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Abstract—With the advances in geo-positioning technologies and location-based services, it is nowadays quite common for road

networks to have textual contents on the vertices. Previous work on identifying an optimal route that covers a sequence of query

keywords has been studied in recent years. However, in many practical scenarios, an optimal route might not always be desirable. For

example, a personalized route query is issued by providing some clues that describe the spatial context between PoIs along the route,

where the result can be far from the optimal one. Therefore, in this paper, we investigate the problem of clue-based route search

(CRS), which allows a user to provide clues on keywords and spatial relationships. First, we propose a greedy algorithm and a dynamic

programming algorithm as baselines. To improve efficiency, we develop a branch-and-bound algorithm that prunes unnecessary

vertices in query processing. In order to quickly locate candidate, we propose an AB-tree that stores both the distance and keyword

information in tree structure. To further reduce the index size, we construct a PB-tree by utilizing the virtue of 2-hop label index to

pinpoint the candidate. Extensive experiments are conducted and verify the superiority of our algorithms and index structures.

Index Terms—Spatial keyword queries, clue, point-of-interest, travel route search, query processing
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1 INTRODUCTION

WITH the rapid development of location-based services
and geo-positioning technologies, there is a clear

trend that an increasing amount of geo-textual objects are
available in many applications. For example, the location
information as well as concise textual descriptions of some
businesses (e.g., restaurants, hotels) can be easily found in
online local search services (e.g., yellow pages). To provide
better user experience, various keyword related spatial
query models and techniques have emerged such that the
geo-textual objects can be efficiently retrieved. It is common
to search a Point-of-Interest (PoI) by providing exact
address or distinguishable keyword (i.e., only few PoIs con-
tain the keyword) in a region which can uniquely pinpoint
the location. For example, we type the address “73 Mary St,
Brisbane” or the name “Kadoya” on Google Maps to find a
Japanese restaurant in the CBD area. Some existing work
[1], [2], [3], [4], [5], [6] extends such query to more sophisti-
cated settings, such as retrieving a group of geo-textual

objects (usually more than 2) or a trajectory covering multi-
ple keywords. However, it is not uncommon that a user
aims to find a PoI with less distinguishable keyword such
as “restaurant”, but she can only provide more or less spa-
tio-textual context information around the PoI. Liu et al. [7]
formalize such context information as clues and use them to
identify the most promising PoIs. Different with their work,
we aim to find a feasible route on road networks by using
clues. Particularly, in this paper, we investigate a novel
query type, namely clue-based route search (CRS), which
allows a user to provide clues on textual and spatial context
along the route such that a best matching route w.r.t. the
clues is returned. More specifically, a CRS query is defined
over a road network G, and the input of the query consists
of a source vertex vq and a sequence of clues, where each
clue contains a query keyword and a user expected network
distance. A vertex contains a clue keyword is considered as
a match vertex. The query returns a path P in G starting at
vq, such that (i.) P passes through a sequence of match verti-
ces (PoIs) w.r.t. the clues and (ii.) the network distances
between two contagious matched vertices are close to the
corresponding user specified distance such that the user’s
search intention is satisfied.

1.1 Application Scenarios
The existing solutions (e.g., [8], [9], [10]) for trip planning or
route search problem are dealing with the scenarios when a
user wants to visit a sequence of PoIs, each of which con-
tains a user specified keyword. Different optimization con-
straints are proposed, and the goal is to find an optimal
route with minimum cost. In general, the cost can be of vari-
ous different types, such as travel distance, time or budget.
However, to the best of our knowledge, none of the existing
solutions (e.g., [8], [9], [10]) on trip planning or route search
can be applicable for solving CRS queries since the optimi-
zation needs to be conducted based on the clues. As an
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extension of traditional route search queries, CRS query can
also be useful in many real scenarios.

Modeling Imprecise User Intention. The clue is typically
based on observations that 1) the keywords of PoIs in the
clue may be interchangeable or inexact terms (e.g., a user
may think of a PoI being canteen whereas it may be referred
to as a restaurant); 2) the spatial relationships between PoIs
are approximate, which is a natural phenomenon for human
to estimate distance. For example, if the distance between
two PoIs in the clue is about 100 meters, the actual distance
may be noticeably greater than or less than 100 meters. Con-
sider a scenario in our daily life: a user wants to find a restau-
rant in a city visited many years ago. She cannot remember
the exact name and address but she still recalls that on the
way driving to the restaurant from her home, she passed a
cafe at about 1 km away, and drove about another 2 km to
reach the restaurant. The information given above usually
cannot precisely locate a PoI, but intuitively it provides clues
to identify themost likely PoIs along the route.

Increased Flexibility in Trip Planning. As mentioned before,
most existing work aims to find an optimal route with mini-
mum travel distance. However, in many real scenarios, such
an optimal routemight not always be desirable. For instance,
a user may have some personalized requirements on the dis-
tances between PoIs when planning a trip. Consider such a
scenario, a user wants to find a buffet restaurant and a
nearby cinema only in walking distance, say 3km, thus he
can watch a movie after dinner. Therefore, after having deli-
cious food, he can walk to the cinema in order to maintain a
healthy lifestyle. These personalized requirements make the
route search become distance-sensitive and more flexible
such that the distance between PoIs along the route should
be as close as possible to the user specified distance.

Clue-Based Route Navigation. Given a description includ-
ing textual and distance information on an expected route,
it is still not direct-viewing enough for users to obtain the
exact route. This is usually the case when a user wants to
know the way for a specific place and asks the others for
help, she may still not be able to exactly figure out the route
after obtaining the answers from them, where the answer
usually comes in the form, for example, “go straight on the
way for about 100 meters, you will see a cafe, and turn right,
you will arrive the Japanese restaurant after about 150
meters walk”. Therefore, a novel type of route search which
automatically interprets the clues contained in such answers
becomes necessary. By augmenting it on current navigation
services, a better user experience can be provided.

1.2 Challenge
In order to process the CRS query efficiently, we need to
overcome several challenges. The first challenge is con-
cerned with the large amount of possible routes for valida-
tion. Basically, the CRS requires candidate vertices that
contain query keywords in the route to comply a specific
order defined in query. As a feasible path is supposed to
cover all the query keywords, the number of feasible paths
increases exponentially with the amount of clues. Therefore,
a greedy approach to solve our query is proposed, which
continuously finds the next candidate vertex with minimum
matching distance. Unfortunately, the optimal result can be
substantially different from what the greedy algorithm sug-
gests. Then, we propose a dynamic programming algorithm
to answer CRS query exactly, but it requires quadratic time
and is not scalable especially for more frequent keywords.

To avoid unnecessary route search, we develop a branch-
and-bound algorithm which adopts filter-and-refine para-
digm, thus much fewer feasible paths are considered.

The second challenge is how to quickly locate candidate
vertices in road networks. Given a query vertex u, the match-
ing distance between u and its next candidate v is supposed to
be smaller or equal to a threshold. The network expansion
approach can be applied here, but it is inefficient due to exces-
sive network traversals. Therefore, we propose a novel index
structure, called AB-tree, which stores both keyword and dis-
tance information in each node. On top of it, the candidate w.
r.t. a query clue can be quickly retrieved. The third challenge
is how to reduce the index construction time and space. As
AB-tree involves an all-pair matrix computation and has a
space cost ofOðjV j2Þ, we propose a PB-tree to further improve
the performance. Inspired by the 2-hop label [11], [12], which
answers distance queries with a small label index, we modify
the structure of original label index to construct a binary tree
on each pivot. In addition, we propose a semi-dynamic mech-
anism for PB-tree to support the index updating.

1.3 Contribution
The principal contributions of this paper can be summa-
rized as follows.

� We propose a greedy clue search algorithm (GCS) to
answer the CRS query approximately with no index
involved. In GCS, we adopt the network expansion
approach to greedily select the current best candi-
date at each step to construct feasible paths.

� We also develop a clue-based dynamic program-
ming algorithm (CDP) that attempts to enumerate
all feasible paths and finally returns the optimal
result. In CDP, distance oracle is used to compute
the network distance between candidates.

� We further propose a branch-and-bound algorithm
(BAB) by applying filter-and-refine paradigm such
that only a small portion of vertices are visited, hence
improves the search efficiency. In order to quickly
locate the candidate vertices, we develop AB-tree and
PB-tree structures to speed up the tree traversal, as
well as a semi-dynamic index updating mechanism
to keep the indexmaintainable when growing bigger.

� Our experimental evaluation demonstrates the effi-
ciency of our algorithms and index structures for proc-
essing the CRS queries on real-world datasets. We
show the superiority of our algorithms in answering
CRSwhen comparedwith the baseline algorithms.

The remainder of this paper is organized as follows. We
first formulate the problem of clue-based route searchCRS in
Section 2. Then we propose a greedy algorithm GCS in Sec-
tion 3 to answer CRS approximately. Section 4 presents a
clue-based dynamic programming algorithm CDP to return
exact answer toCRS query. Efficient branch-and-bound algo-
rithm BAB is introduced in Section 5, as well as two index
structures AB-tree and PB-tree. Section 6 presents a semi-
dynamic mechanism for proposed index structure. Section 7
reports the experimental observations, and Section 8 reviews
the relatedwork. Finally, Section 9 concludes the paper.

