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5 Abstract—The widespread use of positioning devices has given rise to many trajectories, with each having three explicit attributes:

6 user ID, location ID, and time-stamp and an implicit attribute: activity type (akin to “topic” in text mining). To model these trajectories,

7 existing works learn different attribute representations by either introducing latent activity types based on topic models or transforming

8 the location and time context into a low-dimensional space via embedding techniques. In this paper, we propose a holistic approach

9 named Human Mobility Representation Model (HMRM) to simultaneously produce the vector representations of all four (explicit and

10 implicit) attributes. The merits of HMRM lie in that: (1) it models the latent activity types and learns trajectory attribute embeddings in an

11 integrated manner, and (2) it connects the activity-related distributions and these attributes embeddings by adding a newly designed

12 collaborative learning component, and makes them mutually exchanged to take the best of both worlds. We apply HMRM to both

13 unsupervised and supervised tasks including two activity evaluation tasks and two embedding evaluation tasks, on two real check-in

14 datasets collected from Foursquare. Experimental results show that HMRM could not only improve the performance of capturing latent

15 activity types, but also learn better trajectory embeddings.

16 Index Terms—Human mobility representation model, attribute representation learning, activity modeling, trajectory embedding,

17 collaborative learning

Ç

18 1 INTRODUCTION

19 THE increasing prevalence of location acquisition technol-
20 ogies (e.g., global positioning system enabled mobile
21 devices and video capturing equipments) has made it possi-
22 ble to collect a deluge of users’ spatio-temporal trajectories,
23 where a trajectory is defined as the sequence of locations of
24 a user as a function of time. For instance, check-in records
25 collected by social network sites (e.g., Foursquare and
26 Gowalla) over time form a trajectory of the locations visited
27 by a user [22], [40]; the Vehicle Passage Records (VPRs)
28 acquired via the surveillance cameras installed on city
29 streets constitute vehicle trajectories [6]. Both types of trajec-
30 tory data contain explicit attributes including user ID, loca-
31 tion ID, and time-stamp. Besides, there exist hidden semantic
32 structures underlying users’ trajectories, and some studies
33 [1], [2] define them as the latent activity types (akin to
34 “topics” in text mining). The activity types are considered as

35the implicit attributes of trajectories. We tackle the task of
36attribute representation learning, which is to find representa-
37tions of trajectory attributes. These learned attribute repre-
38sentations could capture the characteristics of trajectories,
39e.g., sequential patterns and semantic properties, and be
40used as the feature vectors for a wide spectrum of down-
41stream applications, e.g., location categorization, user simi-
42larity computation and user classification [28], [32], [46].
43Existing work on representation learning of trajectory
44attributes can be grouped into two categories. The first cate-
45gory of methods are concerned with learning the embed-
46dings of the locations [7], [21], [29], [38], [41], [42], [43], [45].
47They follow the distributional hypothesis that locations
48occurring in similar contexts tend to have similar semantic
49properties, and project them into closer embedding vectors
50in the latent space. The second category of methods model
51the joint distribution of users, activity types and locations
52based on users’ trajectories [1], [2], [16], [26]. They treat tra-
53jectories of a user as mixtures of latent activity types, which
54are in turn formulated as multinomial distributions over
55locations. Apparently, these two categories of approaches
56are good at different aspects of the attribute representation
57learning task, but neither is able to capture the interplay of
58the four attributes in a principled way.
59In this work, we consider a holistic approach to attribute
60representation learning that takes the best of both worlds.
61Our objective is to develop a single Human Mobility Repre-
62sentation Model (HMRM) that is able to simultaneously
63produce the vector representations of all four (explicit and
64implicit) attributes. A first attempt to achieve this is to build
65a model that integrates one model from each of the afore-
66mentioned two categories of approaches using linear combi-
67nation. However, since these two individual models do not
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68 share any common attribute representations, optimizing
69 for the linear combination reduces to learning the two
70 models separately, defeating the purpose of this combined
71 model. Therefore, we propose a novel method that trains
72 both models simultaneously by adding a newly designed
73 collaborative component. Specifically, HMRM consists of
74 three components: the activity modeling component for
75 learning the latent activity types, the trajectory embedding
76 component for generating embeddings of the explicit
77 attributes, and the collaborative learning component for
78 making the connection between the attribute embeddings
79 and the activity types.
80 A major difficulty in learning the proposed HMRM lies
81 in different formulations of the three components. These
82 activity modeling methods are usually probabilistic genera-
83 tive models while the trajectory embedding methods are
84 mainly based on artificial neural networks, making it chal-
85 lenging to find a coherent way to learn them at the same
86 time. The basic idea of our solution to this problem is to
87 identify a “lowest common denominator” representation of
88 the individual components and transform all of them into
89 this new representation. Fortunately, for two particular
90 models, PLSA [13] (Probabilistic Latent Semantic Analysis,
91 a generative model that can be used for capturing activity
92 types) and Skip-Gram [27] (a method that can be used for
93 learning the attribute embeddings), their equivalences to
94 matrix factorization operations have already been estab-
95 lished in the literature [9], [20]. Therefore, we propose to
96 formulate the three components via matrix factorization. To
97 be more specific, the activity modeling component factor-
98 izes the user-location and user-time matrices and learns
99 multiple activity-related distributions (e.g., the user-activity

100 distribution and the activity-location distribution); the tra-
101 jectory embedding component factorizes the location co-
102 occurrence and location-time matrices and learns multiple
103 embeddings (e.g., location embeddings and time embed-
104 dings); the collaborative learning component factorizes the
105 activity-location/time distribution into the inner product of
106 the corresponding location/time embeddings and activity
107 embeddings. By this means, we establish direct connections
108 between attribute embeddings and activity types, and regu-
109 late distributional activity semantics accordingly. Finally,
110 we perform parameter inference through Alternating Least
111 Squares matrix factorization method.
112 To evaluate how well HMRM captures latent activity
113 types and learns attribute embeddings, we perform both
114 unsupervised and supervised quantitative tasks including
115 two activity evaluation tasks and two embedding evalua-
116 tion tasks, on two real check-in datasets collected from
117 Foursquare. We show that by modeling the activity types
118 and these attributes embeddings collaboratively, HMRM
119 outperforms the baselines on these evaluation tasks. We
120 also provide qualitative analysis on the activity embeddings
121 and the time embeddings. Further, we make detailed analy-
122 sis to explain how activity types and attribute embeddings
123 can collaboratively enhance the quality of each other.
124 Finally, we give efficiency analysis on the proposed HMRM.
125 The main contributions of this paper are as follows.

126 � We propose an integrated Human Mobility Represen-
127 tation Model (HMRM) to learn dense representations

128of all four (explicit and implicit) attributes (i.e., user,
129location, time, and activity type) from trajectory data.
130HMRM captures the latent activity types and learns
131location/time/activity embeddings simultaneously.
132� HMRM establishes connections between the activity
133types and these attributes embeddings by adding a
134newly designed separate collaborative learning com-
135ponent. In this way, it regulates locations/time with
136similar activity distributions to be close in the
137embedding space and nearby locations/time to have
138similar activity distributions.
139� Experimental results show that the collaborative
140learning component could help learn better attribute
141embeddings and assist in capturing more coherent
142activity types.

