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Abstract—Graph Pattern Matching (GPM) has been used in lots of areas, like biology, medical science, and physics. With the advent
of Online Social Networks (OSNs), recently, GPM has been playing a significant role in social network analysis, which has been widely
used in, for example, finding experts, social community mining, and social position detection. Given a query which contains a pattern

graph G, and a data graph G, a GPM algorithm finds those subgraphs, G, that match G, in Gp. However, the existing GPM
methods do not consider the multiple end-to-end constraints of the social contexts, like social relationships, social trust, and social
positions on edges in G, which are commonly found in various applications, such as crowdsourcing travel, social network based e-
commerce, and study group selection, etc. In this paper, we first conceptually extend Bounded Simulation to Multi-Constrained
Simulation (MCS), and propose a novel NP-Complete Multi-Constrained Graph Pattern Matching (MC-GPM) problem. Then, to
address the efficiency issue in large-scale MC-GPM, we propose a new concept called Strong Social Component (SSC), consisting of
participants with strong social connections. We also propose an approach to identifying SSCs, and propose a novel index method and
a graph compression method for SSC. Moreover, we devise a multithreading heuristic algorithm, called M-HAMC, to bidirectionally
search the MC-GPM results in parallel without decompressing graphs. An extensive empirical study over five real-world large-scale
social graphs has demonstrated the effectiveness and efficiency of our approach.

Index Terms—Graph pattern matching, social graph

1 INTRODUCTION

1.1 Background
G RAPH Pattern Matching (GPM) has been widely used in
social network analysis [1], [2], [3], which is typically
defined in terms of subgraph isomorphism, in which, given a
data graph Gp and a pattern graph G as input, it answers
whether Gp contains a subgraph that is isomorphic to GJ.
However, as shown in [2], the conventional subgraph iso-
morphism problem is too strictly defined to find useful pat-
terns in real-world social graphs. Moreover, due to the NP-
complete time complexity, it is hard to apply graph isomor-
phism test to large-scale social graphs.
In order to address the above-mentioned issues in sub-
graph isomorphism, graph simulation [4] has been proposed
which has less restrictions but more capacity to extract more
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useful subgraphs with better efficiency. In contrast to sub-
graph isomorphism, graph simulation supports simulation
relations instead of exact match of vertices. In graph simula-
tion, a matching of an edge in a query graph could be a path
in a data graph, if the start vertex and the end vertex of the
path have the same label with the start vertex and the end
vertex of the edge respectively. Recalling Fig. 1, G¢; is not
isomorphic to G py, but it matches G'py via graph simulation
as B and C in G can be simulated to one out of B and C in
G py respectively. Graph simulation has been widely used in
structural index and website classification, but it still needs
to perform edge-to-edge mapping (e.g., the edges (A, B) and
(B, C) in the case of graph simulation in Fig. 1). This is still
too strict for some real applications that utilize the connectiv-
ity between vertex pairs via a path with arbitrary or pre-
defined lengths [5], [6] (e.g., path lengths 2 and 3 in G»).

To address this issue in graph simulation, Fan et al., [2]
proposed bounded simulation, wherein each vertex has a
label of a category, and each edge is labeled with either a
constant k£ or the =, illustrating the requirement of the
matching path length is no greater than k or no requirement
for the path length respectively. Graph matching in terms of
the bounded simulation maps edges in a pattern graph to
paths within bounded lengths in a data graph, instead of
edge-to-edge mappings in subgraph isomorphism and
graph simulation [2]. As shown in the example in Fig. 1,
G2 matches Gpi, Gps and Gp;z via bounded simulations.

1.2 Problem and Challenges
The bounded simulation based GPM only considers the
bounded path length of an edge when matching the edges,
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Fig. 1. Pattern graphs and data graphs.

which greedily finds the subgraph that has the minimal
diameter. However, social graphs have many social contexts
associated with vertices and edges, like the Contextual
Social Graph (CSG) [7], where each vertex has the social
role information in a specific domain (e.g., a professor in data
mining), and each edge has the social relationship between
participants (e.g., a father and his son) and the social trust
information between participants (e.g., Tom trusts Bob in
car repairing). In a variety of GPM based applications in
social graphs, e.g., traveller selection in crowd-sourcing
travel [8], study group selection (classroomsalon.com), and
the expert selection in social graphs [7], in addition to the
bounded path length, people are willing to incorporate the
constraints of the intimacy social relationship and social
trust between people in the identified subgraph in terms of
GPM in a CSG, which have significant influence on people’s
collaborations and decision making [9].

Example 1. Consider Gy3 and Gp, in Fig. 1, where in addi-
tion to the traditional graph structure, each edge in Gp, is
associated with two attributes: a; and a, that can represent
the social trust and the social relationships between people in
CSGs. In real applications on CSGs, the constraints of social
trust value and social intimacy can be specified between,
for example, a Project Manager A and an Assistant Manager
B to find a trustworthy team, or between two customers A
and B to help retailers find loyal customers in a social net-
work based CRM (Customer Relation Management) sys-
tem. In addition, the constraints of the social intimacy and
the social trust can be specified between a traveler A and an
accommodation provider B in crowdsourcing travel [8] to
find trustworthy travel groups, or between students in a
study group selection (classroomsalon.com) to find a trust-
worthy study group. In such multi-constrained graph pat-
tern matching, a path in Gp, is a match of (A, B) in Gs, if
the path length is no greater than 2, and the aggregated val-
ues of attribute a; and attribute a; must satisfy the multiple
constraints, i.e., a1 > ¢y and as > ¢ (¢; and ¢y are constants).

This example illustrates that a new type of Multi-
Constrained Simulation (MCS) [10] is significant in many
GPM based applications in social graphs. The relations
between these different GPM methods are shown in Fig. 2.
GPM with multiple constraints needs to match each vertex
with multiple constraints given in a query graph to a path
in a data graph, which covers the Multi-Constrained Path
(MCP) problem which is NP-Complete [11], [12]. The

1051

Graph Pattern Matching

~ N

Subgraph Isomorphism Graph Simulation

SO\

Bounded Simulation

Fig. 2. The relations between different types of GPM.

traditional bounded simulation based GPM method sup-
ports only one constraint, i.e., the bounded path length, in
matching. When facing multiple constraints on edges, it
has to enumerate all possible matchings of each constraint
and then find the intersections of the matchings, which is
very time consuming. The detailed discussions of the
drawbacks of the bounded simulation based GPM in MC-
GPM will be given in Section 7. In addition, the existing
methods for Regular Path Query (RPQ) in graphs [13], [14]
deliver a path between vertices with a specified regular
expression on the edges, where only one expression needs
to be satisfied for each query without considering a multi-
ple regular expressions for different attributes at the same
time, and thus cannot be applied into the MC-GPM. Our
previous algorithm HAMC [10] is an effectiveness and effi-
ciency method for answering the NP-Complete MC-GPM
query. However, as indicated in [15], [16], the less the sum
of the path lengths in a GPM result, the better the quality
of the result. HAMC did not consider the path length of
the returned result, and thus usually cannot deliver high
quality answer. Therefore, it is critical to develop an effec-
tive and efficient method to find high quality MC-GPM
result, i.e., the find the pattern graph with the minimal the
sum of the path length of all the edges, which subsumes
the classical NP-Complete multi-constrained optimal path
selection problem [11], and thus is NP-Complete as well.
Our contributions are summarized as follows.