2 PROBLEM STATEMENT

We model a road network as a weighted undirected graph
G ¼ ðV;EÞ, where V is the set of vertices and E is the set of
edges. Each vertex v 2 V contains a set of keywords,
denoted as FðvÞ. Each edge ðu; vÞ 2 E has a positive weight,
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i.e., length or travelling time on the edge, denoted as eðu; vÞ.
Given a path between vertices u and v, denoted as
Pðu; . . . ; vÞ, the length is the sum of weights of all edges
along the path. For any two vertices u and v, the network
distance between u and v on G, denoted as dGðu; vÞ, is the
length of the shortest path SPðu; vÞ between u and v. The
notations used in this work is summarized in Table 1.

2.1 Problem Definition

Definition 1 (Clue). A clue is defined as mðw; d; �Þ, where w is
a query keyword, d is a user defined distance, and � 2 ½0; 1� is a
confidence factor.

Definition 2 (Match). Given a source vertex u and a clue
mðw; d; �Þ, we say that the vertex pair sðu! vÞ is a match w.r.
t. clue m, if the vertex v contains clue keyword w and the net-
work distance between u and v is in ½dð1� �Þ; dð1þ �Þ�, i.e.,
w 2 FðvÞ and dGðu; vÞ 2 ½dð1� �Þ; dð1þ �Þ�.

Definition 3 (Feasible Path). We define a clue-based route
query Q ¼ ðvq; CÞ where C is a sequence of clues denoted as C ¼
fm1ðw1; d1; �1Þ; . . . ;mkðwk; dk; �kÞg. Given a queryQ, if we find

(i) a sequence of vertices v0; v1; . . . ; vk where v0 ¼ vq and
sðvi�1 ! viÞ is a match w.r.t. mi for i 2 ½1; k�;

(ii) a path P starts from v0 and passes v1; . . . ; vk one by
one;

(iii) each subpath Pðvi�1; . . . ; viÞ of P is the shortest path
SPðvi�1; viÞ for i 2 ½1; k�.

We call such P a feasible path, denoted as FPðvq;
v1; . . . ; vkÞ.

Definition 4 (Matching Distance). The matching distance
between a clue mðw; d; �Þ and its match sðu! vÞ in G, denoted
as dmðm; sÞ, is computed by d and the network distance
dGðu; vÞ, such that

dmðm; sÞ ¼ jdGðu; vÞ � dj
� � d : (1)

It is worth noting that any monotonic increasing function that
normalizes the matching distance into ½0; 1� can be applied here.
The matching distance between C and its feasible path FP

is defined as the maximum matching distance between all
cluesm 2 C and their correspondingmatches s 2 FP, that is

dmðC;FPÞ ¼ max
mi2C;si2FP

dmðmi; siÞ: (2)

The motivation of using Equation (2) is that the maxi-
mum matching distance of all the clues naturally controls

the overall matching quality of the feasible path, which is a
widely adopted method for the problem optimizing an
objective score contributed by several components [5], [6].

Clue-Based Route Search. Given a clue-based route search
Q ¼ ðvq; CÞ, it aims to find a feasible path FPðvq; v1; . . . ; vkÞ,
such that dmðC;FPÞ is minimized.

The clues in CRS implies that we are supposed to find a
feasible path whose distances between twomatch vertices are
as close as possible to user specified distance such that the
user’s search intention is satisfied. It is worth noting that the
CRS query can be easily extended to have a destination by
assuming that the query keyword contained in destination is
unique within G. In addition, for simplicity, we only discuss
the optimal feasible path in this paper, but the algorithms
introduced can be easily extended to find top-k feasible paths.

Example 1. Given Q ¼ ðv1; fðw2; 5; 0:5Þ; ðw1; 4; 0:5Þ; ðw3; 6; 0:5ÞgÞ,
thus both FP1ðv1; v3; v6; v7Þ and FP2ðv1; v3; v4; v7Þ are fea-
sible paths with dmðC;FP1Þ ¼ 0:4 and dmðC;FP2Þ ¼ 0:5
respectively. Therefore, FP1 is reported as the result of
CRS.

2.2 Preliminary: Distance Oracle
We adopt the idea of distance oracle DO to calculate the net-
work distance between two input vertices. Given a source-tar-
get pair of vertices, DO returns the shortest network distance
between them. As we know, the algorithms and data struc-
tures onDO have been extensively studied by existing works,
which can be roughly summarized into two categories, expan-
sion-based methods and lookup-based methods. The most
famous expansion-based method for DO is Dijkstra’s algo-
rithm [13], which, given a s-t pair in road networkG, traverses
the vertices in G from s to t. However, the problem of using
Dijkstra’s algorithm is that it must visit every vertex that is
closer to s, and the number of such unneeded vertices can be
enormouswhen s and t are far apart, which incurs redundant
network traversal. Besides, the lookup-basedmethods usually
have to store some precomputed results. For example, all-pair
method is space inefficient that we have to precompute and
store a distance matrix, which requiresOðn2Þ space for a road
networkGwith n vertices. To the best of our knowledge, one
of the most notable recent developments is the emergence of
practical 2-hop labelingmethods [11], [12], [14], [15] for DO on
large networks. It constructs labels for vertices such that a dis-
tance query for any vertex pair u and v can be answered by
only looking up the common labels of u and v. For each vertex
v, we precompute a label, denoted as LðvÞ, which is a set of
label entries and each label entry is a pair ðo;hv;oÞ, where
o 2 V and hv;o ¼ dGðv; oÞ is the distance between v and o. We
say that o is a pivot in label entry if ðo;hv;oÞ 2 LðvÞ. Given two
vertices u and v, we can find a common pivot o that
ðo;hu;oÞ 2 LðuÞ and ðo;hv;oÞ 2 LðvÞ

dGðu; vÞ ¼ minfhu;o þ hv;og: (3)

We say that the pair ðu; vÞ is covered by o and the distance
query dGðu; vÞ is answered by o with smallest hu;o þ hv;o.
Therefore, we can compute dGðu; vÞ in OðjLðuÞj þ jLðvÞjÞ
time by using a merge-join like algorithm.

3 GREEDY CLUE SEARCH ALGORITHM

We develop a greedy algorithm as a baseline for answering
theCRS query,which is calledGreedyClue Search algorithm.
Given a query Q ¼ ðvq; CÞ, we first add vq into a candidate
path. Then we use the Procedure findNextMinðÞ to determine

TABLE 1
Summary of Notations

Notation Definition

G ¼ ðV;EÞ Road network with vertex V and edge E
Pðu; . . . ; vÞ A path from u to v
FPðu; . . . ; vÞ A feasible path from u to v
dGðu; vÞ Network distance between u and v in G
mðw; d; �Þ A clue with w, d and �
sðu! vÞ Amatch from u to v
dmðm; sÞ Matching distance between m and s
dmðC;FPÞ Matching distance between C and FP
LðvÞ 2-hop label of v
BT ðvÞ Binary tree of vwith keyword and distance
PRðoÞ Pivot-based reserve label of vertex o
PBðoÞ Binary tree of pivot o
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the next match vertex v1 that the matching distance between
m1 and s1ðvq ! v1Þ, i.e., dmðm1; s1Þ, is minimized. Afterwards,
we insert v1 into the candidate path, and continue to find its
contagious candidate by findNextMinðÞ. This process is
repeated until all the match vertices are determined, thus the
candidate path forms a feasible path, denoted as FPvq . If we
assume Procedure findNextMinðÞ costs time f , then the time
complexity ofGCS isOðk � fÞ.

In Procedure findNextMinðÞ, we utilize the network
expansion algorithm [16] to find the nearby vertices that
contain the query keywords and the network distances are
in the confidence intervals. The algorithm details are shown
in Algorithm 1. Given the source u, and the clue mðw; d; �Þ,
we aim to find a match vertex v such that the difference
between dGðu; vÞ and d is minimized. In the network tra-
versal starting from u, we check every visited vertex to see
if it is a match vertex that contains w and locates in the inter-
val ½dð1� �Þ; dð1þ �Þ�. If v is the first visited match vertex
and dGðu; vÞ > d, then we stop and return v since the differ-
ence incurred by the remaining unvisited vertices cannot be
less than dGðu; vÞ � d. Otherwise, we continue to find the
next match vertex v0. If v0 is found, then

(i) If dGðu; v0Þ � d, we update v by v0 since v0 renders a
smaller difference than v;

(ii) Otherwise, we compare d� dGðu; vÞwith dGðu; v0Þ� d
and return the smaller one as the result.

Example 2. In running example Fig. 1, we are given CRS
query Q ¼ ðv1; fðw2; 5; 0:5Þ; ðw1; 4; 0:5Þ; ðw3; 6; 0:5ÞgÞ. First,
we fetch v1 into the candidate path, and call
findNextMinðv1; w2; 5; 0:5Þ and return v3 with dm ¼ 0:4.
Therefore, we repeat the process and finally obtain
FPv1 ¼ ðv1; v3; v4; v7Þ with dmðC;FPv1Þ ¼ 0:4. Therefore,
we have FPgcs ¼ FPv1 and dmðC;FPgcsÞ ¼ 0:4.