1432 RELATED WORK

144There mainly exist two kinds of popular methods to learn
145attribute representations from trajectory data – activity
146modeling and trajectory embedding.

1472.1 Activity Modeling

148Activity modeling, which aims at learning the latent activity
149types in trajectories, has received much attention recently.
150Some recent studies [12], [14], [25], [33] consider both trajec-
151tories and the background semantic labels of locations such
152as restaurant, store and park, to indicate activity types. Xie
153et al. [33] study the trajectory semantic join problem to find
154user activity sequences from a set of trajectories, in which
155they determine the activity types of a trajectory based on
156the semantic labels of nearby locations and the duration.
157Gong et al. [12] calculate the visit probability of each nearby
158location given the destination and time, and use the seman-
159tic information of possible visited locations to infer the trip
160purposes of taxi passengers. Huang et al. [14] first model the
161spatio-temporal attractiveness of locations to discover the
162activity spot and duration from raw GPS trajectories. Fur-
163ther, they present a novel approach to estimate the potential
164possibilities for activities with the intersections of trajecto-
165ries and spatio-temporal attractiveness prisms. Liu et al. [25]
166leverage the trip context information, i.e., the semantic
167information of locations around destination, to describe the
168activity types of a trip.
169On the other hand, there are some studies [1], [2], [16],
170[18], [26], [44] that focus on learning the latent activity types
171from sequences of semantically unlabeled locations as
172opposed to semantically labeled trajectories. Joseph et al.
173[16] model users’ check-in behaviors using LDA (Latent
174Dirichlet Allocation [3]), and assume that every user can be
175represented by multiple activity types, wherein each check-
176in by that user is motivated by one or more of these activity
177types. Long et al. [26] directly employ the LDA model to
178investigate the local geographic topics based on the users’
179check-ins in Foursquare. Alharbi and Zhang [2] propose a
180Social Trajectory Amplification and Representation learning
181model, which considers both extrinsic (social network) and
182intrinsic (user trajectory) factors and infers the activity types
183from unlabeled and incomplete location-user traces by
184leveraging the network of friends. Further, Alharbi et al. [1]
185propose a model named HuMoR based on LDA, which
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186 extracts the activity types from community-level sequences
187 while making use of metadata (e.g., user social graph, visit-
188 ing time) associated with location IDs. Zheng and Ni [44]
189 propose a generative model that models both location and
190 time to understand human behaviors from mass amount of
191 mobile data. Specifically, they first draw a behavior pattern
192 z, and then draw a latent state, a time point and a location
193 id dependent on z. Kurashima et al. [18] propose a Geo
194 Topic Model to estimate both the user’s interest and the
195 user’s spatial area of activity, which models both the loca-
196 tions and the geotags (e.g., users’ reviews) of these visited
197 locations. However, all these methods are built upon LDA
198 and only model the global user-location frequency matrix.
199 In addition, some methods [10], [31] organize trajectory
200 data in the form of higher-order tensor and leverage tensor
201 decomposition to model the relationships between multiple
202 modes. For example, Fan et al. [10] leverage a non-negative ten-
203 sor factorization approach to factorize the spatial distribution
204 of POIs. They use a people flow tensor to model the relation-
205 ship of POIs and human mobility, where the three-way tensor
206 contains the number of regions, time-slices and sample days
207 respectively. Takeuchi et al. [31] propose a novel tensor factori-
208 zation technique called Non-negativeMultiple Tensor Factori-
209 zation, which naturally incorporates auxiliary data tensors
210 into standard tensor factorization, to solve the data sparsity
211 problem. However, users’ check-in data are extremely sparse,
212 and if we build the user-location-time tensor, only about 0.01
213 percent elements of the tensor will have values, which is diffi-
214 cult to learnmeaningful attribute representations.

215 2.2 Trajectory Embedding

216 Inspired by the success of word2vec [27], many studies [11],
217 [24], [41], [43], [45] adopt the framework of word2vec to
218 learn trajectory embeddings with check-in data. Liu et al.
219 [24] model the check-in sequences based on the Skip-gram
220 model and learn the latent representation for a location to
221 capture the influence of its context. They consider the confi-
222 dences of observed user preferences for locations with a
223 pair-wise ranking loss and leverage the latent representa-
224 tions for personalized location recommendations. Further,
225 Zhou et al. [45] propose a general Multi-Context Trajectory
226 Embedding Model (MC-TEM), which leverages multiple
227 contexts, including users, trajectories, surrounding locations
228 and their corresponding category labels, as well as the tem-
229 poral factor. Note that, all the context information is repre-
230 sented in the same embedding space. Similarly, Zhao et al.
231 [43] propose a Time-Aware Trajectory Embedding Model
232 (TA-TEM) which considers surrounding locations, dynamic
233 user preference and the temporal factor. Specially, they
234 jointly model multiple kinds of temporal factors in a unified
235 manner. However, all these models adopt the framework of
236 word2vec, and only consider the local contexts.
237 Besides the contextual check-in information and the vari-
238 ous temporal characteristics, some studies [4], [11], [39], [41]
239 leverage external information (e.g., geographical information
240 and text content) to learn trajectory embeddings. Zhao et al.
241 [41] propose a temporal location embedding model
242 (Geo-Teaser) which captures the geographical influence. Spe-
243 cifically, they discriminate the unvisited POIs according to
244 geographical information and incorporate the geographical
245 influence into the pairwise preference ranking method.

246Feng et al. [11] present a new latent representation model
247named POI2Vec which captures user preference, location
248sequential transition influence, and geographical influence for
249predicting potential visitors for a given location. Yao et al. [39]
250propose a method named Semantics-Enriched Recurrent
251Model (SERM) for the location prediction with semantic tra-
252jectory data. SERM jointly learns the embeddings of multiple
253factors (e.g., location, keyword) and the transition parameters
254of a recurrent neural network. Chang et al. [4] propose a con-
255tent-aware POI embeddingmodel to utilize the text content of
256a POI to boost the performance of prediction. In addition,
257except the check-in trajectory data, Chen et al. [7] focus on the
258traffic trajectory data and propose a Mobility Pattern Embed-
259ding (MPE) method. They consider the characteristics of
260urban road networks and embed the time slots, current loca-
261tions and next locations together as points in a latent space.
262In addition, there also exist some methods [17], [23], [35]
263using the Recurrent Neural Networks to model the sequen-
264tial patterns of trajectories, in which the trajectory embed-
265dings can be learned as by-products. For instance, Liu et al.
266[23] propose Spatial Temporal Recurrent Neural Networks
267(ST-RNN) to model the local temporal and spatial contexts
268for mining mobility patterns. Yang et al. [35] present a neu-
269ral network by modelling both the social networks and
270mobile trajectories, in which they employ RNN to capture
271the sequential relatedness in mobile trajectories. Kong and
272Wu [17] propose a hierarchical spatio-temporal LSTM
273model, leveraging the historical visit information and spa-
274tio-temporal factors for the location prediction. However,
275these RNN-based (or LSTM-based) methods focus on stor-
276ing statistical weights for long-term transitions in a trajec-
277tory, and use the side features (e.g., friendship network)
278that do not exist in our trajectory data.
279To the best of our knowledge, all the methods that mine
280human mobility patterns from trajectory data either model
281the latent activity types or learn the trajectory embeddings.
282Overall, our HMRM could learn these dense attribute repre-
283sentations including the activity-related distributions and
284the trajectory embeddings simultaneously, and model the
285relations between the distributions and the corresponding
286embeddings collaboratively.

