centered at p (lines 5-7). If the value of Ey4(cy, q).ub
is less than that of global upper bound UB, the value of UB
is updated to that of E;(cy, ¢).ub (lines 8-9). Then, we com-
pute the value of F,(cp, g).lb according to Equation (13). If
the value of E;(cy,q).lb is less than that of global lower
bound LB, the value of LB is updated to that of E,(cy,q).lb
(lines 10-12). If the value of LB exceeds that of UB, the
search process in the spatial domain terminates.

Algorithm 1. Spatial-First Cluster Search

Data: graph G(V, E), spatial-object set O, query route g
Result: cluster ¢ with the minimum value of E;(c, q)

1 LB« 0;UB «— +00;CS «— null; minEs «— 1;

2 pi < q.spj + q.d;

3 while true do

4  for each expansion center p; € q do

5 p — expand(p;);
6 if ¢;,.m = p then
7 compute Ey(cy, q).ub;
8 if Ey(cp,q).ub < UB then
9 UB «— Ey(c, q).ub;
10 compute E;(c, q).lb;
11 if E(cp,q).lb < LB then
12 LB — Ey(cp,q).lb;
13 if LB > UB then
14 break;
15 if (p,7.r).s > 7.s then
16 CS.add(p);

17 for each vertex p € CS do

18  compute E;(cy, q), Eq(cy), and Egy(en, q);
19 if Ey(cn, q) < minE,, then

20 minEsqy — Esq(cn, q);

21 return the cluster ¢ with minFE,,;

If the number of spatial objects covered by circular region
(p, t.r) (this number is pre-computed as explained in Section
3.1) is less than the cluster size threshold z.s, there cannot
exist any clusters centered at p that meet the size and radius
thresholds at the same time; thus vertex p can be pruned.
Otherwise, vertex p is put into the candidate set C'S (lines
15-16). For each vertex in the candidate set C'S, we compute
the exact value of Eg4(cp,q) (cp.m =p) according to the
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procedure introduced in Section 3.3. By integrating these
results, the cluster with the minimum value of Ey(cy,q) is
found (lines 17-21).

4 COLLECTIVE CLUSTER SEARCH

The main drawback of spatial-first is that the loose upper
and lower bounds are unable to constrain the search space
effectively. Density-based bounds are not effective at prun-
ing the search space in both the spatial and density
domains, which results in a large number of clusters having
to be considered. Thus, the PNC query can generally not be
answered in interactive time with SF.

This motivates the development of an adaptive collective
search algorithm that conducts the search process in the
spatial and density domains concurrently. In the spatial
domain, network expansion is adopted to explore the spa-
tial network, and a set of vertices on the query route are
selected as expansion centers. In the density domain, clus-
ters are sorted according to their density, and they are
scanned from the maximum to the minimum. A pair of
upper and lower bounds are defined to prune the search
space in the two domains globally. Section 4.1 develops the
upper and lower bounds, and the expansion-center selec-
tion strategy is given in Section 4.2. Compared to SF, the col-
lective search algorithm reduces the search space and
avoids devoting unnecessary search efforts to clusters that
cannot be query results. We analyze the correctness, the
time and space complexity of the collective algorithm in
Section 4.3. The collective algorithm is detailed in Section
4.4, and the proposed techniques are extended to support a
top-k PNC query in Section 4.5.

4.1 Upper and Lower Bounds

The collective cluster search is conducted in the spatial and
density domains concurrently. In the spatial domain, we
select a set of vertices from the query route as expansion
centers, and we explore the spatial network using Dijkstra’s
algorithm [10] (as in SF). The expansion-center selection
strategy is detailed in Section 4.2. In the density domain, we
establish a heap H to maintain the lower bounds of the den-
sity-evaluation score E,(c).lb. The items in H are sorted
from the minimum to the maximum. Given a cluster ¢, the
upper bound of its density is estimated as

T
c.p.ub = b > c.p,

p.ca

(19

where vertex p is the center point of cluster ¢ (i.e., c.m = p),
p.mazx is the number of spatial objects covered by a circular
region (p,7.r), and p.ca is the control area of vertex p (see
Equation (1)). The value of p.max is the maximum number
of spatial objects that cluster ¢ may have, while the value of
p.ca is the minimum area that cluster ¢ may occupy. Thus, a
density upper bound can be obtained by dividing p.ca by
p.mazx. For each vertex p € G.V, the values of p.max and p.ca
are pre-computed (refer to Sections 2.1 and 3.1). By substitut-
ing Equation (19) into Equation (5), the lower bound of the
density-evaluation score Ey(c).lb is computed as follows

Eic) > — >

— 1+ ep-maz/p.ca —1= Ed(c)lb

(20)
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Fig. 4. An example of collective cluster search.