Algorithm 1. Procedure findNextMinðÞ
Input: Source vertex u and clue mðw; d; �Þ
Output: minfdmðm; sÞg and match vertex v
1 From u, do network traversal;
2 if a match vertex v is found then
3 dG  the network distance between u and v;
4 while true do
5 Find next v0 contains w, thus obtain d0G;
6 if dG < d and d0G > d then
7 break;
8 else
9 v v0 and dG  d0G;
10 returnminfdmðm; sÞg and v;

4 CLUE-BASED DYNAMIC PROGRAMMING

ALGORITHM

As we know, even though GCS has a short response time,
the accuracy of the answer cannot be guaranteed. To achieve
better accuracy, we propose an exact algorithm, called Clue-
based Dynamic Programming, to answer the CRS query.
Generally, it is challenging to develop an efficient exact algo-
rithm for CRS queries, since we cannot avoid exhaustive
search for PoIs in road networks. For instance, the number of
vertices that contain keyword wi 2 C is denoted as jVwi

j, thus
the time complexity of the brute-force approach, which
attempts all possible combinations, isOðQwi2C jVwi

jÞ.
In CDP, we construct a keyword posting list for each key-

word w, which is a list of vertices that contain w. When a

CRS query is issued, we sort the posting lists according to
the keyword order of wi 2 C. Note that the order of the verti-
ces within each posting list does not matter and can be arbi-
trary, hence are sorted by vertex id for simplicity. It is easy
to see that these posting lists actually construct a k-bipartite
graph G0, which in fact shows all feasible paths for a given
C. The weight of each edge in G0 is computed as the match-
ing distance. Specifically, for each u 2 Vwi

, we define
Dðwi; uÞ to denote the minimum matching distance one can
achieve with a walk that passes the keywords from w1 to wi

consistent with the order in C and stops at u. In other words,
the weight of vertex u 2 G0 is computed by Dðwi; uÞ, which
is the minimum matching distance of all partial feasible
paths end at u. Then we compute Dðwi; uÞ by the following
recursive formula:

(i) i ¼ 1: for match vertices u 2 Vw1
, we have

Dðwi; uÞ ¼ dmðmiðwi; diÞ; sðvq ! uÞÞ:
(ii) i > 1: for match vertices v 2 Vwi�1 and u 2 Vwi

, we
have

Dðwi; uÞ ¼ min
v2Vwi�1

fmaxfDðwi�1; vÞ; dmðmi; sðv! uÞÞgg: (4)

Algorithm 2. Clue-Based Dynamic Programming CDP

Input:Q ¼ ðvq; C ¼ fðw1; d1Þ; . . . ; ðwk; dkÞgÞ
Output: FPcdp with dmðC;FPcdpÞ
1 for each u 2 Vw1

do
2 InitialDðw1; uÞ;
3 for 1 < i � k do
4 for each u 2 Vwi

do
5 Initial intermediate vector ivðuÞ;
6 for each v 2 Vwi�1 do
7 if dmðmi; sðv! uÞÞ < Dðwi�1; vÞ then
8 ivðuÞ insert Dðwi�1; vÞ;
9 else
10 ivðuÞ insert dmðmi; sðv! uÞÞ;
11 Dðwi; uÞ  minfivðuÞg
12 FindminfDðwk; uÞg;
13 return FPcdp and dmðC;FPcdpÞ  minfDðwk; uÞg;

For each iteration, we have at most jVwi�1 j � jVwi
j combina-

tions, thus the time required is OðPk
i¼2 jVwi�1 j � jVwi

jÞ. The
details ofCDP are shown in Algorithm 2. In order to compute
Dðwi; uÞ, we have to access the posting list of wi�1. For each
vertex v in this list, we first check if sðv! uÞ is a match w.r.t.
mi and then compute dmðmi; sðv! uÞÞ. Then we compare it
with Dðwi�1; vÞ, and keep the greater one as intermediate
value. Finally, we find the minimum one as Dðwi; uÞ from
these jVwi�1 j intermediate values. After we recursively process

Fig. 1. Running example of G.
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all the keywords, we finally find the minimum Dðwk; uÞ and
backtrace the corresponding vertices that constructFPcdp.

In each iteration, we have a clue miðwi; diÞ, therefore we
have to compute dGðu; vÞ between each u 2 Vwi

and its
precedents v 2 Vwi�1 as prerequisites for determining
dmðmi; sðv! uÞÞ. Here we adopt the distance oracle intro-
duced in Section 2.2 to compute dGðu; vÞ.
Example 3. As shown in Fig. 2, given CRS query
Q ¼ ðv1; fðw2; 5; 0:5Þ; ðw1; 4; 0:5Þ; ðw3; 6; 0:5ÞgÞ. To compute
Dðw3; v7Þ, we first compare Dðw1; v4Þ ¼ 0:4 with dmðm3;
sðv4 ! v7ÞÞ ¼ 0, and obtain intermediate value 0.4. Like-
wise, we have Dðw1; v6Þ ¼ 0:5 and dmðm3; sðv6 ! v7ÞÞ ¼
0:33, thus the intermediate value is 0.5. Therefore, CDP
returns FPcdp ¼ ðv1; v3; v4; v7Þwith dmðC;FPcdpÞ ¼ 0:4.

5 BRANCH AND BOUND ALGORITHM

Although CDP provides an exact solution, the search effi-
ciency cannot be maintained. For instance, consider the
worst case, we assume that all vertices contain query key-
words, then the time is Oðk � jV j2Þ. To propose a more effi-
cient algorithm, we assume there is an artificial directed
graph G0, which is similar to the k-bipartite graph in CDP
that formed by all candidate vertices containing keywords
in C, where the edge of G0 is a match of one clue and in the
meantime its direction complies the keyword order of the
clue. Note that, G0 is organised into k levels, and each level i
corresponds to each keyword wi. Based on G0, we develop a
Branch-and-Bound algorithm to search G0 in a depth-first
manner by applying the filter-and-refine paradigm, which
only visits a small portion of vertices in G0. Fortunately, we
can use the result of GCS to speed up the search process
since it can serve as an initial upper bound.

5.1 Algorithm Outline
We start the searching from level 1 to k to obtain a feasible
path FP, if the matching distance dmðC;FPÞ is greater than
the current upper bound, we continue to search for the next
candidate feasible path, otherwise we update the upper
bound. It is worth noting that it is not necessary to go
through every candidate feasible path. If the matching dis-
tance at intermediate level already exceeds the upper
bound, it can be removed. This process terminates when the
matching distance next to be processed at level 1 can be fil-
tered, since it is impossible to find a feasible path with
smaller match distance.

Candidate Feasible Path Updating. Initially, we keep a stack
to store the partial candidate path, which contains a
sequence of vertices and corresponding matching distances.
First, we fetch vq into the stack, then we continue to find next
candidate at level 1. Basically, the key component of this
algorithm is to quickly locate the next best match vertex, and

the details of Procedure findNextðÞ will be introduced later.
Given a partial candidate path FPðvq; v1; . . . ; viÞ obtained at
level i, we apply findNextðÞ to find the next candidate viþ1 at
level iþ 1. Once viþ1 is found, we compute diþ1m ðviþ1Þ which
denotes the matching distance at level iþ 1 resulted by viþ1,
and compare it with current UB. Note that, viþ1 is accepted
as a candidate and inserted into the stack if and only if its
matching distance diþ1m ðviþ1Þ is smaller than UB. Otherwise,
vi is removed from the stack aswell as dimðviÞ. In otherwords,
vi is not valid that the pathFPðvq; v1; . . . ; vi�1Þ cannot survive
by passing vi, then we have to find an alternative v0i. As we
know vi is the current best candidate at level i, therefore we
have to relax the matching distance by finding v0i where
dimðviÞ � dimðv0iÞ and dimðv0iÞ is minimum among all the rest
vertices untouched at level i. Afterwards, if v0i is valid, we
continue to apply findNextðÞ on it.

Upper Bound Updating. Specifically, after we obtain a feasi-
ble path FPðvq; v1; . . . ; vk�1Þ at level k� 1, if vk is returned by
findNextðÞ, then we check if dkmðvkÞ exceeds UB. If vk is not
valid, we prune vk and simply repeat the above process. Oth-
erwise, we insert vk into the stack, and a complete feasible
path is determined. Hence, FPðvq; v1; . . . ; vkÞ is regarded as a
temporary result, and UB is updated by the minimummatch-
ing distance among all dimðviÞs. It is easy to see that, we cannot
find a better feasible path by alternating vk with v0k at level k,
since no further level is available to make up the relaxation
caused by v0k. Therefore, in addition to remove vk, we continue
to remove vk�1 from the stack and repeat the above process.

In general, the pruning happens from the lower levels to
the higher levels, i.e., from level k to level 1. In the end, at
level 1, if the matching distance induced by the next candi-
date vertex is greater than UB, it is impossible to find
another feasible path, thus the stack becomes empty after
the last vertex vq is removed, and this process terminates.