1.3 Contributions

(1) We first propose a new notion of Multiple-
Constrainted Simulation. In contrast to its traditional
counterpart, the MCS based MC-GPM is to find a
graph pattern matching result, where each edge of
the matching graph satisfies both the bounded path
length and the multiple constraints on edges, which
can better support many emerging social network
based applications.

(2)  We then propose a concept called Strong Social Com-
ponent (SSC), which consists of participants who
have strong social connections, and propose an
approach to identifying SSCs. As the social connec-
tions in SSC usually stay stable in a very long period
of time [17], we propose a novel index structure and a
graph compression method for SSC with polynomial
time complexity. Our method can match the pattern
graph without any graph decompression, which can
reduce storage consumption and improve efficiency.

(3) Based on the indices and compressed graph, we pro-
pose a Multithreading Heuristic Algorithm for the
MC-GPM, called M-HAMC. In M-HAMC, based on a
novel objective function, we propose a bidriectional
search method to bidirectionally investigate if a
match is included in a data graph, and find the match-
ing result with the minimal bounded path length. M-
HAMC has the time complexity of O(EgNplogNp+
EoEp), where Np and Ep are the number of vertices
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and edges respectively in the data graph, and £ is
the number of edges in the query graph.

(4) An extensive empirical study over five large-scale
real-world social graphs has demonstrated the supe-
riority of our proposed M-HAMC in effectiveness
and efficiency than the most promising existing algo-
rithm, HAMC [10] in answering MC-GPM queries.

The rest of this paper is organized as follows. We first
review the related work on GPM in Section 2. Then we intro-
duce the necessary concepts and formulate the focal problem
of this paper in Section 3. The identification of strong social
components is presented in Section 4, followed by the graph
compression methods and index structures proposed in
Sections 5 and 6, respectively. Section 7 presents our pro-
posed M-HAMC algorithm, Section 8 reports the experimen-
tal findings, and Section 9 concludes the paper.

2 RELATED WORK

Based on the properties of the graph pattern matching strat-
egies, the existing studies can be categorized into (1) isomor-
phism-based GPM to match each of the vertices and edges
exactly in Gp, and (2) simulation-based GPM to simulate
the vertices and edges pattern matching in Gp. Below we
analyze each of the categories in detail.

2.1 Isomorphism-Based GPM

In order to reduce the complexity of the isomorphism-based
GPM, this type of methods usually precompute some graph
structure information to build up edge index, frequent sub-
graph index and/or reachability index. For example, Cheng
et al., [18] propose an R-Join index structure that index the
nodes within 2-hops away. In [19], Zou et al., propose a Dis-
tance-Join graph pattern matching method, where a con-
straint of the shortest distance between two nodes can be
given in a query graph. Sun et al., [20] propose an efficient
subgraph matching method based on subgraph isomor-
phism in large-scale web graphs. This method adopts a
graph exploration method to improve the efficiency of sub-
graph joint processing in graph matching. Furthermore, in
order to improve the efficiency of finding the top-k answers
that have the top-k shortest edge lengths, Cheng et al., [21]
propose a query optimization approach where they build
up a spanning tree of a cyclic graph query, and rank the
answers by the sum of the edge lengths of an answer.

Given a G, usually it is not realistic to find a subgraph
(or a few subgraphs) in Gp that contains the whole query
graph. Then, Yan et al., [22] propose a similarity based GMP
method. In their model, a distance is defined to compute the
total number of the matched edges in the Maximal Common
Subgraph between the query graph and the database
graphs. If the distance is less than a specified threshold,
then the subgraph is returned as a solution. Shang et al.,
[23] further improve the similarity-based GPM by propos-
ing an index method, called GrafD-Index, to index graphs
according to their similarity to the features in G. Further-
more, Zhu et al., [24] propose a method, where they divide
a Gp into several groups of similar graphs and index these
graphs to support effective pruning, which can improve the
efficiency of similarity based GPM.

Although the Distance Join GPM and similarity-based
GPM methods relax the strict constraints in subgraph iso-
morphism, and increase the probability of finding a match,
they are still NP-Complete [2]. In order to efficiently find
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matching subgraphs in large data graphs, some recent
works adopt parallel and distributed GPM methods. For
example, In [25], [26] a pattern graph is decomposed into
small ones (edges), and the subgraphs can be extracted for
each small pattern graph and join the intermediate results
finally. In addition, in [27], they find the matched subgraphs
based a parallel framework in a large data graph. Further-
more, in [28] a large data graph is decomposed into several
small fragments based on a distributed GPM method.

The isomorphism-based GPM is important in many
applications, e.g., 3D object matching [29] and protein struc-
ture matching [30]. However, such GPM suffers from
expensive computation cost as it is NP-Complete.

2.2 Simulation-Based GPM

In order to relax the constraints of isomorphism-based GPM
to meet the GPM requirements in some real applications,
based on the graph simulation [31], Fan et al., [2] propose a
bounded simulation in GPM. In their model, the label of
each vertex is not unique and a bounded length can be spec-
ified on the edge between two vertices in query graphs.
Then, the bounded simulation will deliver the matching
whose any vertex having the same labels and the edges
within the bounded length. This type of GPM can be con-
ducted in cubic-time. Based on bounded simulation, Ma
et al.,, [32] propose a strong simulation, where a GPM not
only meets the requirements of the bounded length, but
also preserves the topology of a query graph. It is to find a
small set of matches whose topologies are more similar
with the query graph than that in bounded simulation. In
addition to the labeled vertices in bounded simulation, Fan
et al.,, [33] further consider the requirements of different
types of edges in GPM, and develop a social expert finding
system based the bounded simulation GPM [3]. In order to
improve the efficiency of the simulation-based GPM, Fan
et al., [34] propose a graph pattern view based bounded
simulation. In their model, a set of views are defined in a
data graph, and they develop a method to estimate which
view can be used to answer a specific query. In addition,
they propose a resource-bounded query [35] where a frac-
tion of a data graph that has a high probability of containing
the query graph is extracted. In the application of commu-
nity finding, Fang et al., [36] propose a method which aims
to return an attributed community for an attributed graph,
in which the attributed community is a subgraph which sat-
isfies both structure cohesiveness and keyword cohesive-
ness. In [37], Yang et al., study the problem of diversified
subgraph querying in a large graph, which is to find k sub-
graphs that match a given query graph with the maximum
coverage based on the graph simulation. In [38], Fan et al.,
propose incremental algorithms for four types of typical
pattern graphs, these incremental algorithms can reduce the
incremental computations on big graphs to small data and
minimize unnecessary re-computation.

Summary. Simulation-based GPM methods relax the
restrictions of subgraph isomorphism and thus well address
the GPM in these applications. But all the existing methods
do not consider the multiple constraints on edges in a graph
query. Such a query is popular and fundamental in many
social network based applications, like crowd-sourcing
travel [8], study group selection (classroomsalon.com), and
social network based e-commerce [7]. Therefore, the exist-
ing methods cannot support the significant multi-con-
strained graph pattern matching in many applications.
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Fig. 3. Multiple-Constrained GPM in CSGs.

3 PRELIMINARIES

3.1 Data Graph
3.1.1 Contextual Social Graph

A Contextual Social Graph [7] is a labeled directed graph
G = (V,E,LV,LE), where

V is a set of vertices;
Eis a set of edges, and (v;,v;) € E denotes a directed
edge from vertex v; to vertex vj;

e LV isa function defined on V such that for each ver-
tex vin V, LV (v) is a set of labels for v. Intuitively,
the vertex labels may for example represent social
roles in a specific domain;

e LI is a function defined on F such that for each edge
(vi,v;) in E, LE(v;,v;) is a set of labels for (v;,v;), like
social relationships and social trust in a specific domain.