2873 PROBLEM DEFINITION

288We first introduce some preliminary concepts and then
289define the problem studied in this paper.

290Definition 1 (Trajectory). Given a user u, a trajectory Tu is
291defined as a time-ordered sequence of location-time pairs:
292hðl1; t1Þ; ðl2; t2Þ; . . . ; ðln; tnÞi, where l and t are the ID of loca-
293tion and time-stamp respectively.

294Definition 2 (Trajectory Attributes). Given a trajectory Tu,
295there exist three explicit trajectory attributes, i.e., user ID,
296location ID, and time. We also include the latent activity type
297a as an implicit attribute reflecting the hidden semantic struc-
298tures underlying users’ trajectories.

299Given the trajectories of all the users, we build 1) the
300user-location frequency matrix Ul and the user-time fre-
301quency matrix Ut (detailed in Section 4.2.1), and 2) the
302shifted location co-occurrence PMI (Point-wise Mutual
303Information) matrix Ll and the shifted location-time PMI

CHEN ET AL.: MODELING SPATIAL TRAJECTORIES WITH ATTRIBUTE REPRESENTATION LEARNING 3
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304 matrix Lt (detailed in Section 4.2.2). With Ul, Ut, Ll, and Lt,
305 we aim at learning the dense attribute representations
306 including the activity-related distributions (i.e., the user-
307 activity distribution Q, the activity-location distribution Al

308 and the activity-time distribution At) and the trajectory
309 embeddings (i.e., the activity embeddings Ea, the target
310 location embedddings El, the context location embeddings
311 Ec and the time embeddings Et). These trajectory attribute
312 representations could be used in many applications, e.g.,
313 location categorization, user similarity computation, and
314 user persona. The major notations used in this paper are
315 listed in Table 1.

316 4 HUMAN MOBILITY REPRESENTATION MODEL

317 In this section, we first give the overview of the proposed
318 HMRM, and then describe the activity modeling compo-
319 nent, the trajectory embedding component, and the collabo-
320 rative learning component in detail respectively. Finally, we
321 present the training algorithm for HMRM.

322 4.1 Overview of HMRM

323 The trajectory data contains both the explicit attributes (i.e.,
324 user, location and time) and the implicit attribute (i.e., the latent
325 activity type), and the interplay of the four attributes forms the
326 mobility patterns of users. Therefore, we need to simulta-
327 neously learn the vector representations of these attributeswith
328 a holistic model. The trajectory embedding methods [38], [42],
329 [45] could learn fine-grained attribute embeddings, and the
330 activity modeling methods [1], [16], [26] are able to capture
331 valuable activity types. It is natural to integrate an activity
332 modelingmethod and a trajectory embeddingmodelwith a lin-
333 ear function. As there do not exist any common attribute repre-
334 sentation in both individual models, optimizing for the linear
335 integration is the same as learning attribute embeddings or
336 activtiy-related distributions separately. Hence it is essential to
337 establish direct connections between these embeddings and
338 distributions andmodel them collaboratively.
339 To learn representations of the four attributes and collabo-
340 ratively model attribute embeddings and activity structures,

341we propose an integrated Human Mobility Representation
342Model (HMRM), which consists of the activitymodeling com-
343ponent, the trajectory embedding component, and the collab-
344orative learning component. HMRM is built based on the
345following three basic assumptions:

346� activity modeling component: each user can be repre-
347sented as a mixture of activity types, where each
348activity type assigns high probabilities to only a
349small number of locations and time slots;
350� trajectory embedding component: locations appearing
351with similar context locations or in the same time
352slots tend to have similar semantic labels, hence
353should be mapped closer in the embedding space;
354� collaborative learning component: locations (or time
355slots) close to each other in the embedding space
356tend to be associated with similar activity types and
357vice versa.
358HMRM takes advantages of matrix factorization to for-
359mulate the three components, as PLSA [13] (a generative
360model that can be used for learning activity types) and
361Skip-Gram [27] (a method that can be used for learning the
362attribute embeddings) have been proven to be equivalent
363to optimizing objective functions through matrix factoriza-
364tion [9], [20].
365The framework of HMRM is shown in Fig. 1, where the
366activity-location/time distributions and location/time
367embeddings are shared in two components. Let us take a
368running example to illustrate the proposed HMRM. Sup-
369pose a user usually visits restaurants (e.g., sushi restaurant
370and ramen restaurant) at noon. Given trajectories of this user,
371we first construct the user-location frequency matrix Ul and
372the user-time frequency matrix Ut, and learn the latent
373activity types (i.e., activity-related distributions) via decom-
374posing Ul and Ut simultaneously, as shown in the activity
375modeling component of Fig. 1. In this part, we expect that it
376has a high probability that sushi restaurant and ramen restau-
377rant belong to the same activity type (e.g., dining). On the

TABLE 1
Notations and Descriptions

Notations Descriptions

T; u; a Trajectory, User, Activity type
l; c; t Target Location, Context location, Time slots
K Number of activity types
M Dimensionality of embedding space
Nl;Nu;Nt Number of locations, users, and time slot
vvl; vvt embedding vectors for location, time

Ul 2 RNu�Nl User-location frequency matrix
Ut 2 RNu�Nt User-time frequency matrix
Ll 2 RNl�Nl Location co-occurrence PMI matrix
Lt 2 RNl�Nt Location-time PMI matrix

Al 2 RNl�K Activity-location distribution matrix
At 2 RNt�K Activity-time distribution matrix
Q 2 RNu�K User-activity distribution matrix
Ea 2 RK�M Activity embedding matrix
El 2 RNl�M Target Location embedding matrix
Ec 2 RNl�M Context location embedding matrix
Et 2 RNt�M Time slot embedding matrix

Fig. 1. The framework of HMRM. The gray circle denotes a variable that
is (assumed as) observed, and dashed circles denote parameters in
HMRM. Ul is the user-location frequency matrix, Ut is the user-time fre-
quency matrix, Ll is the shifted location co-occurrence PMI matrix, and
Lt is the shifted location-time PMI matrix. The learned attribute represen-
tations include the activity-related distributions (i.e., the user-activity dis-
tribution Q, the activity-location distribution Al and the activity-time
distribution At) and the trajectory embeddings (i.e., the activity embed-
dings Ea, the target location embedddings El, the context location
embeddings Ec and the time embeddings Et).
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378 other hand, as shown in the trajectory embedding compo-
379 nent of Fig. 1, we factorize the shifted location co-occurrence
380 PMI matrix Ll and the shifted location-time PMI matrix Lt,
381 to learn location embeddings and time embeddings accord-
382 ingly. In this part, we expect that sushi restaurant and ramen
383 restaurant are close to each other in the embedding space.
384 Further, we assume that the distances between location (or
385 time) embeddings correlate with their activity similarities,
386 and realize this assumption by factorizing the activity-loca-
387 tion distribution matrix Al and the activity-time distribution
388 matrix At. Via the collaborative learning component, we
389 further regulate sushi restaurant and ramen restaurant to be
390 close in the embedding space and to have similar activity
391 distributions.

