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Abstract—With the proliferation of geo-textual objects on the web, extensive efforts have been devoted to improving the efficiency of

top-k spatial keyword queries in different settings. However, comparatively much lesswork has been reported on enhancing the quality and

usability of such queries. In this context, we proposemeans of enhancing the usability of a top-k group spatial keyword query, where a group

of users aim to find k objects that contain given query keywords and are nearest to the users. Specifically, when users receive the result of

such a query, theymay find that one or more objects that they expect to be in the result are in fact missing, and theymaywonder why. To

address this situation, we develop a so-calledwhy-not query that is able tominimallymodify the original query into a query that returns the

expected, but missing, objects, in addition to other objects. Specifically, we formalize thewhy-not query in relation to the top-k group spatial

keyword query, called theWhy-notGroup Spatial KeywordQuery (WGSK) that is able to provide a group of userswith amore satisfactory

query result.We propose a three-phase framework for efficiently computing theWGSK. The first phase substantially reduces the search

space for the subsequent phases by retrieving a set of objects that mayaffect the ranking of the user-expected objects. The second phase

provides an incremental sampling algorithm that generates candidateweightings ofmore promising queries. The third phase determines the

penalty of each refined query and returns the query withminimal penalty, i.e., theminimallymodified query. Extensive experimentswith real

and synthetic data offer evidence that the proposed solution excels over baselineswith respect to both effectiveness and efficiency.

Index Terms—Spatial keyword queries, why-not, top-k query, query processing

Ç

1 INTRODUCTION

WITH the rapid deployment of location-based services
and geo-positioning technologies, increasing amounts

of geo-textual objects, or Point-of-Interests (PoIs), are avail-
able. A geo-textual object encompasses a geo-location and a
textual description. There are now numerous online sources
from which geo-textual objects can be acquired, including
business directories such as Google My Business,1 location-
based social networks such as Foursquare,2 as well as rating
and review services such as TripAdvisor3 and Dianping.4

Making such objects conveniently available to users calls for
techniques that offer efficient support for spatial keyword

queries that take a location and a set of keywords as
arguments and retrieve k objects that score the highest
according to a ranking function that takes into account
both spatial proximity and textual relevance [1], [2], [3], [4],
[5], [6], [7].

Group Spatial Keyword Query. Most existing spatial key-
word query techniques only support a single-user sce-
nario. However, some decision making scenarios may
involve multiple users. For example, several friends in a
city may want to find a place to meet. A good meeting
place may be one that minimizes the their overall travel,
i.e., the sum of the distances they need to travel in order to
meet. However, a number of other factors, such as trans-
portation accessibility (walking, driving or taking sub-
way), may also be taken into account. Furthermore, the
relative tolerance to travel may be user-dependent; one
user may be interested in minimizing the travel to reach a
facility, while another user may be willing to accept longer
travel if this reduces the monetary cost of the travel (toll
fees, fuel consumption).

Unlike existing aggregate nearest neighbor queries that
simply aggregate the distances from a data object to each
query point [8], [9], [10], [11], [12], [13], this paper studies a
more advanced and flexible query, called the top-k group
spatial keyword query (GSK). Given a set of geo-textual
objects D, a group of h users with different preferences,
and a query keyword tq, it finds the top-k objects from D
containing tq with the highest weighted sum scores. The
score of an object o w.r.t. h users is computed as the sum of
the h products of the user preferences and the spatial prox-
imities. The preferences of the users form a weighting vector
~w, where each preference indicates a user’s travel tolerance.

1. https://www.google.com/business/
2. https://foursquare.com/
3. https://www.tripadvisor.com/
4. https://www.dianping.com
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A lower preference for a user means that the user has a
lower tolerance and does not want to travel too far.