For each vertex p € G.V, the value of Ey(c).lb (where c.m =
p) is pre-computed and inserted into a heap H. Thus the
size of H is equal to that of G.V. The search process in
the density domain is performed from the minimum to the
maximum. Intuitively, a cluster with a smaller value of
Eq(c).lb has a higher possibility to be the cluster with the
minimum density-evaluation score.

An example is shown in Fig. 4, where ¢ is a query
route, and vertices pei,pes, - .., Des € ¢ are expansion cen-
ters. Network expansions occur from these according to
Dijkstra’s algorithm to explore the spatial network. Once
a vertex is reached from any two adjacent expansion cen-
ters (e.g., vertex p in Fig. 4), we compute the upper bound
of its distance-evaluation score E;(c,q).ub according to
Equation (10). That is

2

Es(ca Q)ub = 14+ e—min{sd(p.pi),sd(p,pj)} o

where cluster c is centered at p, and p; and p; are two adja-
cent expansion centers. Such vertices are called “fully
scanned” vertices. For partly scanned vertices (i.e., vertices
reached from only one network expansion, e.g., vertex p’ in
Fig. 4), the lower bound of the distance-evaluation score
Ey(c,q).lbis estimated as (refer to Equation (13))

2
1 + o~ (dpesp)+rs—dpes pen))/2

El(d,q).lb= ,
where cluster ¢ is centered at p/, and rs is the radius of a cir-
cular scanned region. Since network expansions from differ-
ent expansion centers occur at the same speed, we have that
rS=1Ts] =TS9 =+ =rS;.

In the density domain, the items in heap H are sorted
from minimum to maximum. Thus, we have that E;(c;).
b < Ed(CQ)lb << Ed(c‘(;y‘,l).lb < E[I(C‘le).lb, where
clusters ci, cs,...,cqy| are centered at vertices pi, ps,. ..,
pc.v|, respectively (refer to Fig. 4). The search process is
performed from the minimum to the maximum, step by
step. In each step, the search pointer ¢ is increased by 1.
For example, in Fig. 4, clusters ¢, ¢3,...,¢ have already
been scanned (where c¢i,co,...,¢; are centered at py,
D2, ..., i, respectively), and the rest are unscanned. For
each scanned cluster, we compute the upper bound of its
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density-evaluation score E;(c).ub (refer to Equation (15)).
For unscanned clusters (e.g., ¢;+1, where ¢;1.m = p;41), the
lower bound of density-evaluation score is estimated by

E(¢).Ib = Ey(c;).Ib, (1)

where cluster cisin {¢i;1, ¢ito, . .
progress pointer.

By combining the lower bound of the distance-evaluation
score (Equations (9) and (13)) and the lower bound of the
density-evaluation score (Equations (20) and (21)), the lower
bound of the distance-density evaluation score Ey;(c, ¢).lb is
defined as follows

., ¢c.v|} and i is the search-

Ey(c,q)lb+(1—X) - Ey(c)b if Cy

E(c,q).lb+ (1 —=X) - Ey(c).lb if Cy

El(c,q).lb+ (1= X)- Ej(c).lb if Cs.
(22)

A-
Eg(c,q).lb=4¢ -
A-

C: the center point of cluster c is fully scanned in the spatial
domain and unscanned in the density domain.
Cy: the center point of cluster c is partly scanned in the spa-
tial domain and scanned in the density domain.
C'3: the center point of cluster c is partly scanned in the spa-
tial domain and unscanned in the density domain.

Among all clusters that have not been fully scanned in
both the spatial and density domains, we define a global
lower bound LB as

LB = min{E(cp, q).lb}, (23)

where LB is continuously updated during PNC query
processing.

If a cluster ¢ has been fully scanned in both domains, we
compute the upper bound of its distance-and-density evalu-
ation score Eg4(c, q).ub (refer to Equation (16)). Among all
clusters that have been fully scanned in both the spatial and
density domains, a global upper bound UB is defined as

UB = min{ E4(cp, q).ub}. (24)

Similar to LB, UB is updated during query processing.