392 4.2 Model Description

393 4.2.1 Activity Modeling Component

394 Intuitively, users usually visit different locations according
395 to their preferences. For example, the visited locations of
396 students are mainly relevant to “studying” on weekdays,
397 while the retirees are more likely to visit “shopping” and
398 “relaxing” regarded places. Hence we first model the activ-
399 ity types concerning human mobility patterns from users’
400 trajectories. Formally, trajectories of a user are modeled as
401 mixtures of latent activity types, which are in turn formu-
402 lated as multinomial distributions over locations. As Ding
403 et al. [9] have proven the equivalence between PLSA [13]
404 and NMF (Non-negative Matrix Factorization) [19] for opti-
405 mizing the same objective, we model the activity types
406 through NMF. More specifically, we decompose the user-
407 location frequency matrix Ul into the inner product of the
408 user-activity distribution matrix Q and the activity-location
409 distribution matrix Al.
410 Furthermore, users may exhibit different temporal
411 behaviors, and the temporal distributions vary from one
412 activity to another. For instance, the activity regarding
413 transportation usually occurs during the morning and even-
414 ing rush hours. Therefore, we also need to consider the tem-
415 poral factor in this component. Similarly, the user-time
416 frequency matrix Ut is decomposed into the inner product
417 of the user-activity distribution matrix Q and the activity-
418 time distribution matrix At. We discretize a day into hourly
419 unit and distinguish weekdays from weekends, i.e., a num-
420 ber ranging from 0 to 47 is used to denote the hour index.
421 Finally, we factorize both Ul and Ut (as shown in the
422 activity modeling component of Fig. 1), and define the
423 objective as

minQ;Al;At�l k Ul �QAlT k22 þð1� �lÞ k Ut �QAtT k22;
subject to :

Q � 0;Al � 0; and At � 0;

(1)

425425

426 where �l balances the two parts, and k � k2 is the euclidean
427 norm. The non-negativity of NMF ensures the explainability
428 of the user-activity distribution Q, the activity-location dis-
429 tribution Al and the activity-time distribution At. In our
430 model, the value of Ul

ij is the raw frequency that a user ui

431 visits a location lj, and the value of Ut
ij is the raw frequency

432 that a user ui checks in within time slot tj. In this way, the
433 users’ preference information encoded in Ul and Ut is fully

434considered in Eq. (1), and the attribute representations (i.e.,
435Q, Al, At) could be learned accordingly.

4364.2.2 Trajectory Embedding Component

437As a kind of sequential data, it is important to consider the
438local context when learning semantic relatedness for attrib-
439utes in trajectories [45]. We learn a low-dimensional repre-
440sentation for each location under the assumption that
441locations appearing with similar context locations tend to
442have similar semantics. Levy et al. [20] have found that the
443objective of Skip-Gram [27] (a word2vec model) is implicitly
444factorizing a shifted positive word co-occurrence PMI
445matrix. Therefore, we could learn the location embeddings
446by decomposing the shifted positive location co-occurrence
447PMI matrix Ll into the inner product of the target location
448embedding matrix El and the context location embedding
449matrix Ec. The matrix Ll 2 RNl�Nl is constructed as:

Ll
i;j ¼ maxðPMIðli; cjÞ; 0Þ;

PMIðli; cjÞ ¼ log
]ðli; cjÞ � jDl j
]ðliÞ � ]ðcjÞ ;

(2)

451451

452where li is a target location, cj is a context location, and Nl is
453the number of locations. We denote the collection of
454observed target locations and context pairs as Dl. We use
455]ðli; cjÞ to denote the number of times the pair ðli; cjÞ appears
456in Dl. Similarly, ]ðliÞ and ]ðcjÞ are the number of times li and
457cj occur in Dl, respectively. PMIðli; cjÞmeasures the associa-
458tion between a target location li and a context location cj by
459calculating the logarithm of the ratio between their joint
460probability and their marginal probabilities.
461Analogously, the temporal factor is also essential for tra-
462jectory embedding, as locations visited in the same time slot
463are more likely to have similar semantic labels. For example,
464people may go to different locations (e.g., pizza and sushi res-
465taurant) to have lunch at noon. Hence we need to learn low-
466dimensional representations for both the time slots and the
467target locations. Similarly, we build a new shifted positive
468location-time PMI matrix Lt 2 RNl�Nt , and decompose it
469into the inner product of the target location embedding
470matrix El and the time embedding matrix Et. Finally, we
471exploit the local location and time contexts to learn trajec-
472tory embeddings by factorizing both Ll and Lt (as shown in
473the trajectory embedding component of Fig. 1):

min
El;Ec;Et

�l k Ll � ElEcT k22 þð1� �lÞ k Lt � ElEtT k22 : (3) 475475

476

4774.2.3 Collaborative Learning Component

478We have discussed how to uncover the structures of activity
479types (e.g., activity-location distribution Al and activity-
480time distribution At) and learn the trajectory embeddings
481(e.g., context location embeddings Ec and time embeddings
482Et) respectively. However, these two steps should not be
483isolated from each other, as (1) locations with similar activ-
484ity types (e.g., dinning) tend to be close in the embedding
485space and (2) users are more likely to have similar activities
486in those time slots which are in the nearby areas in the
487space. Hence it is reasonable to assume that the distances

CHEN ET AL.: MODELING SPATIAL TRAJECTORIES WITH ATTRIBUTE REPRESENTATION LEARNING 5
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488 between location (or time) embeddings correlate with their
489 activity type similarities.
490 By introducing the activity embedding matrix Ea, we
491 connect the activity-related distributions and the trajectory
492 embeddings directly, as shown in the collaborative learning
493 component in Fig. 1. Specifically, we factorize the activity-
494 location matrix Al into the inner product of the context loca-
495 tion embedding matrix Ec and Ea, and decompose the activ-
496 ity-time matrix At into the inner product of the time
497 embedding matrix Et and Ea. That is,

min
Al ;At ;
Ec ;Ea ;Et

�l k Al � EcEaT k22 þ ð1� �lÞ k At � EtEaT k22 :

(4)
499499

500 The probability that a location li (or time ti) being grouped
501 into an activity type aj can be computed by the inner product
502 of the corresponding context location embedding (or time
503 embedding) and activity embedding: pðajjliÞ / Ec

i��EaT
j ,

504 pðajjtiÞ / Et
i��EaT

j . Hence the objective is able to not only regu-
505 late locations and time slots with similar activity types to be
506 close in the embedding space, but also make nearby locations
507 and time slots in the embedding space to have similar activ-
508 ity-location distributions and activity-time distributions.