Motivation of the Why-not Query. While extensive efforts
have been devoted to improving the efficiency of spatial key-
word queries, such querieswould also benefit fromadditional
flexibility and expressiveness. For instance, users are required
to specify their preferences along different dimensions (spa-
tial, textual, or some other dimensions such as ratings and
popularity); and in settings involving multiple users, it is
even more difficult to quantify their preferences as a set of
numeric weights. As a result, the quality and usability of such
queries may fail to meet user expectations, e.g., certain user-
desired objects are unexpectedly absent fromquery results. In
order to improve the quality and usability of queries, the so-
calledwhy-not queries aim to explainwhy the expected results
are not returned. Thus, why-not queries help users under-
stand initial queries better and offer modified queries that
contain the desired but previously missing objects in their
results. The net effect is improvements in the usability of spa-
tial keyword queries. Consider the example in Fig. 1:

Example 1. A group fq1; q2; q3g of users plan to find a cafe to
meet. As they use different travel modes, their preferen-
ces form a weighting vector ð0:5; 0:3; 0:2Þ. They issue a
top-3 group spatial keyword query with the keyword
“cafe”. However, surprisingly, the Starbucks cafe ðo7Þ is
not in the result fo12; o9; o1g. The users wonder why the
Starbucks cafe is not in the result. Is that because cafes
with better locations have opened? Are the travel prefer-
ences not as expected? Can the Starbucks cafe be included
in the result if the query is modified to a top-5 query
instead of a top-3 query?

With this as motivation, we study the problem of answer-
ing the why-not question on top-k group spatial keyword
queries, called Why-not Group Spatial Keyword Query
(WGSK). In our setting, a group of users issue a top-k GSK
query. However, objects expected to be in the result by one or
more users do not appear in the result. AWGSK query is then
able to provide an explanation of why the expected objects
aremissing, aswell as provide aminimally revised query that
includes themissing objects in its result.

Limitation of Existing Solutions. Several approaches have
been proposed to answer why-not questions, including mani-
pulation identification, database modification, and query
refinement. The first category studies Select-Project-Join (SPJ)
queries that aim to determine the manipulations that are
responsible for excluding user-desired objects from a result
[14], [15]. The second category focuses on providing database
updates so that the missing objects appear in results [16], [17].
The third category revises initial query to generate a refined
query whose result contains the missing objects. He et al. [18]
adopt the third idea to top-k queries and study how to

minimize the overall change of weights ~w and the parameter
kwhile achieving the inclusion. However, their solutions only
work for static datasets and do not apply to spatial keyword
queries where query locations are dynamic and precomputa-
tion based on spatial distance is infeasible. Chen et al. [19]
study how to answer why-not questions on top-k spatial key-
word queries by also modifying ~w and k, but the changes on
~w are limited to spatial and textual dimensions, and they do
not consider additional dimensions.

Contributions. We present a framework that provides a
three-phase solution to answer why-not group spatial
keyword queries. Using query refinement, we modify the
users’ preference vector ~w and the parameter k in the
original top-k GSK query so that the expected answers
are included in the result of the refined query. Based on a
proposed penalty model, we present an efficient algo-
rithm to generate promising refined queries by sampling
weightings, and we find the one that modifies the original
query minimally. In brief, the key contributions are sum-
marized as follows:

� We formalize the why-not group spatial keyword
query on top of the top-k group spatial keyword
query. To our knowledge, there is no prior work on
this problem.

� We propose a three-phase solution to process the
why-not group spatial keyword query. The first
phase substantially reduces the search space for the
subsequent phases by efficiently retrieving a set of
objects that may affect the ranking of user-expected
objects. In the second phase, we propose an incre-
mental sampling algorithm to generate candidate
weightings. In the third phase, we determine the
penalties of the refined queries and return the opti-
mal one.

� We conduct an empirical study on real and synthetic
PoI data. The study indicates that the paper’s pro-
posal is efficient and effective in terms of returning
refined queries with the least penalty.