Example 2. G ps in Fig. 3 is a CSG, where each vertexv; € V'is
associated with a role impact factor, denoted as pgi €[0,1],
to illustrate the impact of participant v in domain 4, which
is determined by the expertise of v;. ,ov = 1 indicates that
v; is a domain expert in domain 4 while pPi = 0 indicates
that v; has no knowledge in that domain. Moreover, each
edge (vl, v;j) is associated with social trust, denoted as
T €[0,1], and social intimacy degree, denoted as
Tu; 1]7 € [0, 1], to illustrate trust and intimacy social relation-
shlps between participants. T, r and p are called social
impact factors, whose values can be extracted by using the
data mining techniques [39], [40], [41].

Based on theories in Social Psychology [17], we adopt
the multiplication method to aggregate 1" and r values of
a path, and adopt the average method to aggregate the p
values of the vertices in a path. The details of the aggre-
gation method have been discussed in [7]. The aggre-
gated values of a path p in domain ¢ is denoted as
ASP (p) = < ATPi(p), Ar(p), Ap”(p) >

Definition 1 (Path Domination). If each of the aggregated
social impact factor value of p is greater than the corresponding
one of path p/, then p dominates p’ in domain ¢, which is
denoted as p > 30\1 p.

3.2 Pattern Graph
A Pattern Graph is defined as a tuple Gg =<V, E, fu,
fe, 8e> , where

e V, and E, are the set of vertices and the set of
directed edges, respectively;

e f,is a function defined on V such that for each ver-
tex u, f,(u) is the vertex label of v;

e f.isafunction defined on E, such that for each edge
(u,v); fe(u,v’) is the bounded length of (u, ") which
is either a positive integer k or the symbol *;
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e 5. isa function defined on E, such that for each edge
(u,v), se(u,u') is the multiple constraints of the
aggregated social impact factor values of (u,u’) rep-
resented by a tuple of < )\T s Ay ADi ,' >, which are in
the scope [0,1];

From G4 in Fig. 3, we can see the constraints, i.e., )\T A
and )\D on edges (B, C) and (B, D), respectively. The value
of these weights can be specified by users to illustrate their
different requirements in different applications. For exam-
ple, in the domain of crowdsourcing travel, a user could give
alarge value to A" if he/she believes the social relationships
between people are more important, while in the domain of
employment, a user could give a large value to ) if he/she
believes the social impact of a people is more important.

3.3 Multi-Constrained Graph Pattern Matching
(MC-GPM)

In this section, we introduce MC-GPM via Multi-

Constrained Simulation in CSGs.

Bounded Simulation [2]. Given a data graph G = (V, E, LV)
and a pattern graph Q = (V;, Ey, fo, fe), a data graph G
matches a pattern graph @ via bounded simulation, denoted as
Q <B @G, if there exists a binary relation S C Vjy x V such that

e forall u € Vj, there exists v € V such that (u,v) € S;
e for each pair (u,v) € S,
- u ~ v (vertices u and v have the same table), and
- for each edge (u,u’) in Eg, there exists a non-
empty path p from v to ¢’ in G such that (u',v') €
S, and the shortest path length Slen(p) < k if
fe(u,u') = k.
Then S is a match in G for @) via bounded simulation.
Multi-Constrained Simulation. MCS is a nontrivial exten-
sion of bounded simulation. Consider a data graph
Gp = (V,E,LV,LE) and a pattern graph Gq = (V,, Eq, fu.

fey 8¢). Gp matches G via MCS, denoted by G <M G, if

— S1m

there exists a binary relation S C V5 x V such that

e forall u € Vj,there exists v € V such that (u,v) € S;
e for each pair (u,v) € S,
- wu~wv,and
- for each edge (u,u’) in Ey, there exists a non-
empty path p from v to ¢/ in G such that
(v, v') € S,and Slen(p) < k, if fo(u,u') = k;
- ATPi(u, o)) = Ap, Ar(v,v') = A, and Ap”i (v, o/
Aos if se(u, ') = {0, Ay A}
Then S is a match in Gp for Gg via multi-constrained
simulation.

If an edge (u,v’) in G¢ is mapped to a nonempty path p
from v to v’ in Gp based on MCS, then (v,v') is an edge pat-
tern matching (u,u’) in Gp (denoted as (v,v',Gp) ~ (u,
u',Gp)), and (u,v) € S. If for each edge in Gy, there is a
matching edge in Gp, then an MC-GPM answer is returned
(denoted as Gy = (V, E, LV, LE), G); C Gp).

) >

Example 3. Suppose G in Fig. 3 is a query given by a user
to select a group of participants from a CSG to finish a
project. Based on data graph Gps;, we can get the MC-
GPM answer as (1) vertex SPM (i.e., A, a Senior Project
Manager) and vertex PM (i.e., B, a Project Manager) in
G4 can be mapped to the same vertices SPM and PM in
Gps, which is part of subgraph isomorphism; (2) the vertex
AM (i.e., C, an Assistant Manager) in G4 corresponds to
multiple AMs (i.e., C; and () in Gps. This relationship
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Fig. 4. An example of a strong social component.

can be captured by using graph simulation; (3) the edge
with a bounded length in G4 can be mapped to a path
length in Gps by using bounded simulation; and (4) the
edge with multiple constraints can be mapped to the
aggregated social impact factor values of a path in G ps by
using multi-constrained simulation.

4 STRONG SOCIAL COMPONENT

In order to enhance the efficiency and effectiveness of our
MC-GPM method, in this section, we propose a strong social
component identification method. In graph theory [42], a
graph G is said to be strongly connected if every vertex is reach-
able from every other vertex, and a strongly connected com-
ponent of a directed graph G is a subgraph that is strongly
connected. Based on the definition of the strong connection,
we give the definition of a Strong Social Component as follows.

Definition 2 (Strong Social Component). Given a CSG
<V,E,LV,LE>, and two parameters Ay and \p with
0< A <1land0< Ap <1, the subgraph induced by a subset
of node set V' € V and edge set E' € E is an SSC if, and only
if the following two conditions hold:

o YoeV LV(v)= Ay
e Veec F LE(e)=\g
where E' = E(\(V' x V7).

In a CSG, a subgraph is said to be socially strongly con-
nected if each vertex associated with a high role impact fac-
tor value in a specific domain is connected with the edges
associated with intimate social relationships and strong
social trust relationships. A Strong Social Component (§SC) is
a subgraph that is socially strongly connected.

Example 5. In an SSC, suppose the T, r and p values associ-
ated with each of the vertices and edges should be greater
than 0.8. Fig. 4 depicts a graph that has two strong social
components in domain i and domain j respectively.

Based on the theories in Social Psychology [17], in an
SSC, the social structure and the social contexts, including
the social trust and social relationships on edges, and the
social roles associated with vertices usually stay stable in a
very long period of time. This property makes it realistic to
index and compress the graph in an SSC with a low
update cost. Identifying all the SSCs in a specific domain
subsumes the classical NP-Complete maximum clique
problem [42], which is very time consuming. Alterna-
tively, we can identify up to K’ SSCs for MC-GPM by first
randomly selecting K vertices that are associated with
high role impact factor values as the seeds, and then adopt-
ing Breadth-First Search (BFS) method to find the vertices
associated with high role impact factor values connected
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by the edges associated with high social intimacy degrees
and social trust values. In the worst case, our method
needs to visit all the vertices and edges in a data graph.
The time complexity of the SSC identification is O(NpEp).