The search-stop criteria in both the spatial and density
domains is whether the value of LB exceeds that of UB
(LB > UB). The clusters outside the scanned regions in the
both domains can be pruned safely. Then, the cluster candi-
dates will be further refined according to the two-step
refinement strategy (refer to Section 3.3), and the cluster
with the minimum distance-and-density evaluation score is
returned.

4.2 Expansion Center Selection

In this section, we introduce the expansion-center-selection
strategy used in the collective cluster search algorithm. The
strategy aims to minimize the search space in the spatial
domain during query processing.

Assume that vertices along the query route ¢ are uni-
formly distributed in the spatial domain. In the extreme
case where each vertex in ¢ is an expansion center, the
search space for each individual expansion center is mini-
mized while the number of expansion centers is maximized.
When any two adjacent sample points (usually close to each
other) are selected as expansion centers, the search space
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overlap is substantial. The vertices (clusters) in the overlap-
ping region will be read and processed unnecessarily,
which adversely affects performance. Next, in the extreme
case where only the two ends of ¢ (i.e., the source and desti-
nation, as in PNN query processing [6]) are selected as
expansion centers, the number of expansion centers is mini-
mized, but the search space for each expansion center may
be very large.

The optimal selection of expansion centers can be esti-
mated using linear programming. Let (p; = s,p2,..,Pp-1,
pn = d) be the vertices in g ordered from source s to destina-
tion d. Let A be an n x n matrix where a;; = 1 if the ith and
the jth vertices are adjacent expansion centers (i.e., no verti-
ces in-between them are expansion centers) and a;; = 0, oth-
erwise. Our goal is to minimize the area of the total search
space in the spatial domain:

w = Z al‘]’%(di‘j + 26)2, (25)
subject to 1<y, Z;Lzl Qapj = 1, Z?:l a0 =1, Z;}:I Qjj <1,
Yoiiai; <1, and Y0 a;; = > ai. Here, dj; is the net-
work distance between the ith and the jth vertices along the
query route ¢. We use " a;;1n(d;; + 2¢)” to estimate the
area of the total search space in the spatial domain, and
we use Y a;; to estimate the number of expansion centers.
The area of the search space for each individual expansion
center is estimated by 17(d;; + 2¢)?, and r = (dij/2+€) is
the radius of the search space. Here, € is a parameter that
estimates the maximum distance between a candidate clus-
ter ¢ and a query route ¢. For a cluster ¢ with d(c, ¢) > 8, its
distance-evaluation score FE(c,q) = W% >0.999 ~ 1
(refer to Equation (4)). As the query finds the cluster with
the minimum distance-evaluation score in the spatial
domain, it is almost impossible for c to be the query result,
and it is very likely that the search in the spatial domain ter-
minates here (wWhen search radius r = d;;/2 + € = d;;/2 + 8).
Thus, the value of € is set to 8 in the experimental studies.

Considering the online processing scenario, the time cost
of finding the optimal selection of expansion centers by
solving the above objective function may not be practical.
Thus, we simplify the objective functions (Equations (25))
by assuming that the gap between any two adjacent expan-
sion centers is identical and the vertices in ¢ are uniformly
distributed. Our goal is now changed to finding the optimal
number of expansion centers. Then we have:

: 1 ’
w@):%(mq_ﬁze) ,

where ¢.l is the length of query route ¢ in the spatial domain
and x is the number of expansion centers. The value of z
resulting in the minimum o is obtained using the deriva-
tives of the function in Equation (26)

(26)

ow
w(x) = P

=20z —1) "+ (¢ +4e-ql)(x —1) > +4e=0.

(27)

The cubic equation in Equation (27) can be solved by
applying the general formula of roots. Then x uniformly
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distributed vertices (including the source and destination)
are selected in ¢ as the expansion centers. The necessity
of the vertex-selection strategy in the spatial domain
depends on the values computed for z. If the number of
vertices in the query route is no greater than the value of
z (i.e., |g| < ), it is not necessary to conduct the expan-
sion-center-selection strategy in the spatial domain. By
following the aforementioned procedure, the expansion
centers that define the minimum search spaces in the spa-
tial domain is found.