Roadmap. The remainder of the paper is organized as fol-
lows. We first formulate the Why-not Group Spatial Key-
word Query (WGSK) in Section 2. Then we provide a
solution overview in Section 3. Sections 4, 5 and 6 present
the three phases of the solution, retrieving competitors,
sampling weightings, and determining penalty, respec-
tively. Section 7 reports on the experimental study, and
Section 8 reviews related work. Finally, Section 9 concludes
the paper.

2 PROBLEM STATEMENT

This section formalizes the setting and defines the top-k
GSK query and the WGSK query. Frequently used nota-
tions are summarized in Table 1.

2.1 Setting

Definition 1 (Geo-textual Object). Let D be a set of geo-tex-
tual objects, where each geo-textual object o 2 D has a location
o:l and a set of keywords o:f.

Definition 2 (Utility Function). Assume a group of h users’
query locationsQ ¼ fq1; . . . ; qhg, and let ~w ¼ ðw1; . . . ; whÞ be a
weighting vector where each value wi in ~w represents the ith
user’s preference (or tolerance) to distance. For each geo-textual

Fig. 1. Geo-textual objects.
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object o 2 D, the users’ utility, uQ;~wðoÞ, obtained from o is
defined as follows:

uQ;~wðoÞ ¼
Xh
i¼1

wi � ð1� dðqi; oÞÞ; (1)

where dðqi; oÞ is a function that normalizes the euclidean dis-
tance between qi and o into the range ½0; 1�. When the context
is clear, we simply use u~wðoÞ instead of uQ;~wðoÞ.

Without loss of generality, we assume that 0 < wi < 1 for
i 2 ½1; h�, and that

Ph
i¼1 wi ¼ 1. The intuition behind the util-

ity function includes two aspects:

(i) the spatial proximity is defined differently for differ-
ent users, depending on their means of movement.
Due to different transportation modes, the tolerance
(sensitivity) towards distance is user-dependent, and
varies from user to user;

(ii) summing up the weighted spatial proximities indi-
cates an overall degree of benefit to a group of users
of an object. Moreover, this model is widely adopted
in existing studies of top-k preference queries [20],
[21], [22], [23].

Note that the normalization of the relative tolerances
in ~w does not restrain the semantics of the utility func-
tion [24].

Object Vectorization. It is worth noting that once Q is speci-
fied, the distances between all qi 2 Q and each object o 2 G
are constant values. Therefore, for each o, we have an
h-dimensional vector~o ¼ ð1� dðq1; oÞ; . . . ; 1� dðqh; oÞÞ, where
for i 2 ½1; h�,~o½i� denotes the spatial proximity between o and
qi 2 Q. In the following, we use~o and object o interchangeably
when this does not cause ambiguity. Hence Equation (1) can
be rewritten as

u~wð~oÞ ¼ ~o œ � ~w: (2)

Example 2. In Fig. 2, let Q ¼ fq1; q2; q3g be given and con-
sider object o1: The distances between o1 and fq1; q2; q3g
are normalizes to ð0:4; 0:5; 0:9Þ. Thus o1 is represented as
~o1 ¼ ð0:6; 0:5; 0:1Þ. Given a weighting vector ~w ¼ ð0:5;
0:3; 0:2Þ, the utility of ~o1 is 0.47.

2.2 Problem Definition

Definition 3 (Group Spatial Keyword Query). Given h
query locations Q, a query keyword tq, a weighting vector ~w,

and an integer k, the top-k group spatial keyword query (GSK)
aims to find a set S of up to k objects from D that all contain
keyword tq and have the highest utilities, i.e.,

S ¼ fo 2 D j tq 2 o:f; 8o 2 S; o0 2 D n S; u~wð~oÞ > u~wð~o0Þg:
(3)

Example 3. Building on Example 1, we haveQ ¼ fq1; q2; q3g,
a query keyword tq ¼ “cafe”, and a weighting vector
~w ¼ ð0:5; 0:3; 0:2Þ. Therefore, the top-3 GSK query returns
S ¼ fo12; o9; o1g.