5 CONTEXT-PRESERVED GRAPH COMPRESSION
FOR SSC

In this section, based on the existing graph compression
method for bounded simulation [43], we propose a context-
aware graph compression method, where the reachability,
graph pattern and social contexts are preserved. Moreover,
the graphs compressed by our approach can be directly que-
ried without any decompression. In contrast, the existing
compression methods are not designed for solving the MC-
GPM problem, and thus they cannot preserve the social con-
text information. Rather, the existing approaches have to
restore the original graph from compact structures to
answer a graph pattern query.

5.1 Compression for Reachability

A reachability query for a pair of vertices in a pattern graph
Gy is to investigate if there exists at least one path linking
the two vertices in a data graph, e.g., (B, C) of G in Fig. 1.
The graph compression property captured by Theorem 1 pre-
serves reachability information, which is called reachability
preserved compression, denoted as G&.

Theorem 1. The compressed graph is reachability preserved
when two compressed vertices have the same ancestors and can
reach the descendants of each other.

Proof. Suppose there is a data graph Gp = (V, E), where
V= {A, Bh ey B”,Cl, c 7C’,“DI,DQ} and F = {(A, B1)7 .
(A7 Bn)a(A7 Cl)a s 7("47 Cll)7(Bl,D1)7 s 7(B7L7 D1)7 (Cl, D2)7
ey (Cn, DQ), (D1, DQ), (D27 D1)} GR = (V, E), where is
V= {A7 Bl“.nCL..na Dh DQ} and & = {(A, Blmn,clmn)a (Bln
Ci..n, D), (D1, Ds)}. For a reachability query G = (V, E),
where V = {A, B;, D;}, i € [1,n] and j € [1,2], GE is not
reachability preserved compression if and only if A and
B;, or B; and D; are not reachable to each other, which
contradicts E= {(A, Bl...nclmn)y (Bl...nol..xm D1)7 (Dla DZ)}
in G&. Therefore, Theorem 1 is proven. O

Example 6. Fig. 5 contains two groups of graphs.' Consider
Fig. 5a, where Gpy is the original data graph and G%, is
the compressed graph. From Gp7, we can see that both A
and B do not have any ancestors, and they can reach the
same descendants (C, D and E). Therefore, A and B can
be compressed as one vertex in G, where the reachabil-
ity of A and B to other vertices is preserved.

5.2 Compression for Graph Pattern

In addition to reachability preserved compression, to sup-
port the graph pattern query, e.g., (4, D) of G, in Fig. 3,
we propose a graph compression method that can preserve
such graph patterns, which is called graph pattern preserved
compression, denoted as Gf. The property of the compres-
sion method is captured by Theorem 2.

Theorem 2. The compressed graph is graph pattern preserved
when two compressed vertices have the same label, the same
ancestors and the same descendants.

1. As the compressions do not consider any social context, in order
to clearly display the graph structure, the social contexts of the graphs
are not shown in this example.
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Fig. 5. Reachability preserved and graph pattern perserved compressions.

Proof. Suppose Bi, ..., B, are vertices in Gp. A and C are
their ancestor and descendant respectively. Then we can
have a compressed graph G%,, where B, ..., B, are com-
pressed as a single vertex B. If Gy = (V,E), where V =
{A,B,C} and E={(A,B),(B,C)}, Go<® Gp. If G}
is not graph pattern preserved, for an edge (u,u’) in
Gq, there exists an edge (v,v/) in GJ such that
(W, v') ¢ S, (S C Gg x Gp). Namely, there exists vertex B;
such that (4, B;,Gp) # (A, B,GL) or (B;,C,Gp) # (B,C,
GF). This contradicts the assumption that B. ..., B, have
the same label. Therefore, Theorem 2 is proven. a

Example 7. Consider the example shown in Fig. 5 that con-
tains a data graph Gps and the corresponding com-
pressed graph Ghg. In Gps, we can see that B; and B,
have the same ancestor A and the same descendant C.
Therefore, based on Theorem 2, GL is a graph pattern pre-
served compression of G ps.

We can see that the graph pattern preserved compression
is reachability preserved as its compression condition is
more strict than that of reachability preserved compression.

5.3 Compression for Social Contexts

In order to support MC-GPM, e.g., (B, D) of G, in Fig. 3,
we propose a graph compression method that can preserve
social context information, which is called social context pre-
served compression, denoted as G7,. The property of the com-
pression method is captured by Theorem 3.

Theorem 3. The compressed graph is social context preserved
when two compressed vertices have the same label, the same
ancestors, the same descendants, and the aggregated social
impact factor values of the path via one of the vertex dominates
that of the other one.

Proof. Suppose Bi,...,B, have the same ancestor A
and the same descendant C' in Gp. AS(A4,C) via
B; (1 <i < n) dominates others. Then, G is compressed
as GY = (V,E), where V ={A,B,...B,,C}, E={(A
By...B,),(By...B,, (")} and AS(A,C) via B;...B,
equals to AS(A,C) via B;. Given a query G for (A,C)
with Blen(A,C) and the multiple constraints of social
impact factors on edge (A,C), only the constraints on
edge (A, B) will be investigated as Slen(A, C) = 2 via any
B (1 <k<n).If G% is not social context preserved, then
the edge matching (A, C,Gg) ~ (A, C,Gp) is missing in
G%, namely one of the social impact factors in AS(A, C)
via Bj (1 < j<n, and i # j) in Gp is greater than that of
(4, C) in G’S (i.e.,, AS(A,C) via B;). This contradicts the
assumption that AS(A,C) via B; (1 <i<n) dominates
others. Therefore, Theorem 3 is proven. O

Example 8. Consider the example shown in Fig. 6 which
contains a data graph Gpg and the corresponding
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Fig. 6. Social context preserved compression.

compressed graph G%Q. In Gpy, we can see that C and Cy
have the same ancestor A and same descendant D. In addi-
tion, AS(A, D) via C dominates AS(A, D) via Cy. Namely,
each of the aggregated social impactor values of the path
from A to D via C is greater than the corresponding social
impact value of the path from A to D via C5. Then, based
on Theorem 4, G pg is compressed as G5y, where Cy and O
in Gpy are compressed as one vertex and AS(A4, D) via
Ci1C5 in G%Q equals to the dominated one in Gpy, i.e.,
AS(A, D) via C;. Then G?, is social context preserved.

The social context preserved compression is graph
pattern preserved and reachability preserved as its com-
pression condition is more strict than that of graph pat-
tern preserved compression.

6 INDEX OF STRONG SocIAL COMPONENTS

In order to improve the efficiency of MC-GPM, we propose
a novel index structure to index the reachability, graph pat-
tern and social contexts in compressed graphs.

6.1 Reachability Index

This index records a list of vertices that one can research
another in a graph, where the index of each vertex contains
the ancestors and predecessors of the vertex. As the size of
SSCis usually much less than the whole data graph, building
the reachability index is not computationally expensive [44].

Example 9. Fig. 7 is an example of our index for the SSC in
domain j of the graph depicted in Fig. 4. From the figure,
we can see that the indices of each vertex include three
parts: the reachability index, graph pattern index and social
context index. We take vertex £ as an example, as it has
both ancestors and descendants. The reachability index of
FE records its ancestor C' (i.e., Anc.: ('), and its descendant H

zlcn*lJl’lcnfl/lS {0950909} 1
Sten = 1] Plen = 2, AS = {0.96,0.88,0.91}

1
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Fig. 7. The index of an SSC in domain j.
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(i.e., Des.: H). Similarly, we construct the reachability index
for each of the other vertices of the graph. Given a reachabil-
ity query, e.g., (B, C) of Ggs in Fig. 1, if the query vertices
are included in the SSC, we can investigate the reachability
immediately, greatly saving query processing time.