509 4.2.4 Unifying the Three Components

510 We integrate the above three components and propose the
511 Human Mobility Representation Model. The overall objec-
512 tive is,

min
F

�l k Ul �QAlT k22 þð1� �lÞ k Ut �QAtT k22|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
activity modeling component

þ �l k Ll � ElEcT k22 þð1� �lÞ k Lt � ElEtT k22|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
trajectory embedding component

þ �l k Al � EcEaT k22 þð1� �lÞ k At � EtEaT k22|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
collaborative learning component

þ � k F k22
subject to :

Q � 0;Al � 0; and At � 0;

(5)

514514

515 where F is the set of all the variables that need to estimate
516 and � is the parameter to prevent over-fitting.
517 Through the objective function (Eq. (5)) of HMRM, we
518 know that the activity-location distribution matrix Al and
519 the activity-time distribution matrix At are shared by both
520 the activity modeling component and the collaborative
521 learning component; the context location embedding matrix
522 Ec and the time embedding matrix Et are shared by both the
523 trajectory embedding component and the collaborative
524 learning component. Therefore, the activity types and
525 the trajectory embeddings we could obtain in HMRM can
526 be mutually exchanged to take the best of the two worlds.

527 4.3 Parameter Inference

528 We now discuss how to perform the parameter inference
529 for HMRM via collective matrix factorization. We first
530 compute the gradient of our objective function (Eq. (5))
531 with respect to each variable, and then obtain the following

532closed-form updates by iteratively setting the gradient to
533zero, similar to Alternating Least Squares (ALS) matrix fac-
534torization method.

Q ¼ �lU
lAl þ ð1� �lÞUtAt

� ���
�lA

lTAl þ ð1� �lÞAtTAt þ �I
h i�1

Al ¼ �lðUlTQþ EcEaT Þ
h i

�� �lQ
TQþ ð�l þ �ÞI� ��1

At ¼ ð1� �lÞðUtTQþ EtEaT Þ
h i

��
ð1� �lÞQTQþ ð1� �l þ �ÞI� ��1

Ea ¼ �lA
lTEc þ ð1� �lÞAtTEt

h i
��

�lE
cTEc þ ð1� �lÞEtTEt þ �I

h i�1

El ¼ �lL
lEc þ ð1� �lÞLtEt

� ���
�lE

cTEc þ ð1� �lÞEtTEt þ �I
h i�1

Ec ¼ �lðLlTEl þAlEaÞ
h i

�� �lðElTEl þ EaTEaÞ þ �I
h i�1

Et ¼ ð1� �lÞðLtTEl þAtEaÞ
h i

��

ð1� �lÞðElTEl þ EaTEaÞ þ �I
h i�1

;

(6)
536536

537where I is an identity matrix. This update does not guaran-
538tee the non-negativity of Q, Al, and At. Since our objective
539function is continuous, the minimum should be either at the
540point where the gradient is zero or on the boundary. Hence,
541if Eq. (6) assigns Q, Al, and At with negative values, we can
542just set the negative values at zeros following [8], [34].
543The learning algorithm of HMRM is depicted in Algo-
544rithm 1. Given the trajectories of all the users, we first build 1)
545the user-location frequency matrix Ul and the user-time fre-
546quencymatrixUt (detailed in Section 4.2.1) and 2) the location
547co-occurrence PMI matrix Ll, and the location-time PMI
548matrix Lt (detailed in Section 4.2.2). Then we initialize the
549parameters ðQ;Al;At;Ea;El;Ec;EtÞwith the standard normal
550distribution. Finally, we iteratively update the parameters
551according to Eq. (6) until the objective value remains stable.
552We will evaluate whether our learning algorithm converges
553to a local minimum and report the running time of one itera-
554tion in the experiments (detailed in Section 6.9).

555Algorithm 1. Learning Algorithm

556Require: training trajectories, number of activity types K,
557dimensionality of embedding spaceM;
558Ensure: ðQ;Al;At;Ea;El;Ec;EtÞ;
559// construct training matrices
5601: build the user-location matrix Ul based on raw frequency;
5612: build the user-time matrix Ut based on raw frequency;
5623: build the location co-occurrence PMI matrix Ll;
5634: build the location-time PMI matrix Lt;
564// train the model
5655: initialize the parameters ðQ;Al;At;Ea;El;Ec;EtÞ;
5666: repeat
5677: update the parameters according to Eq. (6);
5688: until stopping criteria is met;
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569 5 APPLICATIONS

570 To evaluate how well HMRM captures latent activity types
571 and learns location embeddings, we perform both unsuper-
572 vised and supervised quantitative tasks, including two loca-
573 tion embedding evaluation tasks and two activity structure
574 evaluation tasks.

575 5.1 Evaluation on Location Embeddings

576 Location Categorization. Besides the direct locations, recently
577 their categories have been shown to be of important evi-
578 dence for location recommendation [45]. Foursquare organ-
579 izes the categories of locations with a hierarchical structure,
580 and the top-level categories include Arts & Entertainment,
581 College & University, Event, Food, Nightlife Spot, Outdoors &
582 Recreation, Professional & Other Places, Residence, Shop & Ser-
583 vice, and Travel & Transport. In our HMRM, we could learn
584 the semantic relations among locations, and semantically
585 related locations tend to be close in the embedding space.
586 Therefore, we expect that locations with the same category
587 are projected into closer vectors.
588 To measure the semantics of locations, we make location
589 categorization following [46]. We define the similarity S of
590 two locations (li and lj) using the cosine similarity of their
591 vector representations (El

i and El
j),

Sðli; ljÞ ¼ Ec
i � Ec

j

k Ec
i k � k Ec

j k : (7)

593593

594 For each location li from the test set, we use cosine similarity
595 to find the most similar location lj. We check the category of
596 lj, and if location lj has the same category as location li,
597 there is a match and location li is a matched location. The
598 match rate of a test set is the ratio of the matched locations in
599 the set over the size of the test set,

match rate ¼ number of matched locations

number of locations in test set
: (8)

601601

602 Larger the match rate is, better semantics the location repre-
603 sentations retain.
604 Location Category Prediction. We also make supervised
605 location category classification with these location embed-
606 dings. Given a location, we fetch the target location vector
607 from El and the context location vector from Ec, and concat-
608 enate them to build a feature vector. Then we use a classifier
609 (e.g., SVM [5]) to predict the location’s semantic category.

610 5.2 Evaluation on Activity Types

611 User Similarity. As we know, many users publish their meta
612 information such as gender in the location-based social net-
613 works. Users with the same gender usually have similar
614 preference on the visited locations. For example, a female
615 usually prefers shopping, while a male is more likely to visit
616 locations related to sport. Via HMRM, we could learn the
617 user-activity distribution, i.e., each user can be represented
618 as a numerical vector on the K latent activity types, reflect-
619 ing user’s implicit preference. Therefore, we expect that
620 users with the same gender tend to have similar activity dis-
621 tributions. To validate it, given two sets of users, we mea-
622 sure the average mutual similarity of the activity distributions
623 of those users following [30].