4.3 Analysis

Correctness. Similar to the SF algorithm, the collective algo-
rithm follows the “filter-and-refinement” paradigm. We
define a global upper bound UB and a global lower bound
LB (refer to Equations (23) and (24)) of the distance-and-
density evaluation score to prune the search space. When
we have that LB > UB, the search process terminates. It is
clear that clusters outside the scanned region cannot be a
solution, and they can be pruned safely. Then we refine the
candidates inside the scanned region by computing their
exact distance-and-density evaluation scores, and we find
the result. Because (1) the clusters pruned in the filtering
cannot be a solution and because (2) the computation in the
refinement is accurate, the collective algorithm computes
the correct solution to the PNC query.

Notice that the expansion-center selection strategy (refer
to Section 4.2) only accelerates the query processing and
does not affect the query result.

Time complexity. Similar to the SF algorithm, in the spatial
domain, we use network expansion to constrain a candidate
set, and then we use Dijkstra’s algorithm [10] to refine the
candidates. The time complexity for the spatial domain is
O(|VPlog([V|) + [V||E]). In the density domain, clusters are
sorted according to their density, and they are scanned
from maximum to minimum. The time complexity in the
density domain is O(|V|). The time complexity of the collec-
tive algorithm is then O(|V|*log(|V]) + |V||E]) + O(|V]) =
O(IVFlog(IV1) + VI E)).

Space complexity. In the spatial domain, we maintain m
expansion trees (m is the number of expansion centers, and
it is a constant), and the space complexity of the spatial
domain is O(|V]). In the density domain, we establish a
heap to maintain the lower bounds of the density-evalua-
tion scores, and its space complexity is O(|V]). Thus, the col-
lective algorithm needs O(|V]) additional space, excluding
the O(]V| + |E|) space occupied by the spatial network.

4.4 Algorithm

The collective cluster search algorithm is shown in
Algorithm 2. Initially, the default value of global lower
bound LB (refer to Equation (23)) is set to 0, and the default
value of global upper bound UB is set to +00. The candidate
set CS is set to null, and the search pointer i in the density
domain is set to 1 (Iine 1). We carefully select a set of expan-
sion centers according to the expansion-center selection
strategy introduced in Section 4.2 (line 2). In the spatial
domain, we explore the spatial network and find the cluster
located close to the query route according to Dijkstra’s algo-
rithm. For each newly scanned vertex p, we update the
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lower bound of its distance-evaluation score FE(c,q).lb
(Equation (13)) and all related parameters. If p has been
“fully scanned” (i.e., scanned by network expansions
from two adjacent expansion centers), we compute the
upper bound of its distance-evaluation score FE;(c,q).ub
(Equation (10)) (lines 4-10). If vertex p has been scanned in
both the spatial and density domains, we compute the
upper and lower bounds of its distance-and-density evalua-
tion score Ey(c,q).ub and Ey(c,q).lb (Equations (16) and
(22)). Then, we update the values of global upper and lower
bounds UB and LB (Equations (17) and (23)). If the value of
LB exceeds that of UB, the search process in the two
domains terminates (lines 11-15). If the number of spatial
objects covered by circular region (p,t.r) (this number is
pre-computed, as explained in Section 3.1) is less than the
cluster size threshold t.s, no cluster centered at p exists that
meets the size and radius thresholds; thus vertex p is
pruned. Otherwise, vertex p is put into the candidate set C'S
(lines 16-17).

Algorithm 2. Collective Cluster Search

Data: graph G(V, E), spatial-object set O, query route ¢
Result: cluster ¢ with the minimum value of Ey;(c, q)

1 LB« 0;UB «— 4+00;CS «— null; minEy «— 1;i «— 1;

2 select expansion centers in the query route;

3 while true do

4 //in the spatial domain

5  for each expansion center p. € q do

6 p — expand(p.);

7 if com = p then

8 if p is fully scanned then

9 compute E;(c, q).ub;
10 update E;(c, ¢).lb and all related parameters;
11 if p is scanned in the two domains then
12 compute Ey(c, ).lband E(c, q).ub;
13 update LB and UB;
14 if LB > UB then
15 break;
16 if (p,7.r).s > t.s then
17 CS.add(p);

18  //in the density domain

19 if c.om = p; then

20 compute Ey(c).ub, Eq(c).lb, and all related parameters;
21 i i1

22 if pis scanned in the two domains then

23 compute Ey(c, g).lband E(c, q).ub;

24 update LB and UB;

25 if LB > UB then

26 break;

27 if (p,t.r).s > t.sthen
28 CS.add(p);

29 for each vertex p € CS do

30 compute Ey(ch,q);