Example 4. In the running example, given query Q ¼ ðv7;
fðw1; 6; 0:5Þ; ðw2; 4; 0:5Þ; ðw4; 5; 0:5ÞgÞ. First we fetch v7 into
the stack, and findNextðÞ returns v4 with d1mðv4Þ ¼ 0. Then
we insert v4 into stack and continue to find next candidate
vertex, and v3 is obtainedwith d2mðv3Þ ¼ 0. The process con-
tinues and thenwe have v1 with d3mðv1Þ ¼ 0:4. As the size of
stack is same as the number of query keywords, a feasible
path FP ¼ ðv7; v4; v3; v1Þ with dmðC;FPÞ ¼ 0:4 is obtained,
and UB is updated by 0.4. Next, we remove v1 and v3 from
the stack, and continue to find next candidate of v4. As
d2mðv3Þ ¼ 0, we relax the matching distance and call
findNextðÞ which returns v8 with d2mðv8Þ ¼ 0:5. Then we
have to remove v4 from the stack since d2mðv8Þ already
exceeds current upper bound UB. Now we move on to
apply findNextðÞ on v7 and returns v6 with d1mðv6Þ ¼ 0:33.
However, the next candidate v3 has d2mðv3Þ ¼ 0:5 greater
than UB, thus we remove v6 and v7 from stack. Therefore,
the algorithm terminates since no other feasible path exists.
We haveFPbab ¼ ðv7; v4; v3; v1Þwith dmðC;FPbabÞ ¼ 0:4.

5.2 All-Pair Distance Approach
In BAB, the Procedure findNextðÞ is applied on vi�1 to find
the next candidate vertex vi. We can simply use Proce-
dure findNextMinðÞ in GCS to locate the next candidate,
but it is inefficient due to redundant network traversal espe-
cially when di 2 mi is large. Moreover, when we prune vi and
attempt to find alternative v0i, it is easy to see findNextMinðÞ
cannot be directly applied. Therefore, we propose an All-pair
Binary tree (AB-tree) index to improve the search efficiency.

Fig. 2. Matching distances of CDP:
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Algorithm 3. Branch and Bound BAB

Input: Q ¼ ðvq; CÞ
Output: FPbab with dmðC;FPbabÞ
1 Initialize stackV, stackD, and search threshold u;
2 Push vq into stackV;
3 while stackV is not empty do
4 i stackV.size();
5 if findNext(vi�1; di; wi; u) = true then
6 Obtain vi and dimðviÞ;
7 u  0:0;
8 Push vi into stackV and dimðviÞ into stackD;
9 if i equals to k then
10 ifmaxfstackDg <¼ UB then
11 Update UB bymaxfstackDg;
12 Update FPbab by stackV;
13 Update u by top of stackD;
14 Update stackV and StackD;
15 else
16 Update u by top of stackD;
17 Update stackV and StackD;
18 return FPbab and dmðC;FPbabÞ  UB;

5.2.1 All-Pair Binary Tree

Given a vertex u, we aim to find a vertex v containing key-
word w such that the matching distance between sðu! vÞ
and query clue m is slightly greater than and closest to a
threshold u among all vertices containing w in G. Note that,
the threshold u is settled by previous filtered candidate at
the same level with v, and it is 0 at initial stage. In other
words, we are supposed to find the vertex v that the differ-
ence between dGðu; vÞ and d 2 m is close to u � d. To this end,
we construct AB-tree as follows.

For each v 2 V , we construct a binary tree BT ðvÞ that con-
tains the information of network distances and keywords.
After the all-pair distance matrix is obtained, for each v, we
have a list of vertices sorted in ascending order of network
distance to v. By utilizing the tree structure, the vertices in the
list are divided into fragments that the network distances w.r.
t. v of the vertices in the same fragment are close to each other,
which speeds up the looking up for vertices by network dis-
tance. In addition, the keyword information within each frag-
ment is also stored in BT ðvÞ such that the vertices containing
query keyword in a fragment can be efficiently retrieved.

We utilize a hash function H that maps keywords and
vertices to a binary code with h bits. For each keyword w,
one of its h bits in HðwÞ is set to 1. Hence, the binary code of
a vertex v is the superimposition of HðwÞ for all w it con-
tains, i.e., HðvÞ ¼ _w2FðvÞHðwÞ. Likewise, for a set of vertices
S,HðSÞ is the superimposition ofHðvÞ that v 2 S. It is worth
to note that a non-zero value of HðwÞ ^HðSÞ indicates that
there may exist a vertex v 2 S containing w, and HðwÞ^
HðSÞ ¼ 0 means w is definitely not contained by any v 2 S.
BT ðvÞ is actually a Bþ-tree with fanout f ¼ 2. Each leaf
node contains the information of a vertex u with both the
network distance dGðu; vÞ and binary code HðuÞ stored. For
a non-leaf node, it also keeps a routing element, which
equals the maximum network distance of its left subtree.
Therefore, BT ðvÞ is constructed recursively in bottom-up
manner as shown in Fig. 3a.

Storing BT ðvÞ in an Array. As we know, storing the tree
structure as an array enables a better performance than stor-
ing pointers. Therefore, we propose a scheme to sequentially
store all nodes ofBT ðvÞ in an array from nodes on height 0 to

the root, as shown in Fig. 3b. In addition to this array, we also
keep an auxiliary array that indicates the number of nodes in
each level of BT ðvÞ, by which we can quickly determine the
indices of the subnodes of a non-leaf node, or the index of its
parent node, in the array. For example, if we want to find the
left and right subnodes of node 16 in BT ðv4Þ, we know there
are two nodes on its left side by 16� 14 ¼ 2 where 14 is the
start index of nodes at height 2, so the index of its left subnode
is 9þ 2 � 2 ¼ 13 and the right is 9þ 2 � 2þ 1 ¼ 14. However,
we notice 14 is actually at height 2, thenwe figure out node 16
does not have a right subnode.

Lemma 1. Given G ¼ ðV;EÞ, the space cost of AB-tree is
OðjV j2 � hÞ.

Proof. For each v 2 V , we have jV j elements in distance
matrix, thus each BT ðvÞ has an index size OðjV j � hÞ. It is
easy to see the size of AB-tree is OðjV j2 � hÞ. tu

5.2.2 Predecessor and Successor Queries on AB-Tree

After the construction of AB-tree, we discuss how to use it so
that the next vertex in candidate path can be quickly located.
Initially, if there is no previous vertices accessed at the next
level of vi�1, the network distance dGðvi�1; viÞ between vi�1
and next candidate vi is supposed to be smaller or equal to
lD ¼ di, or greater or equal to rD ¼ di, where di 2 mi.

Additionally, consider the aforementioned scenario, we
have FPðvq; v1; . . . ; viÞ, but viþ1 returned at level iþ 1
exceeds UB. Then we have to remove vi from the stack and
turn to find v0i as alternative, where dimðviÞ � dimðv0iÞ. It is
easy to see the difference between dGðvi�1; v0iÞ and di must
be greater or equal to dimðviÞ � di. In other words, the network
distance dGðvi�1; v0iÞ is smaller or equal to lD or greater or
equal to rD, where

lD ¼ di � dimðviÞ � di;
rD ¼ di þ dimðviÞ � di;

we have dGðvi�1; v0iÞ � lD or dGðvi�1; v0iÞ � rD:

(5)

Therefore, the predecessor and successor queries can be
issued on BT ðvi�1Þ to retrieve next candidate with two
boundary network distances lD and rD, respectively.

Predecessor Query. Given BT ðuÞ, a query keyword w and
network distance lD, we aim to find vertex v that contains w

Fig. 3. Overview of all-pair binary tree, with illustration of the two compo-
nents: (a) Example of BT ðv4Þ. (b) Storing in array.
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and dGðu; vÞ is smaller or equal to and closest to lD. First, we
compute binary code HðwÞ for query keyword w. Then we
start the process of searching BT ðuÞ recursively from top to
bottom. For a non-leaf node o, ifHðwÞ ^HðoÞ is non-zero, we
continue to search its subtrees. If lD is smaller than the routing
element of o, only its left subtree needs to be considered. Oth-
erwise, we first check if we could find v in its right subtree (if
exists), if not, we turn to search its left subtree. For a leaf node
v, we directly check if v contains w and dGðu; vÞ is smaller or
equal to lD, therefore, false positives can be avoid. Finally, v is
obtained. For example, a predecessor query on BT ðv4Þ with
keyword w2 and lD ¼ 4. First, we have Hðw2Þ ¼ 00010. The
search starts from root, and as lD equals to the routing ele-
ment 4, thus we first search its right subtree. After checking
Hðw2Þ with binary code of Node 18, we find it does not con-
tainw2 andwe turn to searchNode 17. As the routing element
of Node 17 is smaller than lD, we move to search Node 15.
Then we check Hðw2Þ with the binary code in Node 12, and
find Node 12 does not contain w2. After checking with Node
11, we have v3 as result of the predecessor query.