624We first measure the similarity between two user-activity
625distributions (Qi andQj) based on the cosine similarity,

Sðui; ujÞ ¼ Qi �Qj

k Qi k � k Qj k : (9)

627627

628Then we use the average mutual similarity to measure the
629similarity between activity distributions of two sets of users.
630The average mutual similarity between user sets I and J is
631defined by the following,

SðI ;J Þ ¼ 1

ZðI ;J Þ
X
ui2I

X
uj2J ;uj 6¼ui

Sðui; ujÞ; (10)

633633

634where ZðI ;J Þ is the normalization term.
635User Gender Classification. We learn the user-activity dis-
636tribution Q in HMRM, and predict the gender label (male/
637female) of a user based on it. Specifically, we take the
638K-dimensional vector as basis features, the users’ genders
639as the labels, and choose a classifier (e.g., SVM [5]) to predict
640the users’ genders.

6416 EXPERIMENTS

642With the proposed HMRM, we could learn the dense attri-
643bute representations, which could be used in many applica-
644tions. In this section, we conduct the evaluation
645experiments on both unsupervised and supervised tasks
646introduced in Section 5 as well as the visualization of attri-
647bute representations.

6486.1 Datasets and Settings

649We carry out experiments on two publicly available check-
650in datasets collected from Foursquare from April 2012 to
651September 2013: one is from New York and the other is
652from Tokyo [36], [37]. Each check-in record contains three
653main properties: user ID, location ID, and timestamp. To
654make the model robust, we filter those users whose number
655of check-ins are fewer than 100, and those locations whose
656number of check-ins are fewer than 10. The statistical prop-
657erties of the two datasets are shown in Table 2, where
658]Users, ]Locations, ]Check-ins are the number of users, loca-
659tions, and check-ins, respectively.
660When constructing the location co-occurrence PMI
661matrix Ll, we set the size of context window b at 5, i.e., 5 pre-
662ceding locations and 5 following locations are considered as
663context locations for a given target location. The parameters
664we use for the experiments are shown in Table 3. Grid
665search is employed to select the optimal parameters with a
666small but adaptive step size. For the regularization parame-
667ter, we set the default values at � ¼ 0:001. All the experi-
668ments run on a 3.4GHz Intel Core i5 PC with 16GB main
669memory.

TABLE 2
Data Statistics

Dataset ]Users ]Locations ]Check-ins

New York 7,704 40,895 988,955
Tokyo 6,233 29,585 1,362,782

CHEN ET AL.: MODELING SPATIAL TRAJECTORIES WITH ATTRIBUTE REPRESENTATION LEARNING 7
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671 As the proposed HMRM learns the activity-related distribu-
672 tions and the attribute embeddings, we compare it with the
673 topic-related models and the embedding-related models.

674 � CBOW: the word2vec model which considers the
675 local context in learning word embeddings [27].
676 � Geo-Teaser: an embedding model which considers the
677 sequential context and the temporal factor to model
678 the check-in sequences based on word2vec [41].
679 � MC-TEM: an embedding model which adopts the
680 framework of CBOW and leverages multiple con-
681 texts including users, trajectories, surrounding loca-
682 tions and time to learn trajectory embeddings [45].
683 � GTM: we introduce four methods [1], [2], [16], [26] in
684 Section 2.1 which discover the activity types from
685 semantically unlabeled trajectories. The methods in
686 [16] and [26] apply LDA to the trajectory data directly,
687 and themethods in [2] and [1] incorporate the side fea-
688 tures (e.g., user social graph) of trajectories into LDA
689 to learn the activity types. As these side features do not
690 exist in our trajectory data, we choose GTM [26] as the
691 representative baseline for fairness.
692 � UBM: a generative user behavior method which
693 models both location and time to understand users’
694 latent activity types [44].
695 � CLM: a language model which learns topic struc-
696 tures considering both global and local contexts
697 from the text corpus [34].
698 Among these baselines, CBOW, Geo-Teaser, and MC-TEM
699 are embedding-relatedmethods, whichmodel the local context
700 (e.g., surrounding location, time) and learn location embed-
701 dings, without modeling the latent activity types; HuMoR and
702 UBMare able to learn the activity-related distributions,without
703 learning fine-grained location embeddings; CLMdonot exploit
704 the temporal factor, as it is deigned formodeling text data.

705 6.3 Evaluation on Location Categorization

706 We randomly sample 1000 locations as the test set, and com-
707 pute its match rate. To make the results more accurate, we

708perform the sampling process 5 times, and report the mean
709of 5 match rates.

7106.3.1 Performance Comparison

711We compare the proposed HMRM with those baselines
712(including CBOW [27], Geo-Teaser [41], MC-TEM [45], and
713CLM [34]) which could learn location embeddings, and
714report the results in terms of match rate on the New York
715and Tokyo datasets in Fig. 2a. We make the following
716observations:

717(i) HMRM is better than all the baseline on both data-
718sets. For example, the proposed HMRM achieves
71934.3 and 14.8 percent improvements over CLM, and
720improves by 30 and 20.6 percent over MC-TEM on
721the New York and Tokyo datasets, respectively.
722(ii) Geo-Teaser and MC-TEM, which are based on the
723framework of word2vec, take the user and temporal
724information into account and perform better than
725the CBOWmodel on both datasets.
726(iii) CLM does not exploit the temporal factor in learning
727location embeddings, and performs worse than the
728proposed HMRM, indicating the importance of tem-
729poral factor in modeling users’ trajectories.

7306.3.2 Parameter Sensitivity

731We have three parameters to tune in HMRM: the number of
732latent activity types (K), the dimension of embedding space
733(M), and the weight �l. The tuning results on the New York
734dataset are reported in Fig. 2b. We first select the number of
735activity types (K) ranging from 5 to 50with a step interval of 5
736to determine the optimal, with default M 2 f50; 100g and
737�l ¼ 0:5. The performance varies little whenK increases from
7385 to 50. Next, we vary the dimension of embedding space (M)
739from 10 to 300 with default K 2 f10; 20g and �l ¼ 0:5. The
740performance has an obvious improvement whenM increases
741from 10 to 100, and then starts to decline when we increase it
742further. Finally, we set ðK;MÞ 2 fð10; 100Þ; ð20; 100Þg and
743vary �l from 0.1 to 0.9, to validate whether it is essential to
744model the temporal factor inHMRM.We observe that the val-
745ues of match rate reach the best when �l is equal to 0.2, and
746then drop gradually with �l increasing from 0.2 to 0.9, indict-
747ing that the temporal factor plays an important role in
748HMRM. The tuning results on the Tokyo dataset are similar,
749andwe do not report themdue to page limit.

7506.4 Evaluation on Location Category Prediction

751With these location embeddings, we then make the super-
752vised location category prediction task. During the training

TABLE 3
Parameters of HMRM

Parameters Tested settings

number of activity types (K) 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
dimension of embedding
space (M)

10, 20, 30, 40, 50, 100, 150, 200,
250, 300

weight (�l) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9

Fig. 2. Performance on location categorization.
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754 category labels. The task is to predict the labels for the
755 remaining locations. Here we choose SVM [5] as the
756 classifier, and report the average results of 10-fold cross-
757 validation. To evaluate the classification performance, we
758 adopt four well-known metrics, i.e., accuracy, recall, preci-
759 sion and average F1-measure values.