31 if Egi(cn, q) < minEy, then
32 minEsq — Esq(cn, q);

33 return the cluster ¢ with minFE,,;

In the density domain, the search is performed from the
minimum to the maximum. In each step, the search pointer
1 is incremented by 1. For each newly scanned vertex p;, we
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compute the upper and lower bounds of its density-evalua-
tion score E4(c).ub and Ey(c).lb (Equations (15) and (20))
and all related parameters (lines 18-21). If vertex p has been
scanned in both the spatial and density domains, we com-
pute the corresponding upper and lower bounds and check
whether they meet the the search-stop criteria (lines 22-26).
Also, we check whether the number of spatial objects cov-
ered by circular region (p, t.r) meets the cluster size thresh-
old t.s. If so, vertex p is put into CS (lines 27-28). For each
vertex in the candidate set C'S, we compute the exact value
of Esq(ch,q) (¢p,.m = p) according to procedure introduced
in Section 3.3. By integrating these results, the cluster with
the minimum value of Ey(cp, ) is found (lines 29-33).

4.5 Top-k Extension

It is straightforward to extend the proposed techniques to
support a top-k PNC query. Among all clusters fully
scanned in the spatial and density domains, we define a
global upper bound UB;, for the top-k PNC query as

UBk, = max {Esd(c> q) Ub}’ (28)
CECk

where C is the set of clusters that have been fully touched
in both domains and Cj, = {c1,¢co,..., ¢} (Cp € Cf), such
that

Ve € Cr(Ve € Cf \ Cr(Esal(c, q).ub < Egq(c, q).ub)).

The value of UB, is dynamic and is updated continuously.
The search process for the top-k PNC query is conducted by
substituting Equation (28) into Algorithms 1 and 2. If LB
exceeds UBy, the search process terminates. Then, we refine
the cluster candidates and find top-k clusters with the mini-
mum spatial-density evaluation score.

5 EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments on real
and synthetic spatial data sets to study the performance of
the developed algorithms.

5.1 Settings

We use graphs extracted from two spatial networks, namely
the Beijing Road Network (BRN) and the Oldenburg Road
Network (ORN),® which contain 28,342 and 6,104 vertices,
respectively. The graphs are stored using adjacency lists.
For studies with BRN, we use a real geo-tagged object set
collected from the micro-blogging service Weibo over
within thirty days, which contains 600,000 spatial objects.
Raw geo-tagged objects have latitude-longitude coordi-
nates. They were mapped to the spatial network and
attached to their nearest vertices. For each vertex p in BRN,
we maintain the number of spatial objects that have p as
their nearest vertex as an attribute of p. Thus, we do not
need to access individual spatial objects during PNC query
processing. For studies with ORN, synthetic data was used.
For each vertex p’ in ORN, we generate the number of spa-
tial objects attached to it, and we maintain this number as

8. http:/ /www.cs.utah.edu/lifeifei/SpatialDataset.htm
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TABLE 2
Parameter Settings
BRN ORN
Spatial object count 600,000 150,000
Query route length 20-100/default 60 20-100/default
60

Cluster size threshold 200-1,000/default 100-500/default

600 300
Cluster radius threshold  1-3 km/default 1-3 km/default

2 km 2 km
A 0.1-0.9/default 0.1-0.9/default

0.5 0.5
k 1-9/default 1 1-9/default 1

one of its attributes. There are 150,000 generated spatial
objects.

In the experiments, the graphs were memory resident
when running Dijkstra’s algorithm [10], as the memory
occupied by BRN/ORN was less than 20 MB. All algorithms
were implemented in Java and run on a Windows 7 plat-
form with an Intel Core i7-3520M Processor (2.90 GHz) and
8 GB memory. All experimental results are averaged over
20 independent trails with different query inputs. The main
performance metrics are CPU time and the number of vis-
ited vertices. The number of visited vertices is selected as a
metric since it describes the exact amount of data accesses.

The parameter settings are listed in Table 2. By default,
the lengths of query routes were set to 60 in both BRN and
ORN, and each query route was randomly generated. The
cluster size thresholds were set to 600 and 300 in BRN and
ORN, respectively. The cluster radius threshold was set to
2 km, and ) was set to 0.5 for both BRN and ORN. The col-
lective cluster search algorithm (Section 4) is denoted by
“Collective”, Spatial-first cluster search (Section 3) denoted
by “SF”, and collective cluster search algorithm without
expansion-center selection strategy, denoted by “Collective
without v-s”.