Successor Query. Likewise, we have BT ðuÞ, a query key-
word w and network distance rD, the goal is to find vertex v
that contains w and dGðu; vÞ is greater or equal to and closest
to rD. For a non-leaf node o, if HðwÞ ^HðoÞ is non-zero, the
subtrees of o need to be considered. If rD is smaller or equal
to the routing element of o, we search the left subtree to see
if v could be found, if not, we turn to search the right subtree
(if exists). Otherwise, we simply search the right subtree (if
exists) to locate v. For a leaf node v, if v contains w and
dGðu; vÞ is greater or equal to rD, v is reported as result. For
example, a successor query on BT ðv4Þwith keyword w2 and
rD ¼ 4. We first check the root with Hðw2Þ ¼ 00010, and rD
equals to the routing element, which means we first search
Node 17 to see if it contains w2, then search Node 18. As the
routing element of Node 17 is smaller than rD, we only
need to check Node 15. Then, since the routing element of
Node 15 is same as rD, we turn to search Node 11. Finally,
we obtain v3 as result of the successor query.

As mentioned before, we process a predecessor and a suc-
cessor queries on BT ðvi�1Þ with lD and rD respectively to
locate candidate at level i. If both predecessor and successor
queries find candidate vertices, we compare their matching
distance and report the smaller one as result. If only one of
them finds candidate vertex, we directly report it. Otherwise,
no candidate is found. Note that, in the process to replace vi
with v0i, we must skip vi in the tree traversal to avoid infinite
loop caused by the special case dimðviÞ ¼ dimðv0iÞ.
Lemma 2. The expected number of nodes visited in a predecessor

or successor query on AB-tree is Oðlog jV j�jW j�jFðV ÞjjV j�h�jVwk
j Þ.

Proof. AssumeW is the keyword set ofG and the keywords
are evenly distributed. The hash function maps each key-
word w 2W to a binary code with h bits based on its
modulus, which might lead to false positives. We denote

the average number of conflicting keywords as jW jh and

the average keyword frequency as favg ¼ jFðV ÞjjV j . Therefore,
the probability of false positive can be computed as

p ¼ 1� jV j�h�jVwk j
jW j�jFðV Þj. When encountering a false-positive at

the leaf node, the predecessor query traces back from the

right subtree and continues to search the left subtree to

find another leaf node. In this case, Oðlog jV jÞ tree nodes

will be visited for each trace back at the worst case. The
algorithm terminates when it reaches a true positive.

Hence, the expected number of trace backs is equivalent

to the expected number of false positives before a true

positive, which is 1
1�p ¼ jW j�jFðV ÞjjV j�h�jVwk

j. In total, the expected

number of tree nodes visited in a predecessor query is

Oðlog jV j�jW j�jFðV ÞjjV j�h�jVwk
j Þ. Assume the time cost for ^ operation on

two h length hash codes is OðhÞ, thus the time of search-

ing AB-tree is Oðlog jV j�jW j�jFðV ÞjjV j�h�jVwk
j Þ �OðhÞ. tu

Example 5. In the running example, given query
Q ¼ ðv7; fðw1; 6; 0:5Þ; ðw2; 4; 0:5Þ; ðw4; 5; 0:5ÞgÞ, assume we
already have stack ðv7; v4; v3Þ. At level 2, we intend to
remove v3 and find an alternative. Given d2mðv3Þ ¼ 0, we
apply a predecessor and successor queries on BT ðv4Þ. For
the predecessor query, we take ðw2; 4; 0:5Þ and 0.0 as
input. As v3 is previous result, we skip it and return v8.
For the successor query, no vertex is found. Therefore, we
report v8 as our next candidate with d2mðv8Þ ¼ 0:5.

Algorithm 4. Procedure findNextðÞwith AB-Tree

Input: Query vertex vi�1, clue wi and di, threshold u

Output:Next candidate vi with dimðviÞ
1 Obtain BT ðvi�1Þ;
2 lD di � di � u; rD di þ di � u;
3 vp and dp  BT ðvi�1Þ:predecessorðlD; wiÞ ;
4 vs and ds  BT ðvi�1Þ:successorðrD; wiÞ ;
5 if di � dp � ds � di then
6 return vp with dmðvpÞ;
7 else
8 return vs with dmðvsÞ;

Procedure Predecessor(lD;w;Node)
1 ifNode is a leaf node then

2 Obtain vp and dp of current node;

3 if vp contains w and dp � lD then

4 return vp and dp;

5 else

6 return false;

7 else

8 GenerateHðwÞ;
9 ifHðwÞ ^HðNodeÞ ¼ 0 then

10 return false;
11 if lD < Node:routing then
12 lNode index of its left subnode;
13 return Predecessor(lD; w; lNode);
14 else
15 rNode index of its right subnode;
16 lNode index of its left subnode;
17 if rNode exists then
18 if Predecessor(lD;w; rNode);
19 then
20 return vp and dp
21 else
22 return Predecessor(lD; w; lNode);
23 return Predecessor(lD; w; lNode);

5.3 Keyword-Based Label Approach
Even though AB-tree is able to answer findNextðÞ query fast,
the index space cost is still high and could only be stored in
disk, which results in undesired I/O consumption. In this
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section, we introduce a main memory based index struc-
ture, namely Pivot reverse Binary tree (PB-tree), to deal
with findNextðÞ query.

5.3.1 Pivot Reverse Binary Tree

As introduced in Section 2.2, we know 2-hop label possesses
the nature to process distance queries between any two verti-
ces in network with fast response time, whilst keeping the
size of the generated label index as small as possible. The
problem of reducing label size is orthogonal to our work, thus
we fully utilize the state-of-the-art results to build a small
index in this work. As we know, in 2-hop label, the distance
between any vertex pair ðu; vÞ can be computed correctly
through a common pivot o, in other words, each vertex u can
reach any other vertex v in network through a pivot o. There-
fore, based on this intuition, we modify the structure of origi-
nal 2-hop label to construct a pivot reverse index, i.e., PR index
[17] which stores all label entries ðo;hv;oÞ 2

S
v2V LðvÞ regard-

ing vertex o as pivot into the PR label of vertex o, i.e.,
ðv;hv;oÞ 2 PRðoÞ. In PRðoÞ, we assume that all the label entries
ðv;hv;oÞ are sorted in ascending order of distance. For exam-
ple, we have ðv3; 0Þ 2 Lðv3Þ and ðv3; 4Þ 2 Lðv1Þ. Through the
transformation,we havePRðv3Þ ¼ fðv3; 0Þ; ðv1; 4Þg.

In order to find vertex by keyword and distance informa-
tion, each PRðoÞ is organized as same as the binary tree
mentioned before, thus forms PBðoÞ. The structure is shown
in Fig. 4, it is worth to note that any network distance
dGðu; vÞ is divided into two parts, the first part dGðu; oÞ
between u and its pivot o can be found in LðuÞ, and the
other part dGðo; vÞ between pivot o and target v can be found
in PBðoÞ. Therefore, combined with original label index
whose label entries are also sorted in ascending order by
network distance, PB-tree could be used to answer prede-
cessor and successor queries more efficiently than AB-tree
with a much smaller size.

Lemma 3. Given G ¼ ðV;EÞ and label index LðvÞ for all v 2 V ,
the space cost of PB-tree is OðjLj � hÞ.

Proof. For each v 2 V , we have jLðvÞj label entries, thus
each PBðvÞ has an index size OðjLðvÞj � hÞ. It is easy to see
the size of PB-tree is OðjLj � hÞwhere jLj is the size of label
index. tu

5.3.2 Predecessor and Successor Queries on PB-Tree

With the construction of PB-tree, we discuss the predecessor
and successor queries on top of it. Given PBðvi�1Þ, we aim
to find candidate vi that contains wi and dGðvi�1; viÞ is
smaller or equal to lD, or greater or equal to rD. As we
know, dGðvi�1; viÞ can be divided into two parts dGðvi�1; oÞ
and dGðo; viÞ. Therefore, straightforwardly, we can apply
predecessor and successor queries on PBðoÞ for each pivot
o 2 Lðvi�1Þ with two bound network distances lDo and rDo,
respectively. Therefore, for dGðo; viÞ,

lDo ¼ lD� dGðvi�1; oÞ;
rDo ¼ rD� dGðvi�1; oÞ;

we have dGðo; viÞ �lDo or dGðo; viÞ � rDo:

(6)

For each PBðoÞ, we are supposed to obtain a temporary can-
didate. Through comparison, we can finally find the next
candidate vertex vi.