760 6.4.1 Performance Comparison

761 We report the results in terms of recall, precision, F1, and
762 accuracy on the New York and Tokyo datasets in Table 4,
763 and highlight the best results in boldface. We observe that

764 (i) CBOW only considers the sequential patterns in the
765 check-in sequences to learn location embeddings,
766 and performs the worst. Geo-Teaser and MC-TEM
767 consider user, time, and contextual locations as the
768 local context in learning embeddings ,and perform
769 better than CBOW.
770 (ii) CLM considers the global and local surrounding
771 locations in learning location embedding and yields
772 decent results.
773 (iii) HMRM models the temporal factor and leverages
774 the latent activity types to assist in learning location
775 embeddings, and performs the best. For example, it
776 achieves 28.3 percent and 32.7 percent improve-
777 ments on average over CLM in terms of accuracy on
778 the New York and Tokyo datasets.

779 6.4.2 Parameter Sensitivity

780 We measure the performance of HMRM with different K
781 and M on location category prediction and report the
782 results in terms of accuracy on the New York dataset. The
783 experimental results on the Tokyo dataset are similar. We
784 first set M 2 f20; 50g, and report the accuracy with K from
785 5 to 50 in Fig. 3. With the increase of K, the values of accu-
786 racy improve gradually and reach the best when K is equal
787 to 40. By setting K 2 f10; 20g and varying M from 10 to 300,
788 we see that the accuracy improves when we increase M

789from 10 to 50, and then starts to drop slightly when increas-
790ing M further. Finally, we set ðK;MÞ 2 fð10; 20Þ; ð20; 50Þg
791and vary �l from 0.1 to 0.9. The optimal performance is
792achieved when �l is equal to 0.5.

7936.5 Evaluation on User Similarity

794To validate whether the user representations are correctly
795generated (i.e., the activity distributions of users with the
796same gender are similar), we measure the average mutual
797similarity between users with the same gender labels.

7986.5.1 Performance Comparison

799We compare the proposed HMRM with those baselines
800(including GTM [26], UBM [44], and CLM [34]) which are
801able to learn user representations. The results in terms of
802average mutual similarity on the New York and Tokyo data-
803sets are summarized in Fig. 5a.

804(i) GTM learns the user-activity distribution viamodeling
805the location co-occurrences in users’ trajectories, and
806gets decent performance; UBM additionally models
807the temporal factor, and performs better thanGTM.
808(ii) CLMmodels the local trajectory sequence in learning
809the user representations, without considering the
810temporal factor, and it performs better than GTM
811and UBM on the Tokyo dataset.
812(iii) HMRM unifies the process of modeling activity types
813and learning trajectory embeddings, and outperforms
814all the baseline. For example, HMRM achieves 40 and
81536 percent improvements over UBM, and improves by
81652.6 and 33.2 percent over CLM on the New York and
817Tokyo datasets, respectively.

8186.5.2 Parameter Sensitivity

819We tune each of these parameters (i.e., the number of latent
820activity types (K), the dimension of embedding space (M),
821and the weight �l) with the others fixed. Fig. 5 shows the
822tuning results on measuring user similarity on the New
823York dataset. The results show that 1) the performance
824drops when we increase the number of activity types from 5
825to 50, 2) HMRM is relatively stable when the dimension M
826is from 10 to 300, and 3) the average mutual similarity

TABLE 4
Performance Comparison on Location Category Prediction

1The improvements over baselines are statistically significant in terms of
paired t-test [15] with p < 0:01.

Fig. 3. Parameter tuning of HMRM for location category prediction.

Fig. 4. Performance on measuring user similarity.
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827 declines gradually with the weight increasing from 0.1 to
828 0.9, indicating that the temporal factor is pretty important in
829 the proposed HMRM, which is consistent with the conclu-
830 sion derived from location categorization.

831 6.6 Evaluation on User Gender Classification

832 With the latent activity types, we choose SVM [5] to make
833 supervised user gender classification. To evaluate the classi-
834 fication performance, we adopt four well-known metrics,
835 i.e., accuracy, recall, precision and average F1-measure val-
836 ues. We use 10-fold cross-validation and report the average
837 results.
838 To evaluate the quality of user representations, we also
839 compare with the following methods for user gender
840 classification.

841 � BoW: the raw BoW (Bag-of-Word) model, which
842 assigns a vector to a user as ~u ¼ ðx1; x2; . . . ; xmÞ,
843 where xi denotes the normalized number of occur-
844 rence of the ith location, and m is the size of the col-
845 lection of locations. Here, the top 1000 high-
846 frequency locations are used as basis features.
847 � BoW-F: it considers all the locations as features.
848 � BoW-T: it uses both the locations and the check-in
849 time distributions to build features.

850 6.6.1 Performance Comparison

851 The results on the New York and Tokyo datasets are sum-
852 marized in Table 5. The best results are highlighted in
853 boldface.

854 (i) BoW takes the top 1000 high-frequency locations as
855 features, and achieves the best precisions on both
856 New York and Tokyo datasets. However, it has the
857 worst recalls. BoW-F takes all the locations as fea-
858 tures, and it gets the best recalls. Except the check-in
859 location distributions, Bow-T also considers the
860 check-in time distributions as features, and obtains
861 similar performances with BoW-F.
862 (ii) GTM learns the user-activity distribution and gets
863 decent performance; UBM models both location and

864time to learn latent activities, and performs better
865than GTM; CLM considers the local context to help
866learn the latent activity types, and it performs better
867than GTM and UBM in some metrics.
868(iii) Our HMRM models latent activity types and learns
869trajectory embeddings collaboratively, and considers
870the temporal factor in the three components. It per-
871forms the best in terms of accuracy and F1 values.

8726.6.2 Parameter Sensitivity

873We set the dimension of embedding spaceM 2 f20; 50g, vary
874the number of activity typesK from 5 to 50, and demonstrate
875the performance on user gender classification on the New
876York dataset. As shown in Fig. 5, the values of F1 improve
877when we increaseK from 5 to 10, and then decline gradually
878when increasing K further. Then, we set K 2 f10; 20g and
879vary M from 10 to 300. HMRM remains stable with the
880increase ofM, and performs relatively better whenM is equal
881to 50. Finally, we evaluate the effect of �l, which balances the
882two parts in each component. By varying �l from 0.1 to 0.9
883and setting ðK;MÞ 2 fð10; 20Þ; ð20; 50Þg, we find that F1 val-
884ues improve when we increase �l to 0.5, and then decline
885when we increase it further. The experimental results on the
886Tokyo dataset are similar, andwe do not show themhere.