6.2 Graph Pattern Index

After indexing the reachability information, we further index
the graph pattern information to improve the efficiency of
graph pattern queries. This index records the shortest path
length between any two vertices in the graph of an SSC.

Example 10. In Fig. 7. For vertex F, in addition to indexing
the reachability information, the graph pattern index
records the shortest path length from its ancestor C' to £
(i.e., Slen =1), and from FE to its descendant H (i.e.,
Slen =1). Given a query of a graph pattern with the
bounded length, e.g., (A, D) of G, in Fig. 3, based on the
graph pattern index, we can investigate if the indexed
path length is greater than the bounded length, and thus
can efficiently answer a query.

6.3 Social Context Index

In order to improve the efficiency of MC-GPM, we construct
the social context index to record the maximal aggregated
social impact factor values of the mapped paths in a data
graph. Below are the details of the index.

e If each of the aggregated T, r and p values of one of
the paths between two vertices dominates others, we
index that path length and the corresponding aggre-
gated social impact factor values.

e Otherwise, we index up to three paths that have the
maximal aggregated 7', r and p values respectively.

Example 11. In Fig. 7, we take vertex C' as an example,
where there are two paths from C'to its descendant H, e.g.,
path plicpm and p2cpm). As AS(plcp ) dominates
AS(p2(c,r,m)), we index AS(pl(c g m)) = {0.96,0.88,0.91} and
its path length Plen(pl(c g ) = 2 at C. Given a graph pat-
tern query with multiple constraints, e.g., (B, D) of G, in
Fig. 3, based on the social context index, we can quickly
investigate if there exists an edge pattern match in the data
graph, and thus saving query processing time.

6.4 Summary

The above three indices record important information of the
graph in an SSC, which can be used to quickly investigate if
there is an edge pattern match, and thus greatly saving query
processing time (see details in the experiments). In addition,
in the worst case, we need to perform the Dijkstra’s algorithm
four times, and thus the time complexity of the index con-
struction is O(NplogNp + Ep). Furthermore, as mentioned in
Section 4, the structure and the social contexts of the graph in
an SSC usually stay stable in a very long period of time [17].
Therefore, usually it is not necessary to update the indices fre-
quently, which reduces the cost of index maintenance. When
there are some changes of the social contexts and/or graph
structure in an SSC, we can adopt the existing method [43] to
first establish the matrices of the shortest path length, the
ancestors and descendants, and the aggregated social impact
factor values between vertices. Then if an edge is removed
from or added into an SSC, we could check the matrix to
update the shortest paths information that is affected by the
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change of reachability due to the change of edges. Then based
on the updated shortest path information, we could update
the social context information in the indices. The index main-
tenance in dynamic graphs is another challenging research
topic and thus it is not discussed in this paper.

7 MC-GPM ALGORITHM

7.1 Our Previous HAMC Algorithm

In our previous work [10], we have proposed an approxima-
tion algorithm called HAMC, which supports the NP-Com-
plete MC-GPM. However, HAMC has the following
disadvantages, motiving us to develop a new Multithread-
ing Heuristic Algorithm for the MC-GPM, called M-HAMC.

Disadvantage 1. Although HAMC supports MC-GPM, it
does not support the distributed computing structure.
Thus HAMC cannot adopt multi-core processors to paral-
lel processing the NP-Complete MC-GPM that has expo-
nential time complexity, and thus it can hardly deliver
good efficiency in MC-GPM.

Disadvantage 2. As indicated in [15], [16], the less the sum
of the length of the matching paths, the better the quality
of the GPM result. However, HAMC considers the con-
straints of the matching path only without taking care of
minimizing the matching path length, and thus it can
hardly deliver the GPM results with good quality.

In order to overcome the above mentioned disadvantages
in HAMC, based on the compressed data graph and the indi-
ces in SSCs, we propose a novel Multithreading Heuristic
Algorithm for the MC-GPM, called M-HAMC, with our pro-
posed novel heuristic search strategies. M-HAMC supports
multithreading processing, and looks for the good quality of
the GPM results by considering the matching path length. In
experiments, we will investigate the performance of HAMC
and M-HAMC in solving the MC-GPM problem.

7.2 Algorithm Overview

Based on the compressed and indexed SCC structures in
data graphs, our proposed M-HAMC first (1) finds the
matching from the data graph for each of the edges in a
query graph, and then (2) joins the matching of each edge
based on the topology of the query graph.

e First, in each of the edge matching, M-HAMC first
bidirectionally performs the Feasible Edge Pattern
Matching (F-EPM) procedure in parallel based on the
novel objective function in Eq. (1) proposed in the
below Section 7.3. This procedure can investigate if
there is an edge matching in the data graph which
satisfies the multiple constraints on the edges given
in the query graph.

e Second, as indicated in [15], [16], the less the length
of the matched edge, the better the quality of the
edge matching result. Therefore, after finding the
matching by F-EPM, M-HAMC then bidirectionally
performs the Optimal Edge Pattern Matching (O-EPM)
procedure proposed in the below Section 7.4 to find
the edge matching with the minimal bounded path
length in the data graph.

e Finally, M-HAMC will link the above delivered
matching results together to return a GPM result. In
the literature, there are two popular methods to
answer a GPM query based on edge matching. In
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order to quickly answer an MC-GPM query, we pro-
pose an Exploration-Based Graph Pattern Matching
(EB-GPM) method in Section 7.5 to combine these
edge matching results.
Below are the details of each of the procedures of
M-HAMC.

7.3 Feasible Edge Pattern Matching (F-EPM)
Feasible Edge Pattern Matching (F-EPM) performs the forward
search process from the start vertex and the backward search
process from the end vertex in parallel to investigate if an
edge pattern query in Gj can be mapped into a path in the
data graph Gp. The details of F-EPM are as follows,

Step 1: From the start vertex (denoted as v,) and the end ver-
tex (denoted as v;), F-EPM bidirectionally performs the
Dijkstra’s algorithm to deliver the path with the mini-
mal value of the objective function in Eq. (1).

Step 2: F-EPM records the aggregated social impact factor
values, and the path length of the paths with the mini-
mal § value from v, and v; delivered by the forward
and backward search processes respectively.

Step 3: For the forward search process, if a vertex has not
been accessed by the backward search process, F-EPM con-
tinues the search based on Dijkstra’s algorithm. Other-
wise, it records the aggregated social impact factor
values of the path from the current expansion vertex to
v, and stops continuing search for the vertex accessed
by the backward search process. When no further vertex
can be selected as a forward expansion vertex, this pro-
cess terminates. The backward search process performs
the similar process and terminates when no further ver-
tex can be selected as a backward expansion vertex.

Step 4: When both the forward and backward search pro-

cesses terminate, F-EPM terminates.
Plen
—_— 1
i) ' (Blen) }’ )

AN SN
8(p) 2max b, ( i ), b
®) { (ATff) Ar, (Ap,’?

where ATD Ar, and Ap i are the aggregated social
impact factor values of path D; ? ; Ar, and )\Dl are
the corresponding constraints; Blen and Plen ate the
bounded path length and the identified path length
respectively.

From the objective function, we can see that if an edge
pattern query can be mapped into a path p in a data graph,
then §(p) < 1. Otherwise §(p) > 1. Based on this property,
M-HAMC adopts Dijkstra’s algorithm to identify the path
with the minimal § value (denoted as 8,.i,). If 8,in(p) < 1,
there is an edge pattern match. The pseudo-code of MC-
EPM is shown in Algorithm 1.