Fortunately, it is worth to note that we are not necessarily
to access all PBðoÞs to process predecessor and successor

queries. Basically, we know dimðviÞ must not exceed upper
bound matching distance, therefore current UB can be uti-
lized to prune the search space. That is to say, vi could only
be found if dGðvi�1; viÞ is greater or equal to lB, or is smaller
or equal to rB

lB ¼ di � di � UB;
rB ¼ di þ di � UB;

we have dGðvi�1; viÞ � lB or dGðvi�1; viÞ � rB:

(7)

Particularly, for each PBðoÞ, the bound distances can be
computed as

lBo ¼ lB� dGðvi�1; oÞ;
rBo ¼ rB� dGðvi�1; oÞ:

(8)

Therefore, the search space can be narrowed down into
½lBo; lDo� and ½rDo; rBo�. For current pivot o being processed,
if we have rB < dGðvi�1; oÞ, we are impossible to find a can-
didate in PBðoÞ since rBo is negative. In other words, the
network distance between vi�1 and any vertex in PBðoÞ is
definitely greater than rB thus is not qualified. As we know,
the pivots in Lðvi�1Þ are sorted in ascending order of net-
work distance, the rest pivots o0 after o do not need to be
considered since they have even greater network distances
to vi�1 than o. Therefore, the process terminates.

Predecessor and Successor Queries.Given PBðoÞ, a query key-
word w and two network distance bound ranges ½lBo; lDo�
and ½rDo; rBo�, we aim to find a temporary candidate vertex
in PBðoÞ. In particular, the difference between AB-tree and
PB-tree is that, given a query vertex u, any target v only
shows up once in ABðuÞ, but it might appear in multiple
PBðoÞs. Moreover, if we find a candidate v in PBðoÞ,
dGðu; oÞ þ dGðo; vÞ is not necessarily equal to dGðu; vÞ since the
network distance can only be calculated by the pivot with
minimum distance summation. Therefore, we use original
label index to check if Pðu; . . . ; o; . . . ; vÞ is the shortest path
SPðu; vÞ. As mentioned before, if rB � dGðvi�1; oÞ, we first
apply a successor query on PBðoÞ. After we obtain a tempo-
rary vertex vtmp locates in ½rDo; rBo�, we check if o is on the
shortest path SPðvi�1; vtmpÞ by comparing dGðvi�1; vtmpÞ with
dGðvi�1; oÞ þ dGðo; vtmpÞ. If so, vtmp is reported as a temporary
successor result on PBðoÞ. Otherwise, we update rDo by
dGðo; vtmpÞ and continue to apply a new successor query. This
process is repeated until we find a result. After successor
query, we compare dGðvi�1; oÞ with lD to determine if we
need to apply a predecessor query on PBðoÞ. Based on the
same intuition, if lD � dGðvi�1; oÞ, the predecessor query is
applied in a similar approach as successor query. Finally, we
compare the results of predecessor and successor queries, and
obtain the temporary candidate found in PBðoÞ. It is worth to

Fig. 4. Overview of pivot reverse binary tree.
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note that we can further narrow down the search space by
updating lB and rB. That is, after processing pivot o, if we
find a temporary candidate vtmp, lB can be updated by
dGðvi�1; vtmpÞ and rB by 2 � di � lB, which benefits the proc-
essing of rest o0.

Lemma 4. The expected number of nodes visited in a predecessor
or successor query on PB-tree is Oðlog jLjjV j � jW j�jFðV ÞjjV j�h�jVwk

jÞ.
Proof. According to the proof in Lemma 2, the expected

number of false positives before a true positive is

1
1�p ¼ jW j�jFðV ÞjjV j�h�jVwk j. As we know, the height of each PB-tree is

log jLjjV j. Therefore, expected number of nodes visited in a

predecessor or successor query on PB-tree is

Oðlog jLjjV j � jW j�jFðV ÞjjV j�h�jVwk jÞ. Given that ^ operation on two h length

hash codes costs OðhÞ, thus the time of searching PB-tree

is Oðlog jLjjV j � jW j�jFðV ÞjjV j�h�jVwk jÞ �OðhÞ. tu
Example 6. In the running example, given query
Q ¼ ðv7; fðw1; 6; 0:5Þ; ðw2; 4; 0:5Þ; ðw4; 5; 0:5ÞgÞ, assume we
already have stack ðv7; v4; v3Þ. At level 2, we intend to find
the next candidate. Initially, u is set as 0.0, therefore we
have lD ¼ rD ¼ 5. As current UB ¼ 0:4, we have lB ¼ 4
and rB ¼ 6. As shown in Fig. 4, we first check PBðv3Þ
with dGðv3; v3Þ ¼ 0. Then we have lDv3 ¼ rDv3 ¼ 5,
lBv3 ¼ 4 and rBv3 ¼ 6. A successor query is applied and
no vertex is found, and a predecessor query returns v1.
As dGðv3; v1Þ ¼ 4 does not exceed lBv3 , v1 is taken as the
temporary result for pivot v3. Then we continue to search
PBðv4Þ with lDv4 ¼ rDv4 ¼ 1, lBv4 ¼ 0 and rBv4 ¼ 2 but
no vertex is found, neither in PBðv6Þ. Finally, we report v1
with d3mðv1Þ ¼ 0:4.

6 DYNAMIC MAINTENANCE

In this section, we discuss how to maintain the PB-tree for
road network updating. To avoid recomputing the index
structure from scratch, we propose a semi-dynamic mecha-
nism to adjust the PB-tree with a low overhead. As we
know, PB-tree is built based on label index, thus the updat-
ing is divided into two phases, the updating of label index
and the updating of PB-tree. Instead of recomputing a new
label index, [18] introduces a dynamic label index scheme
for distance queries on time-evolving graphs, and we adopt
the algorithm for the first phase label index updating.

6.1 Semi-Dynamic Index Structure
Basically, we have 4 operations to update the network: insert a
new vertex with an edge connecting to an existing vertex,
delete a vertex with only one edge, insert an edge and delete
an edge. As the deletion operation is much harder than inser-
tion, and it seems impossible to find an efficient approach to
support deletion in label generation.Moreover, it is rare to see
deletion happens in road networks, thus we only take inser-
tion into consideration. As the newly updated vertex is iso-
lated, its label can be viewed as an empty set. Inserting a new
vertex can be easily done by inserting an edge connecting to it,
thus we only need to focus on edge insertion. As keyword
updating is easy to implement, thuswe omit it here.

Label Index Updating. Assume we insert an edge ða; bÞ into
G, some shortest paths in old network may change by pass-
ing ða; bÞ. Based on the label generation algorithm, we do
not have to remove outdated distances in label but resume
BFSs of affected vertices and add new label entries into

index. It is worth to note that only the pivots in LðaÞ and
LðbÞ are affected by network updating, and it suffices to
conduct resumed BFSs originally rooted at pivot vk if
vk 2 LðaÞ [ LðbÞ. Different with previous pruning method, a
prefixal pruning method is proposed to apply in BFS with a
new parameter k, where k is the vertex ordering of vk. The
prefixal method is to answer the distance query between vk
and u from the pivots in LðvkÞ \ LðuÞ whose vertex order-
ings are at most k. Interested readers can refer to [18] for
algorithm details.

Algorithm 5. Procedure findNextðÞwith PB-Tree

Input: Query vertex vi�1, clue wi and di, threshold u

Output:Next candidate vi with dimðviÞ
1 lD di � di � u; rD di þ di � u;
2 lB di � di � UB; rB di þ di � UB;
3 for each pivot o 2 Lðvi�1Þ do
4 Obtain PBðvi�1Þ, lDo, rDo, lBo and rBo;
5 if dGðvi�1; oÞ > rB then
6 break;
7 else
8 rDo  rD� dGðvi�1; oÞ;
9 while PBðvi�1Þ:succðrDo; wiÞ and dGðo; vtmp rÞ � rBo

do
10 Obtain vtmp r;
11 if dGðvi�1; vtmp rÞ 6¼ dGðvi�1; oÞ þ dGðo; vtmp rÞ then
12 rDo  dGðo; vtmp rÞ;
13 else
14 Obtain temp suc result on PBðoÞ;
15 break;
16 if dGðvi�1Þ < lD then
17 lDo  lD� dGðvi�1; oÞ;
18 while PBðvi�1Þ:predðlDo; wiÞ and dGðo; vtmp lÞ � lBo

do
19 Obtain vtmp l;
20 if dGðvi�1; vtmp lÞ 6¼ dGðvi�1; oÞ þ dGðo; vtmp lÞ

then
21 lDo  dGðo; vtmp lÞ;
22 else
23 Obtain temp pre result on PBðoÞ;
24 break;
25 if di � dGðvi�1; vtmp lÞ � dGðvi�1; vtmp rÞ � di then
26 lB dGðvi�1; vtmp lÞ; rB 2 � di � lB;
27 vi  vtmp l;
28 else
29 rB dGðvi�1; vtmp rÞ; lB 2 � di � rB;
30 vi  vtmp r;
31 return vi with dimðviÞ;

Pivot-Based Forest. To propose a semi-dynamic index
structure, we present a general framework to convert PB-
tree into pivot-based forest (PF), which is inspired by the
logarithmic method [19]. Given PBðoÞ with m label entries,
we divide it into l ¼ blogmc þ 1 partitions P0; . . .Pl�1. Each
partition Pi either has 2i label entries or is empty. We first
compute a l-bit binary value of m. Interestingly, whether Pi

is empty or not is determined by the ith bit, if ith bit is 0
then Pi is empty. For non-empty Pi, we follow the method
introduced in Section 5.2.1 to construct a binary tree PF ðoÞi
on these 2i label entries. Finally, all these binary trees
together form the pivot-based forest structure.