5.2 Effect of Query Route Length ¢.1
First, we investigate the effect of query route length ¢.l on
the performance of the three algorithms with the default set-
tings. Intuitively, a longer query route causes more expan-
sion centers to be processed and has a larger search space.
Thus, the CPU time and the number of visited vertices are
expected to be higher for all three algorithms. However,
from Fig. 5, it is clear that the CPU time and the number of
visited vertices of SF search increase much faster than those
of collective search. This is due to two reasons. First, SF
search lacks effective upper and lower bounds to prune the
search space. Second, the expansion-center selection strat-
egy can further enhance the query efficiency. For instance,
with the query route length ¢.l =100, the collective algo-
rithm outperforms SF search by almost a factor of 10 (for
both CPU time and visited vertices); with the help of the
expansion-center selection strategy (refer to Section 4.2), the
performance is improved by approximately a factor of 3 in
terms of both CPU time and visited vertices.

It is worth to note that (i) the number of visited vertices
may be greater than the size of graph |G.V| since a vertex
may be visited several times by network expansions from
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different expansion centers; (ii) the CPU time is not fully
aligned with the number of visited vertices. To prune the
search space, the collective cluster search algorithm needs
more computational effort to maintain its bounds. In some
cases, the increased computation cost may offset the benefits
of the reduction in the number of visited vertices.

5.3 Effect of Cluster Size Threshold z.s

Fig. 6 presents the performance of the algorithms with vary-
ing cluster size threshold 7.s. Since the total number of spa-
tial objects is fixed, a higher cluster size threshold means
fewer “qualified” clusters. The sparser the cluster (center
point) distribution, the larger the required search space, and
thus the performance of query processing may decrease. In
Fig. 6, the CPU time and the number of visited vertices for
all three algorithms increase as the cluster size threshold
increases. From Fig. 6, it is clear that the CPU time and the
number of visited vertices required by SF search are 5-10
times higher than those needed by the collective search
algorithm. In addition, the expansion-center selection strat-
egy can further enhance the efficiency by a factor of 2-4 in
terms of both CPU time and the number of visited vertices.

5.4 Effect of Cluster Radius Threshold z.r

Next, we vary the cluster radius thresholds 7.r. With a fixed
value of cluster size threshold, a larger cluster radius thresh-
old leads to more “qualified” clusters. Intuitively, the
denser the cluster (center point) distribution, the smaller the
required search space, and thus the queries are expected to
be faster. In Fig. 7, the CPU time and the number of visited
vertices for all three algorithms decrease as the cluster
radius threshold increases. The collective search outper-
forms spatial-first search and collective search without the
expansion-center selection strategy by factors of 5-10 and 2-
4, respectively, in terms of both CPU time and the number
of visited vertices.
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5.5 Effectof \

Parameter ) is used to adjust the relative importance of the
distance and density. In the extreme case where A\ = 1, the
PNC query is conducted in the spatial domain only. And
when A\ = 0, density is the sole factor considered. Fig. 8
shows the performance of the three algorithms for different
values of A. For both collective search algorithms, it is clear
that the search effort (CPU time and visited vertices)
required in the spatial domain is higher than that required
in the density domain. For the spatial-first algorithm, the
increasing importance of the spatial domain improves the
pruning effectiveness of its bounds; thus, the CPU time and
number of vertices decrease with the increasing value of A.
In fact, the spatial-first algorithm uses the bounds in the
spatial domain to prune the search space in both the spatial
and density domains. With the increasing value of A, the
PNC query is becoming an increasingly spatial query, and
the pruning effectiveness of its bounds is improved. When
A =1, spatial-first search is equal to the collective search
without the expansion-center selection strategy.

5.6 Effectofk

Fig. 9 shows the effect of varying parameter & on the perfor-
mance of the three algorithms with the default settings.
Intuitively, a larger value of k leads to a larger search space,
and the CPU time and the number of visited vertices are
expected to be higher for all three algorithms. The collective
algorithm has a clear advantage over other two algorithms.
It outperforms the SF algorithm and the “collective without
v-s” algorithm by factors of 5-10 and 2-4, respectively, in
terms of both CPU time and the number of visited vertices.