Example 12. Based on the query edge (B, D) in G, in Fig. 3
and the data graph Gps in Fig. 8, F-EPM bidirectionally
computes the minimal § value from the start vertex B and
the end vertex D. After one step of forward search, as C»
is the only decendent of B, and §(p(B, Cs)) = 0.78, Cs is
selected as a forward expansion vertex and at Cy, F-EPM
records AS”i (p (B Cy)) = {ATPi(p(B, Cy)) = 0.7, Ar(p(B,
Cy)) = 0.8, ApPi(p(B,Cy)) = 0.9}. At the same time, after
one step of backward search, we obtain §(p(C;, D)) =
0.875 and §(p(F, D)) =1.25. Then C is selected as the
backward expansion vertex, and at Cj;, F-EPM records
ASP(p(Cr, D)) = {AT(p(C1, D)) = 0.9, Ar(p(Cy,D)) =
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Fig. 8. The process of F-EPM.

0.9, ApPi(p) = 0.8}. F-EPM continues the search from the
two expansion vertices C; and Cy in parallel, and after
the second search step, as vertex A does not have any out-
going edges, and all the rest of vertices, including Cy, Cs
and F' are accessed by both of the forward and back-
ward search process, F-EPM terminates. Then the path
p(B, Cy, Cy, D) with §(p(B,Cs,Cy, D)) =1 is identified as
the the one with the minimal § value between B and D.

Below Theorem 4 illustrates that F-EPM is an effective
method to find feasible EPM in MC-GPM.

Theorem 4. F-EPM process can return an edge pattern match if
one exists in the data graph.

Proof. Assume Gy = (V,E), and (v;,v;) € E is an edge pat-
tern query. Let p* be a path from v; to v; in G'p with the mini-
mal § at v; returned by the M-HAMC, and p** is another
path between v; and wv; in Gp, where (v;,v;,Gg) ~
(p**,Gp). Then, assume (v;,v;,Gg) # (p*,Gp), then Jp €
{T,r,p} that ASg,. <)\£(iw y O Plen(p*)> Blen(v;,v;).

Hence, §(p*) > 1. Since p** is an edge pattern match, then
S(p*) <1 and §(p*)> 8(p**). This contradicts §(p*) <
8(p**). Therefore, (v;,v;,Gq) ~ (p*,Gp). Theorem 4 is proven.0

7.4 Optimal Edge Pattern Matching (O-EPM)

As there can be many paths matching an edge in a data
graph, and the less the path length of an edge match, the
better of the quality of the edge pattern match [15], [16]. In
our M-HAMOC, if there is a feasible edge pattern match in a
data graph (i.e., §,,in < 1), we perform the Optimal Edge Pat-
tern Matching (O-EPM) method to bidirectionally find an
edge pattern match in parallel by minimizing the bounded
path length. The details of O-EPM are as follows,

Step 1: Start from v, and v, O-EPM bidirectionally performs
Dijkstra’s algorithm to deliver the shortest path.

Step 2: O-EPM investigates the aggregated social impact fac-
tor values of the two foreseen paths for the current two
expansion vertices v; and v; identified by O-EPM from
vy and v, respectively. One is the combination of the
current path with the shortest path length identified by
the O-EPM from v, (denoted as SP,,(v;)), and the path
that is saved at v; identified by F-EPM from v; (denoted
as FP,, (v;)). The other one is formed by SP,,(v;) and
FP, (v;). At this step, if both of the two searches visit
the same vertex, the aggregated social impact factor val-
ues combined with each partial path are investigated to
check whether the combined path is feasible.

Step 3: If the both of them are feasible edge pattern match-
ing, O-EPM continues to searches the next vertex.
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Fig. 9. The process of O-EPM.

Otherwise, O-EPM will find another expansion vertex
from the neighbours of the current expansion vertex
Step 4: When there is an expansion vertex which has been
selected by both the forward and backward search pro-
cesses, O-EPM terminates. Then the path linked by the
two paths identified by the two search processes is the

query result of the edge pattern matching.

Example 13. In Fig. 9, O-EPM bidirectionally searches the
graph from B and D in parallel. After one step search, C;
and C; are selected as the expansion vertices of the for-
ward and backward search respectively, and there can be
two foreseen paths, one is FSp p(C1) = SP(Ch) + FPp(Ch),
and the other one is FSp 5(Cs) = SPp(Cs) + FPg(Ch). As
they are feasible, O-EPM continues to bidirectionally
search the shortest path between B and D from C; and C;
respectively. Then C; and C; are selected as the next
expansion vertices and 8(FSpp(Co)) =1 and §(FSpp
(C1)) = 1. As both C and C, are selected as the expansion
vertices by the two processes, O-EPM terminates. The
path p(B, C}, Cy, D) linking the source B and the target D
is the optimal edge matching identified by O-EPM.

Below Theorem 5 illustrates that O-EPM is an effective
EPM optimization method in MC-GPM.

Theorem 5. O-EPM process can return an edge pattern match-
ing which is no worse than the one delivered by F-EPM.

Proof. Assume Gg = (V, E), and (v;,v;) € E is an edge pat-
tern query. Let p” be a matching path delivered by O-
EPM from v; to v; in G'p by using the Dijkstra’s algorithm,
and p* is the matching path delivered by F-EPM. If there
is only one path matching, based on Theorem 4, p* = p*,
and thus Plen(p™) = Plen(p*). Otherwise, if there are
more than one matching path, based on the property of
Dijkstra’s algorithm, p# is the shortest path starting from
v; where the corresponding constraints can be satisfied by
the foreseen path ending at v;. If Plen(p?)> Plen(p*),
there is another matching path p** delivered by F-EPM to
be combined into the foreseen path, namely, §(p**) <
8(p*), which contradicts §(p*) has the minimal § value.
Therefore, Theorem 5 is proven. O

Summary. MC-EPM is the first part of M-HAMC, which is
effective in MC-GPM as it can return an edge pattern match if
one exists in G'p. In addition, M-HAMC employs Dijkstra’s
algorithm for M pairs of vertices in Gp. Therefore, the time
complexity of MC-GPM is O(MNplogNp + MEp). The pseudo
code of MC-EPM algorithm is shown in Algorithms 1,2 and 3.

7.5 Exploration-Based Graph Pattern Matching

In the literature, there are two popular methods to answer a
GPM query based on edge pattern matching. They are the join-
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based method [2], [15], [34] and the exploration-based method [20],
[21]. The join-based method aims to find a maximal match that
contains all matching subgraphs in a data graph, while the
exploration-based method aims to quickly answer a GPM query.

Algorithm 1. MC-EPM

Data: (V, V'), (V,V') € G, Gp
Result: (V*, V"), (V*, V") € Gp and (V*,V**,Gp) ~ (V,V',Gg)

1 begin

2 path =0;

3  F-EPM(G,V*V*);

4 path = O-EPM(G,V*,V*);
5  return path;

6 end

Algorithm 2. F-EPM

Data: V*, V** G
Result: dist_z, dist_f

1 begin

2  Spawn

3 Initialize-Single-Source (G, V*) //initialize the
predecessors;

4 S =0;Q, =VI[G); dist_f = c;

5 repeat

6 u; = Extract-Min-Delta (Q1, dist_f);

7 // extract the vertex with the minimal delta value from

Q1

8 S1=8 U{m}

9 for each vertex vy € Adj[u,| and vy ¢ Ss do
10 Spawn
11 dist_f = Update (u1, v1, dist_f);
12 // an update step to update the minimal é value at

dist_f

13 end
14 Sync
15 until Q # 0 and uy # null and uy ¢ So;
16 Spawn

17  Initialize-Single-Source (G, V**)

18 Sy =10; Q2 = V[G]; dist_z = oc;

19  repeat

20 uy =Extract-Min-Delta (Q-, dist_z);

21 SQ = SQ U {Ug};

22 for each vertex vy € Adjlus] and vy ¢ Sy do
23 Spawn

24 dist_z = Update (ua, vs, dist_z);

25 end

26 Sync

27  until Qy # 0 and uy # null and uy & Sy;
28  Sync

29  return dist_f, dist_z;

30 end

As MC-GPM is NP-Complete, it is computationally
infeasible to find all the matching subgraphs in Gp. In
order to quickly answer an MC-GPM query, we propose an
Exploration-Based Graph Pattern Matching (EB-GPM)
method, presented below.