PF Index Updating. After label index updating, we add
new label entries or rewrite distances of existing label entries.
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Assumewe add a new label entry ðv; dGðo; vÞÞ into PBðoÞ, we
first find the smallest i such that PF ðoÞi is empty. If i equals
to 0, we simply build PF ðoÞ0 with only one label entry
ðv; dGðo; vÞÞ. Otherwise, we union all label entries of
PF ðoÞo; . . . ; PF ðoÞi�1, together with ðv; dGðo; vÞÞ, into PF ðoÞi.
It is worth to note that PF ðoÞi now has 2i elements and
PF ðoÞo; . . . ; PF ðoÞi�1 become empty. As we know, the label
entries in original PBðoÞ are sorted in ascending order of dis-
tance. In PF ðoÞ, we do not consider the global distance order
but instead consider a local order in each PF ðoÞi when we
rebuild the index. To rewrite distances of existing label
entries, we only need to update the PF ðoÞi they belong to.

Query Processing on PF Index.Given query vertex vi�1 and a
clue mðwi; diÞ, we introduce how to answer findNextðÞ on PF
index. As we know, both the predecessor and successor
queries are decomposable. Therefore, we simply apply the
predecessor and successor queries on all non-empty PFðoÞi.
Fortunately, it is not necessary to process queries on all
PFðoÞis. If the query distance is smaller than the minimum
network distance stored in PF ðoÞi, the predecessor query is
not required,where the similar case holds for successor query.
Finally, we merge these intermediate results to obtain the
result.

7 EXPERIMENTS

In this section, we conduct extensive experiments on real
road network datasets to study the performance of the pro-
posed index structures and algorithms.

7.1 Experimental Settings
All these algorithms introduced in this paper were imple-
mented in GNU C++ on Linux and run on an Intel(R) CPU
i7-4770@3.4 GHz and 32 G RAM.

Datasets. We use two real datasets, the road network data-
sets of Beijing and New York City from the 9th DIMACS
Implementation Challenge.1 Each dataset contains an undi-
rected weighted graph that represents a part of the road net-
work. The weight of each edge in a graph represents the
distance between two endpoints of the edge. We obtain the
keywords of vertices from the OpenStreetMap.2As shown in
Table 2, for D1 in Beijing, we have 168,535 vertices and

196,307 edges. We also have 88,910 distinct keywords con-
tained by vertices with the total occurrence 1,445,824. For D2
in New York, we have more vertices and edges than D1 in
road network with almost twice the size of D1, and the num-
ber of keywords contained is larger thanD1 as well.

Algorithms. We evaluate the performance of three algo-
rithms, greedy clue search algorithm, clue-based dynamic
programming algorithm and branch-and-bound algorithm.
In CDP, we use two different distance oracles DO to com-
pute network distance, i.e., all-pair and 2-hop label. In BAB,
we evaluate the performances of three index structures, i.e.,
AB-tree, PB-tree and PF.

Parameter Settings. We randomly generate 100 queries for
each set of experiment and measure their performance by
average. To evaluate the algorithms under various settings,
we vary the value of some parameters in the query to study
the performance, as shown in Table 3. For default settings, we
choose 16 K for dataset cardinality (the number of vertices), 4
for the number of clues in query, and 64 for hash code length.

We assume a keyword at most shows up once in a vertex,
thus the frequency of a keyword w is the number of vertices
that contain w, i.e., jVwj. The statistics of keyword frequency
are shown in Table 4, which demonstrates the percentages
of keywords with different frequencies. In the query, the
keyword frequencies, the average distances and the confi-
dence factors � in clues are randomly generated. More spe-
cifically, assume the average keyword frequency for
evaluation is jVwj, thus the keyword frequencies we chose in
a clue are in the range ½0:9 � jVwj; 1:1 � jVwj�, which is the sim-
ilar case with average distance and average �.

7.2 Performance Evaluation
Table 5 shows the performance comparison of proposed
algorithms and index structures on query time, index size
and index construction time. The construction time of all-
pair and 2-hop label, which have been studies by existing
works, are excluded in our performance comparison. For
the query time evaluation, it is easy to see that BAB well
outperforms GCS and CDP. Besides, applying all-pair in
CDP has a shorter response time but a larger space cost
than utilizing 2-hop label, and using PB-tree in BAB has a
better performance than using AB-tree and PF. For index
size and construction time, label based approaches have a
much smaller size and less time than all-pair based
approaches. As NY has a larger size than BJ, more time and

TABLE 2
Statistics of Dataset

Beijing New York

#jV j 168,535 264,346
#jEj 196,307 733,846
#jW j 88,910 102,450
#jFðV Þj 1,445,824 3,086,166

TABLE 4
Statistics of Keyword Frequency on Beijing Dataset

Frequency � 10 50 100 500 1,000 5,000 10,000
Percentage (%) 9.72 4.55 3.35 2.25 1.11 0.82 0.61

TABLE 5
Performance of Proposed Algorithms and Index Structures on

QT (Query Time), IS (Index Size), and IT (Index Time)

Algorithm QT (ms) IS (GB) IT (min)

BJ NY BJ NY BJ NY

GCS 14.02 32.17 - - - -

CDP Allpair 223.81 223.75 106.1 260.6 - -
Label 612.72 693.42 0.51 0.78 - -

BAB AB-tree 120.84 153.92 856 2,104 1,045 2,569
PB-tree 76.12 93.27 2.1 3.21 2 3.1

PF 89.86 106.14 2.2 3.36 2 3.4

TABLE 3
Parameter Settings

Parameters Values

Dataset cardinality 4 K, 8 K, 12 K, 16 K
The number of clues 2, 3, 4, 5, 6, 7, 8
h bits hash code 32, 64, 128, 256, 512
Average Keyword frequency 10, 50, 100, 500, 1,000, 5,000, 10,000
Average distance (km) 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
Average confidence factor 0:2, 0.4, 0.6, 0.8, 1.0

1. http://www.dis.uniroma1.it/challenge9/download.shtml
2. https://www.openstreetmap.org
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space costs are required. For the rest experiments, we only
demonstrate the performance on BJ due to the space limit,
where the performance on NY is similar to that on BJ.

7.2.1 Accuracy Measurement of GCS

Fig. 5 shows the accuracy measurement of GCS by varying
the parameters in the query, such as the number of clues,
average keyword frequencies, expected distances and �. We
study the accuracy by two criteria: the matching ratio Amatch

and hitting ratio Ahit

Amatch ¼ dmðC;FPgcsÞ
optimal matching distance dmopt

:

Amatch is the ratio of estimated matching distance of GCS on
the optimal matching distance. A smaller Amatch means a
better accuracy

Ahit ¼ jFPgcs \ FPoptj
jCj :

Ahit focuses on the percentage of match vertices in FPgcs

contained by the optimal feasible path FPopt. A greater Ahit

means a better accuracy.
As we can see in Fig. 5, when we enlarge the parameters,

Amatch increases as the result of GCS becomes more inaccu-
rate; and Ahit decreases, as less match vertices in optimal
feasible path are hit. Both these two criteria becomes less
sensitive when the keyword frequency gets larger than 500
in Fig. 5b. Moreover, Ahit keeps steady in Figs. 5c and 5d
since GCS is not sensitive to average distance and �.

7.2.2 Query Efficiency Measurement

Effect of the Keyword Hash Code Length h. In this set of experi-
ments, we study the effect of keyword hash code length h on
performance of AB-tree, PB-tree and PF index structures. As
shown in Fig. 7, the pivot-based indices well outperform AB-
tree on index construction time, index size and query time.
The space of AB-tree is OðjV j2 � hÞ and PB-tree is OðjLj � hÞ.
Whenwe enlarge h, both the index size and construction time
linearly increase. For query time, there are more false

positives in tree traversal when h is small, however, the bit
operation costs less time than larger h, which is the case when
h is set to 64 comparing with higher values. When we set h to
32, even though we have less bit operation costs, the number
of false positives increases such that the query time increases.

Effect of the Dataset Cardinality. Let us take Beijing dataset
for example, we randomly extract 5 subgraphs with equal
number of vertices from the original Beijing road network
where the performance is measured by average for each
experiment. For each subgraph, the connectivity and key-
word information of each vertex are kept the same as the
original road network. In this set of experiments, we vary
the size of these subgraphs to study the performance of pro-
posed algorithms and index structures, as shown in Fig. 8.
Obviously, the index size and construction time increase
when we enlarge the size of datasets. It is worth to note that
the size of AB-tree increases exponentially with the number
of vertices, and the sizes of PB-tree and PF increase gently
especially when the size is enlarged from 120 to 160 K due
to the property of 2-hop label. For the query time, the BAB
algorithm outperforms CDP by a large margin.

Effect of the Number of Clues. In this set of experiments,
Fig. 6a shows the performance of algorithms by increasing the
number of clues inCRS query. Not surprisingly, the response
time increaseswhenwe enlarge the number of clues of all pro-
posed algorithms. For GCS, the response time increases
gently since only more rounds of network expansion are
induced. For CDP, when we enlarge the number of clues,
more iterations are triggered for the computation. For BAB,
the number of candidate vertices and feasible paths increase
thus takesmore computation time.