5.7 Scalability

To study the scalability of the developed algorithms, we
conduct experiments on the North America Road Network
(NRN),” which contains 175,813 vertices and 179,179 edges.
For each vertex p in NRN, we generate the number of spatial
objects attached to it, and we maintain this number as one of
its attributes. There are a total of 1,000,000 generated spatial
objects. Fig. 10 shows the effect of query route length on the
performance of the three algorithms with the default set-
tings. It is clear that collective algorithm is capable of com-
puting the PNC query on large spatial data sets in
interactive time.

6 RELATED WORK

Nearest Neighbor queries aim to find objects near a query
location and constitute fundamental functionality in spatial
data management. NN query processing may occur in dif-
ferent settings, including in euclidean spaces (e.g., [7], [16],
[26], [27], [28], [36]), in spatial networks (e.g., [19], [20], [21],
[26], [34]), in indoor spaces (e.g., [41]), and in higher dimen-
sional spaces (e.g., [9], [18]).

Existing trajectory queries (route queries) come in two
general forms. In the trajectory-to-point category, queries
aim to find spatial objects closest to a query route (trajec-
tory) according to some distance metric. For example, the
in-route nearest neighbor (IRNN) query (e.g., [35], [42]) is

9. http://www.cs.utah.edu/lifeifei/SpatialDataset.htm
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designed for travelers following a fixed route. The IRNN
query finds the facility (e.g., a gas station) with the mini-
mum detour distance from the fixed route, the assumption
being that a traveler will return to the original route after
visiting the nearest facility. The path nearest neighbor query
(e.g., [6], [29], [32], [33]) is an extension of the IRNN query
that maintains an up-to-date path nearest neighbor result as
the user is moving along a predefined route. In the trajec-
tory-to-trajectory category, queries aim to find trajectories
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with the highest similarity to a query trajectory (e.g., [30],
[31], [45], [46]). A trajectory similarity function may contain
spatial, temporal, and textual elements. For example, the
UOTS query [30] and the OATSQ query [45] have spatial
and textual elements, and the PTM query [31] has spatial
and temporal elements. Both curve similarity and location
proximity are taken into account in the spatial and temporal
domains, and textual similarity is considered in the textual
domain. There also exist other trajectory and path planning
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studies, including safest path planning [1], trajectory-based
destination prediction [38], [39], trajectory-based travel time
estimation and fastest path planning [43], and route recom-
mendation under uncertainty [17].

Unlike the existing studies, the path nearby cluster query
belongs to a trajectory-to-cluster category. It aims to find
clusters with high spatial-object density and located near a
query route. Existing solutions fail to solve the PNC query
due to four reasons. First, PNN considers only spatial dis-
tance, while PNC balances the importance of spatial-object
density and spatial distance. Second, PNN only supports
network shortest paths as a query argument, while PNC
can tackle arbitrary types of query routes. Third, in PNC, a
linear combination method (e.g., [5], [8]) is used to combine
the spatial and density elements, and a distance-and-den-
sity evaluation score is defined correspondingly; thus, PNC
is also different from skyline queries (e.g., [3], [24], [40]),
and existing skyline techniques cannot be used here. Fourth,
PNC finds clusters with the highest density, while existing
online clustering methods (e.g., DBScan [11]) formulate
clusters based on an estimated density distribution (.e.,
they find clusters whose densities are higher than the
estimated density); thus, they are not suitable for PNC
query processing.

7 CONCLUSIONS AND FUTURE DIRECTIONS

We propose and investigate a novel problem, the path
nearby cluster query, of finding path nearby clusters in spa-
tial networks. This query is designed to discover regions of
potential interest, and we believe that it is useful in scenar-
ios such as trip planning and location recommendation. To
compute the query efficiently, a collective cluster search
algorithm was proposed. A pair of upper and lower bounds
were developed to prune the search space effectively.
Finally, the performance of PNC query processing was
investigated by means of extensive experiments on real and
synthetic spatial data.

Two interesting directions for future research exist. First,
it is of interest to study a continuous counterpart of the
PNC query (continuous-PNC). Assume that a traveler is
moving along a specified route and that the target is to mon-
itor the path nearby clusters with the traveler’'s movement.
The new challenge lies in finding a set of update locations
along the query route. Second, it is of interest to consider an
additional textual element for the PNC query, where spatial
objects are associated with textual attributes. The PNC
query then aims to find clusters of specified web objects,
such as clusters of sightseeing places, close to a given travel
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route. Existing collective search algorithm can be extended
to support the spatial, textual, and density domains, and the
difficulty lies in how to schedule the search processes in
these domains effectively.
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