Step 1: Start from a source vertex (a vertex with indegree zero,
denoted as s,), EB-GPM first returns an edge pattern
match based on the above introduced MC-EPM.

Step 2: Mark the matching edge as explored and investigate if
the end point of the edge (denoted as ¢) is a leaf vertex
in the query.
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Fig. 10. A case study.

e If the end point of the edge is a leaf vertex, EB-
GPM rolls back to the start point of the edge
(denoted as s,) and matches another unmatched
edge starting from s, in Gg.
e Otherwise, EB-GPM continues to investigate
another unexplored edge from e,,.
Step 3: If s, = s, and each of the edge pattern queries in G
corresponds to an explored edge in Gp, an MC-GPM
query answer is returned.

Example 14. Consider the pattern graph in Fig. 3, from ver-
tex A, MC-EPM returns an edge pattern match in Gps as
(A,Ch, D,Gps) ~ (A, D,Gg4). As D is a leaf vertex in G,
EB-GPM rolls back to source vertex A to investigate if an
edge from A has not been explored in Gg4. As (A,C) is
unexplored, MC-EPM returns another edge pattern
match in Gps as (A, Cy,Gps) ~ (A4, C,Ggy). Since all the
edges from A are explored, EB-GPM then completes
the same process from the other source vertex B by
MC-EPM. Then EB-GPM can return an MC-GPM answer
as Gy = (V,E,LV,LE), where V = {A, B,C,,C5, D} and
E= {(A7 01)7 (B7 02)7 (027 Cl)v (017 D)}

If there are more than one MC-GPM results included in
a data graph, we can use EB-GPM to return other results
by replacing one of the explored matching edges with
another unexplored matching edge in the data graph.

EP-GPM performs Eq times of MC-EPM methods.
The time complexity of M-HAMC is O(EqMNplogNp+
MEgEp). But Eg and M have an inverse relation as

M = % [4]. Namely, when Eg has a large value, e.g.,

Eg=Ep, M =1, and vice versa. Therefore, the time
complexity of our M-HAMC is O(EpNplogNp + EqEDp)
which is the same as our previous HAMC method.

7.6 A Case Study

Fig. 10 contains a query edge and a contextual social graph.
The query edge is from SPM (Senior Project Manager) to PM
(Project Manager), where the constraints for social contexts
are shown on the edge. In addition, the contextual social
graph contains SPM, PM and two AMs (Assistant Man-
ager). By using HAMC, we can get the edge matching as
SPM — AM — AM — PM, while M-HAMC will deliver
the edge matching as SPM — PM. Both of the two match-
ings are feasible. But based on the social psychology theories
[17], the less the path length, the better the quality of a match-
ing in social graphs. Namely, in this case, SPM and PM can
better establish their collaboration relationships based on
their direct interactions rather than the indirect interactions
based on the path from SPM to PM via two AMs.

7.7 Summary

Our proposed M-HAMC algorithm is an efficient and effec-
tive method for the NP-Complete MC-GPM problem in
large-scale contextual social graphs. Our method achieves
O(EpNplogNp + EgEp) computation cost. Moreover, if the
matching edges are included into the graphs of SSCs, M-
HAMC achieves an outstanding computation cost in O(Ey).
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TABLE 1
The Pattern Graphs
Pattern ID Vertices Edges
1 5 6
2 10 12
3 15 18
4 20 24
5 25 30

Algorithm 3. O-EPM

Data: V*, V** G
Result: Path(V*,V*), 11
1 begin
2  Spawn
3 Initialize-Single-Source (G, V*);
4 S =0;,Q, =VI[G]; Ly = oc;
5
6
7

repeat
uy = Extract-Min-Path (Q1);
// extract the vertex with the minimal bounded path

length from Q;

8 else

9 if dist_z[uy] <1ordist_f[u;] <1 then
10 Sl = Sl U {ul};
11 for each vertex vy € Adjluy] and vy ¢ S, do
12 Spawn
13 UpdateLength (u1,v1, L1);
14 end
15 Sync
16 end
17 end
18  until Q; # 0 and uy # null and uy ¢ Ss;
19 Spawn

20 Initialize-Single-Source (G, V**);
21 Sy =0; Q2 =VIGI; Ly = oc;

22 repeat

23 uy = Extract-Min-Path (Q);

24 // extract the vertex with the minimal value from
25 if dist_z[us] <1ordist_flus] <1 then

26 SQ — SQ U {U,Q};

27 for each vertex vy € Adjlug] and vy ¢ So do
28 Spawn

29 UpdateLength (us, va, Lo);

30 end

31 Sync

32 end

33  until Qy # 0 and uy # null and uy ¢ Sy ;

34 Sync

35 return Get-Path (V*, V** II);

36 end

8 EXPERIMENTS

We conduct experiments on five large-scale real-world
social graphs to evaluate (1) the performance our algorithm
in answering MC-GPM queries; and (2) the effectiveness of
our index for SSC and the multithreading algorithm in
improving the efficiency of MC-GPM.

8.1 Experiment Setting

Datasets. The five large-scale real-world social graphs we
used are available at snap.stanford.edu, which have been
widely used in the literature for graph pattern matching and
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TABLE 2

The Social Datasets
Name Vertices Edges Description
Epinions 75,879 508,837 A trust-oriented social network
DBLP 317,080 1,049,866 A co-author relationship network
Youtube 1,134,890 2,987,624 A video recommendation social network
Pokec 1,632,803 30,622,564 A general online social network
LiveJournal 4,847,571 68,993,773 A general online social network

social network analysis. The details of these datasets are
shown in Table 2.
Graph Pattern Query and Paramater Setting.

e As we discussed in Section 3, the social context impact

factor values (i.e., T, r and p) can be mined from the
existing social networks, which is another very chal-
lenging problem, but out of the scope of this work.
Moreover, in the real cases, the values of these impact
factors can vary from low to high without any fixed
patterns. Without loss of generality, we randomly set
the values of these impact factors by using the function
rand() in SQL. In addition, in each of the datasets, the
SSC number is set to 20, 40, 60, 80 and 100, respectively.
We use a popular social network generation tool,
SocNetV (socnetv.org), with version 2.2 to generate
five query graphs, and the details of these graphs are
shown in Table 1. Moreover, a set of constraints are
given in Table 3 from low to high values. Further-
more, the constraints of the bounded path length,
Blen, is set as 4, 5 and 6 based on the small-world
characteristic in social graphs [45].