Effect of the Average Frequency of Keywords. In this set of
experiments, we study the performance of algorithms by
varying the frequency of query keywords, as shown in
Fig. 6b. It suffices to say that for low frequency keywords, say
the frequency less than 500, it is more efficient if we adopt
CDP with all-pair, and for high frequency keywords, BAB
with PB-tree has a much better performance on both response
time and index size. This is because, forCDP, there are not too
many combinations to consider if the frequency is low, but
when we enlarge the frequency, the response time increases

Fig. 5. Accuracy of GCS:

Fig. 6. Query time.
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exponentially to the frequency. For BAB, there are lots of false
positives if the frequency is low, andwhenwe enlarge the fre-
quency, the performance becomes much better since we can
quickly locate the candidate by using PB-tree.

Effect of the Average Expected Distance. In this set of experi-
ments, we study the effect of average expected distance on the
performance of proposed algorithms, as shown in Fig. 6c. As
we know,we apply the network expansion algorithm inGCS,
which makes it sensitive to the expected distance. When the
distance increases, more vertices are involved that results in
more computation cost. For CDP with all-pair or label index,
they both have a small dependency on the query distance.
Therefore, the computation time of CDP keeps almost steady
as the distance increases. For BAB, the effect is still not obvi-
ous but if the distance is small, we are supposed to find the
next candidate more quickly since there are only a small por-
tion of vertices after filtered by distance.

Effect of the Average �. In this set of experiments, we study
the effect of average � on the performance of proposed algo-
rithms, as shown in Fig. 6d. When we enlarge the average �,
more match vertices are considered as candidates, thus the
time costs of CDP and BAB increase. For GCS, we can do
less network traversal to find the current best match vertex,
so the query time reduces when we enlarge �.

Evaluation of Index Updating. Here we evaluate the cost of
index updating in Table 6. It is easy to observe that the aver-
age update time cost is much smaller than reconstruction the
index from scratch. The cost comes from two parts, the
updating of label index and updating of PF. For each update,
we only have to update a very small number of pivot forest
structures, that is, the semi-dynamic update is done locally.

8 RELATED WORK

In this section, we introduce two lines of related work, top-k
spatial keyword search and travel route search.

8.1 Top-k Spatial Keyword Search
Searching geo-textual objects with query location and key-
words has gained increasing attention recently due to the
popularity of location-based services. In Euclidean space, IR2-
tree [20] integrates signature files andR-tree to answer boolean
keyword queries. IR-tree [21] is an R-tree augmented with
inverted files that supports the ranking of objects based on a
score function of spatial distance and text relevancy. Cao et al.
[22] proposes a location-aware top-k prestige-based text
retrieval (LkPT) query, to retrieve the top-k spatial web objects
ranked according to both prestige-based text relevance (PR)
and location proximity. Chen et al. [23] provides an all-round

survey of 12 state-of-art geo-textual indices and proposes a
benchmark that enables the comparison of the spatial key-
word query performance. Zhang et al. [6], [24] proposes them
closet keyword query (mCK query) which aims to find the
closest objects that match the query keywords and their dis-
tance diameter is minimized. Recently, Guo et al. [5] propose
approximation algorithms to solve the mCK query with a
ratio of ð 2ffiffi

3
p þ �Þ. Cao et al. [3] propose a collective spatial key-

word query, in which a different semantics is taken such that
the group of objects in the result covers the query keywords
and has the lowest cost. Li et al. [25] studies the problem of
direction-aware spatial keyword search, which aims at find-
ing the k nearest neighbours to the query that contain all input
keywords and satisfy the direction constraint. Rocha et al. [26]
address the problem of processing top-k spatial keyword
queries on road networks where the distance between the
query location and the spatial object is the length of shortest
path. ROAD [27] organizes the road network as a hierarchy of
subgraphs, and connects them by adding shortcuts. For each
subgraph, an object abstract is generated for keyword check-
ing. By using network expansion, the subgraphs without
intended object are pruned out. G-tree [28] adopts a graph
partitioning approach to form a hierarchy. Within each sub-
graph, a distance matrix is kept, and for any two subgraphs,
the distances between all borders of them are stored as well.
Based on these distances, it efficiently computes the distance
between query vertex and target vertices or tree nodes. Jiang
et al. [29] adopt 2-hop label for handling the distance query
for kNN problem on large networks, and facilitates KT index
to handle the performance issue of frequent keywords. Liu
et al. [7] formalize the spatio-textual context information of
the querying POI as clues and use them to identify the most
promising PoIs, which is closely related to our CRS problem.
Different with their work, we aim to find a feasible route on
road networks by using clues. In addition, the spatial distance
considered in our work is network distance so that the algo-
rithms in [7] can not be applied.

8.2 Travel Route Search
The travel route search problem has been substantially stud-
ied for decades. Traveling Salesman Problem (TSP) [30] is the

Fig. 7. Effect of the keyword hash code length h. Fig. 8. Effect of the dataset cardinality.

TABLE 6
Evaluation of Index Updating

Dataset Update time Updated pivots

Beijing 78 ms 3.6
NY 127 ms 5.7
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most classic problem in route planning. TSP aims to find the
round trip that has the minimum cost from a source point to a
set of targets. Li et al. [8] study the problem of Trip Planning
Query (TPQ) in spatial databases, where each object is associ-
ated with a location and a category. With a starting point S, a
destination E and a set of categoriesC, TPQ retrieves the best
trip that starts at S passes through at least one point from each
category, and ends atE. TPQ can be considered as a general-
ization of Travelling Salesman Problem (TSP), thus two
approximation algorithms are proposed. Sharifzadeh et al.
[10] studies the problem of optimal sequenced route (OSR),
which aims to find a route of minimum length starting
from a source point and passing through a number of
typed locations in a specific sequence imposed on the types
of the locations. They propose a LORD and R-LORD algo-
rithms to filter out the locations that cannot be in the opti-
mal route, thus improves the search efficiency. Chen et al.
[31] studies the problem of multi-rule partial sequence
route (MRPSR), which aims to find an optimal route with
minimum distance under some partial category order rules
defined in the query. They propose three heuristic algo-
rithms to search for near-optimal solutions for the MRPSR
query. Kanza et al. [32] proposes a greedy algorithm to
find a route whose length is smaller than a specified
threshold while the total text relevance of this route is
maximized. Kanza et al. [33] studies the problem of finding
a route that visits at least one satisfying entity of each type
in an interactive approach. In each step, a candidate is
given to user to provide a feedback specifying whether the
entity satisfies her. Yao et al. [34] studies the problem of
multi-approximate-keyword routing query, which comple-
ments the standard shortest path search with multiple key-
words and an approximate string similarity function. For
each keyword, the matching point is supposed to have an
edit distance smaller than a given threshold. Cao et al. [9]
defines the problem of keyword-aware optimal route
query, which is to find an optimal route such that it covers
a set of user-specified keywords, a specific budget con-
straint is satisfied, and the objective score of the route is
optimized. Li et al. [35] proposes two different solutions,
namely backward search and forward search, to deal with
the general optimal route query without a total order.
Zhang et al. [36] proposes the problem of personalized trip
recommendation, which aims to find the optimal trip that
maximizes users’ experiences for a given time budget con-
straint and also takes the uncertain traveling time into
consideration.

9 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we study the problem ofCRS on road networks,
which aims to find an optimal route such that it covers a set of
query keywords in a given specific order, and the matching
distance isminimized. To answer theCRS query,we first pro-
pose a greedy clue-based algorithmGCSwith no indexwhere
the network expansion approach is adopted to greedily select
the current best candidates to construct feasible paths. Then,
we devise an exact algorithm, namely clue-based dynamic
programming CDP, to answer the query that enumerates all
feasible paths andfinally returns the optimal result. To further
reduce the computational overhead, we propose a branch-
and-bound algorithm BAB by applying filter-and-refine para-
digm such that only a small portion of vertices are visited,
thus improves the search efficiency. In order to quickly locate
the candidate vertices, we develop AB-tree and PB-tree struc-
tures to speed up the tree traversal, as well as a semi-dynamic

index updating mechanism. Results of empirical studies
show that all the proposed algorithms are capable of answer-
ing CRS query efficiently, while the BAB algorithm runs
much faster, and the index size of PB-tree is much smaller
thanAB-tree.

Several directions for future research are promising. First,
users may prefer a more generic preference model, which
combines PoI rating, PoI averagemenu price, etc, in the query
clue. Second, it is of interest to take temporal information into
account and further extend the CRS query. Each PoI is
assigned with a opening hours time interval ½To; Tc�, and each
clue contains a visiting time t, where the resulting query aims
to find a path such that the time interval of each matched PoI
covers the visiting time. Third, requiring users to provide
exact keyword match is difficult sometimes as they are just
providing “clue”, which may be inaccurate in nature. Thus, it
is of interest to extend our model to support the approximate
keyword match. Hence, the matching distance can be modi-
fied by incorporating both spatial distance and textual dis-
tance together through a linear combination.
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