8876.7 Qualitative Analysis of Representations

8886.7.1 Activity Representations

889A major merit of HMRM is that it could learn the activity-
890location distribution, the activity-time distribution and the
891activity embeddings simultaneously. Those activity embed-
892dings are of the same dimensionality as location/time
893embeddings. The relationships between activity embed-
894dings and location/time embeddings are modeled in
895Eq. (4): the larger inner product value a location/time
896embedding and an activity embedding get, the more impor-
897tant that location/time is in the activity type. After conver-
898gence, the similarities and correlations among activity types
899are also captured in the embedding space. Fig. 6 shows the
900two-dimensional PCA projection of representations of four
901activity types. Each activity is annotated with its top 5 loca-
902tions and time slots. Since we cannot understand the activ-
903ity types according to the location IDs, we label these top 5
904locations with the crawled category labels. For the time, we
905characterize a day at the hour scale (i.e., the numbers from 0
906to 23 represent the 24 hours in a day) and distinguish

Fig. 5. Parameter tuning of HMRM for user gender classification.

TABLE 5
Performance Comparison on User Gender Classification

1The improvements over baselines are statistically significant in terms of
paired t-test [15] with p < 0:01.

Fig. 6. Two-dimensional PCA projection of activity representations.
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908 tic similarities between activity types correlate with the
909 euclidean distances between the corresponding activity
910 embeddings. For example, activity types 2 and 3 are both
911 about “going to work/coming off work”, appearing in the
912 morning and evening rush hours, and they are pretty close
913 in the two-dimensional space; while activity types 1 and 2
914 have different semantics, and they are far from each other.

915 6.7.2 Time Representations

916 The relationships between time embeddings and location
917 embeddings are modeled in Eq. (3) and those between time
918 embeddings and activity embeddings are modeled in Eq. (4).
919 Therefore, the time slots with semantically similar activity
920 types and locations tend to be close in the embedding space.
921 Fig. 7 shows the two-dimensional PCA projection of time
922 embeddings. Specifically, the left two figures introduce the
923 details of embedding on weekdays and on weekends respec-
924 tively, and the right figure indicates the relationships of time
925 embeddings between weekdays and weekends. We can
926 observe that the hours on weekdays can be split into four
927 groups (namely night: from 23:00 to 7:00,morning: from 7:00 to
928 12:00, afternoon: from 12:00 to 18:00, and evening: from 18:00 to
929 23:00), which are consistent with human behaviors in one
930 day. For example, on weekdays, people usually go to work in
931 the morning, have some activities related to “entertainment”,
932 “shopping” and “nightlife” in the evening, and sleep at home
933 at night. Different from those ofweekdays, the hours onweek-
934 ends can be split into three groups: 1) The time from 7:00 to
935 8:00 is in the night group, as people usually get up later on
936 weekends. 2) The afternoon and evening are in one group,
937 which may be due to the fact that people’s activities in the
938 afternoon and evening are similar on weekends. Further, we
939 see that the time embeddings in the two groups are relatively
940 close between weekdays and weekends. On one hand, the
941 time embeddings in the night are close, as the main activity
942 type of people is “sleeping at home” no matter on weekdays
943 and on weekends. On the other hand, the embeddings in the
944 evening of weekdays are close to those in the afternoon and
945 evening of weekends, because people usually have similar
946 activity types in those time periods.

947 6.8 Model Analysis

948 To verify the effectiveness of our method, we also design
949 several variants. 1) HMRM-U: it factorizes Ul and Ut with
950 NMF and learns the latent activity types. This variant is to
951 evaluate how trajectory embeddings assist in capturing the
952 latent activity structures. 2) HMRM-L: it simply factorizes
953 the two SPPMI matrices Ll and Lt, which is equivalent to
954 our HMRM without modeling the latent activity types. This
955 variant is to evaluate how the latent activity types assist in

956learning location embeddings. We record the comparison
957performance with the aforementioned unsupervised and
958supervised tasks on the New York and Tokyo datasets in
959Fig. 8. From the results, we can find that the performance of
960HMRM is obviously higher than that of both variants. On
961one hand, if two locations have similar activity distribu-
962tions, HMRM would adjust the two corresponding location
963embeddings closer to each other accordingly; therefore,
964these location embeddings could better retain semantics,
965and performs better in location categorization and location
966category prediction. On the other hand, HMRM considers
967the spatial information of location/time embeddings, and
968groups semantically related locations/time (which are geo-
969graphically close in the embedding space) into the same
970activity types; hence, it captures more coherent latent activ-
971ity types and generates better user-activity distributions,
972and outperforms HMRM-U in the tasks of user similarity
973and user gender classification.

9746.9 Efficiency Analysis

975Our learning method with Alternating Least Squares matrix
976factorization is an iterative algorithm. We want to know
977whether our model’s objective achieves a stationary point
978fast when iteratively performing these updates. We respec-
979tively vary the number of activity types and the dimension-
980ality of embedding space ðK;MÞ 2 fð10; 20Þ; ð20; 50Þg. The
981values of objective function (Eq. (5)) with the number of iter-
982ations varying from 1 to 10 on both datasets are shown in
983Figs. 9a and 9b. Clearly, with the increase of the number of
984iterations, the values of objective decline gradually, and
985remain stable after about 10 iterations. Overall, our learning
986algorithm has fast convergence speed in practice.
987At each iteration, our model needs to update all the
988parameters, including Q, Al, At, Ea, El, Ec, Et. The sizes of
989these matrices determine the runtime of each iteration.
990Fig. 9c shows the runtime of one iteration for both datasets
991with different K and M. On one hand, as the New York
992dataset has more users and locations, its runtime is longer
993than that on the Tokyo dataset for the same K and M; on
994the other hand, the runtime increases gradually when we
995increase K and M. We could train HMRM offline in
996advance, and use the learned activity distributions and the
997trajectory embeddings to support real-time applications.

Fig. 7. Two-dimensional PCA projection of time embeddings.
Fig. 8. Comparison results of HMRM-U, HMRM-L and our method.

Fig. 9. Efficiency Performance of HMRM.
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998 7 CONCLUSION AND FUTURE WORK

999 We have proposed a Human Mobility Representation Model
1000 (HMRM) to learn dense representations of attributes includ-
1001 ing user, location, time and activity type from the semantically
1002 unlabeled trajectory data. The proposed HMRM contains the
1003 activity modeling component, the trajectory embedding com-
1004 ponent, and the collaborative learning component. The activ-
1005 ity modeling component formulates users as a mixture of
1006 latent activity types, the trajectory embedding component
1007 projects locations and time slots into an embedding space,
1008 and the collaborative learning component establishes direct
1009 connections between attribute embeddings and activity types,
1010 and regulates distributional activity semantics accordingly.
1011 Via HMRM, the locations (or time slots) close to each other in
1012 the embedding space tend to have similar activity distribu-
1013 tions. We evaluate the performance of HMRM on two real
1014 check-in datasets with quantitative and qualitative tasks, and
1015 experimental results show that HMRM outperforms the
1016 baselines.
1017 Several interesting research problems exist for further
1018 exploration. First, though about 30 percent of check-in loca-
1019 tions do not possess meaningful semantic labels, we can still
1020 try to exploit the incomplete semantic information in our
1021 model. Second, since users’ activity types change over time,
1022 we can consider how to incorporate the dynamism of user
1023 activities into the model.
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