The setting of the number of threads depends on the
number of available cores and the blocking coeffi-
cient of tasks. Usually, Number of Threads = Number of

Epinions DBLP

Youtube

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.30, NO.6, JUNE 2018

TABLE 3
The Setting of Az, A, and \,
Constraint ID A1 A Ap
1 0.015 0.015 0.015
2 0.025 0.025 0.025
3 0.05 0.05 0.05
4 0.075 0.075 0.075
5 0.01 0.01 0.01

Awvailable Cores [ (1 — Blocking Coefficient), where the
blocking coefficient is between 0 and 1. In order to
investigate the performance of M-HAMC under dif-
ferent numbers of threads on a PC with a Quad-Core
Processor, we set the number of threads from 1 to 15.

Implementation. As we discussed in Section 2, there is no
existing GPM method in the literature for the MC-GPM
problem. Therefore, in the experiments, (1) we first imple-
ment our previous HAMC algorithm [10], which has been
the most promising algorithm for MC-GPM; (2) we then
implement our proposed M-HAMC algorithm to compare
the effectiveness and efficiency with HAMC in MC-GPM;
and (3) as returning all the MC-GPM answers included in a
Gp is NP-Complete [46], we compare the performance of
two algorithms in finding a certain number of answers.

All HAMC and M-HAMC algorithms are implemented
using Scala 2.11 running on a PC with an Intel Core i5-3470
Quad-Core Processor 3.2 GHz, 16 GB RAM, Ubuntu14.04.1
operating system and MySql 5.6 database. All the experi-
mental results are averaged based on five independent runs.

8.2 Experimental Results and Analysis
Exp-1: Effectiveness. This experiment is to investigate the
effectiveness of our MC-GPM by (1) comparing the

Pokec LiveJournal
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Fig. 13. The average maximal path length for different path lengths.
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TABLE 4
The Average Maximal Path Length
Dataset HAMC M-HAMC Comparison
Epinions 2.81 2.61 7.04% less
DBLP 2.13 1.92 9.87 % less
Youtube 3.24 2.90 10.49 % less
Pokec 3.51 3.24 7.64 % less
LiveJournal 3.37 3.08 8.61 % less

average path length for outputting different numbers of
GPM answers, different pattern graphs, different number of
bounded path lengths, different values of constrains, and
(2) comparing the average sum of the path lengths of the
GPM answers by the two methods.

Results. Figs. 11 to 14 depict the average maximal path
length of all the edge pattern matching with different num-
bers of GPM answers, different pattern graphs and different
bounded path lengths respectively, by each of HAMC and M-
HAMC. From these figures, we can see that the average maxi-
mal path lengths returned by M-HAMC are always less than
that of HAMC. The detailed experimental results are listed in
Table 3. Statistically, on average, M-HAMC can return
answers with a maximal bounded path length which is 8.73
percent less than that of HAMC. In addition, Figs. 15 to 18
depict the averaged sum of the path length returned by M-
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HAMC and HAMC under different G,,, different pattern
graphs and different bounded path lengths respectively.
From these figures, we can see that the sum of the path lengths
of the GPM answers returned by M-HAMC is always less
than that of HAMC. The detailed experimental results are
listed in Table 4 and Table 5. Statistically, on average, M-
HAMC can return the answers with the sum of the path
length which is 6.71 percent less than that of HAMC. Thus, M-
HAMC can return better quality GMP answers, and thus
more effective than HAMC.

Analysis. The experimental results illustrate that (1)
HAMC considers the feasibility of the MC-GMP only, but
does not take the path length of the edge pattern match into
consideration; and (2) as illustrated in on Theorem 4 and Theo-
rem 5, our M-HAMC can return an edge pattern match if there
is one existing in a data graph, and M-HAMC considers to
minimize the path length in answering the GPM query, which
can effectively improve the quality of the query results.

Exp-2: Efficiency. This experiment is to investigate the effi-
ciency of our MC-HAMC by (1) comparing the average
query processing time of the two methods for outputting
different numbers of answers, (2) under different pattern
graphs, (3) under different number of bounded path
lengths, (4) under different values of constrains, and (5)
under different number of threads.
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Results. Figs. 19 to 23 depict the average query processing  (2) with the increase of the number of threads, the execu-
time of M-HAMC and HAMC in returning different num- tion time of M-HAMC can first decrease fast and increase
bers of answers (i.e., Gi), with different pattern graphs and when the number of threads is greater than 10; (3) M-
different bounded path lengths respectively. From these fig- HAMC has better efficiency than HAMC for the MC-
ures, we can see that (1) when the number of answers GPM in all the cases in the five datasets. The detailed
increases, the total average query processing time of the two ~ experimental results are listed in Table 6. Statistically, on
methods all linearly increases for with the increase of G);, average, the query processing time of M-HAMC is 46.8
the scale of the pattern graph and the bounded path length; percent less than that of HAMC.
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TABLE 5
The Average of the Sum of Path Length
Dataset HAMC M-HAMC Comparison
Epinions 50.65 48.10 5.04% less
DBLP 40.49 38.03 6.09% less
Youtube 57.12 52.89 7.42% less
Pokec 62.15 57.47 7.52% less
LiveJournal 59.52 55.05 7.50% less
TABLE 6
The Average Query Processing Time
Dataset HAMC M-HAMC Comparison
Epinions 13.5 7.3 45.7% less
DBLP 413 226 45.3% less
Youtube 919 512 44.3% less
Pokec 2,048 930 54.6% less
LiveJournal 9,954 5,563 44.1% less

Analysis. The experimental results illustrate that (1) both
M-HAMC and HAMC have the linear time complexity of the
scale of the pattern graph, and thus they have good scalabil-
ity; (2) with the increase of the number of threads, the effi-
ciency can be improved due to the better usage of the
capabilities of CPUs. But, due to the block and the switching
between threads, the execution time of M-HAMC can
increase after reaching a certain number of threads. This is
consistent with the theory in multi-threading programming
[471; (3) with the increase of the value of constraints, the exe-
cution time of both M-HAMC and HAMC decreases.
Because with the decrease of the number of feasible paths,
the number of edges accessed by both M-HAMC and HAMC
decreases, leading to less execution time; and (4) M-HAMC
bidirectionally finds EPM in parallel for both F-EPM and
O-EPM processes, which improves the efficiency of graph
search. In addition, in the O-EPM of M-HAMC, the search
terminates when both the forward and backward search
processes access the same expansion vertex, which avoids
visiting all the vertices and edges in a data graph. Thus,
M-HAMC can greatly save the query processing time.

Summary. The above experimental results have demon-
strated that the proposed heuristic edge pattern matching
strategies adopted in M-HAMC provide an effective means
to answer MC-GPM queries. In addition, with our proposed
multithreading search strategies, M-HAMC can bidirection-
ally search the data graph in parallel, which greatly saves
query processing time. Therefore M-HAMC significantly
outperforms the previous algorithm HAMC in both effec-
tiveness and efficiency. Therefore, M-HAMC is a very com-
petitive algorithm for the new NP-Complete MC-GPM
problem in social network based applications.

9 CONCLUSION

In this paper, we have proposed a new Multi-Constrained
Simulation to support a new type of Multi-Constrained
Graph Pattern Matching (MC-GPM) that is a corner stone
for many social network based applications. Then, we have
developed a novel concept, strong social component, upon
which we have designed a novel index structure and a con-
text-preserved graph compression method. Finally, we
have proposed a multithreading heuristic algorithm, M-
HAMC which employs our novel heuristic matching strate-
gies for the NP-Complete MC-GPM problem. M-HAMC
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achieves O(EpNplogNp + EgEp) in time cost, and the
experiments conducted on five real-world large-scale social
graphs have demonstrated the superiority of our proposed
approaches in terms of effectiveness and efficiency.
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