After aGSK query ðQ; tq; ko; ~woÞ is issued and the result set S
is obtained, the users may find that one or more objects
expected to be in the result, i.e., M ¼ f ~m1; . . . ; ~mng, do not
appear in S. We assume that all ~mi 2M contain the query
keyword tq. Now, the usermay pose awhy-not query in order
to obtain a refined GSK query ðkb; ~wbÞ, where the original ~wo

and ko are modified and the objects inM are included in the
result of the query, Sb. Note that we use ðk; ~wÞ as an abbrevia-
tion for the GSK query ðQ; tq; k; ~wÞ because we do not alterQ
and tq. Basically, we want to return a modified query that is
as similar as possible to the original query. Therefore, we
introduce a penalty model that quantifies the difference
between an original query and amodified query.

Penalty Model. Let us assume that only one object ~m is
missing. When modifying the original GSK to bring ~m back,
we use Dk and Dw to measure the quality of the refined
query, where Dk ¼ maxð0; k0 � koÞ and Dw ¼ jj~w0 � ~wojj2,
and we let ro denote the rank of ~m under original ðko; ~woÞ.
By adapting an existing penalty model [18], [19], the penalty

of a refined query ðk0; ~w0Þ is defined as follows:

Penaltyðk0; ~w0Þ ¼ � � Dk

ro � ko
þ ð1� �Þ � Dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þP
wo½i�2

q ; (4)

where � 2 ð0; 1Þ is a user-specified parameter. For ease of
use, we provide 5 settings for � for users to choose among,
as shown in Fig. 3. We know Dk is no larger than, and is nor-
malized by ro � ko, and Dw is normalized to the unit range

by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þP

wo½i�2
q

. Thus, both Dk and Dw are normalized.

Intuitively, the lower the penalty is, the more satisfied the

users are with the modified query.

Definition 4 (Why-not Group Spatial Keyword Query).
Given a top-k GSK query ðQ; tq; ~wo; koÞ, and a set of missing
objectsM ¼ f ~m1; . . . ; ~mng, the why-not group spatial keyword
query (WGSK) returns a refined query ðkb; ~wbÞ with the lowest
modification penalty and whose result includes all objects inM.

We assume that the group of users includes more than
two users, since the case of two users can be handled easily
by modifying an existing method [19].

TABLE 1
Summary of Notations

Notation Definition

D A dataset of geo-textual objects
oðl;fÞ A geo-textual object owith location o:l and a

set of keywords o:f
Q ¼ fq1; . . . ; qhg A set of h users’ query locations
~w ¼ ðw1; . . . ; whÞ A weighting vector of preferences
dðqi; oÞ The distance between qi and o

~o A vector representation of the object o
uQ;~wð~oÞ The utility of object~o under queryQ and

weighting vector ~w
M ¼ f ~m1; . . . ; ~mng The missing objects
Penaltyðk0; ~w0Þ The penalty of a refined query ðk0; ~w0Þ
rankð~o; ~wÞ The rank of~o under ~w
Hð~oÞ The hyperplane between~o and ~m

Fig. 2. Objects in preference space.
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Example 4. We build on Example 1 and consider a group
of users fq1; q2; q3g who plan to find a cafe shop where
they can meet. The original query then has parameters
tq ¼“cafe”, ko ¼ 3, and ~wo ¼ ð0:5; 0:3; 0:2Þ. The users expect
object o7 is in the result, but the object is missing. Fig. 3
shows that object o7 is ranked 4th and is missing from the
result, fo12; o9; o1g. A why-not query is issued to bring o7
back. Three refined queries are available for the users to
choose among, i.e., ðk1 ¼ 3; ~w1 ¼ ð0:4; 0:4; 0:2ÞÞ, ðk2 ¼ 2; ~w2

¼ ð0:2; 0:6; 0:2ÞÞ, and ðk3 ¼ 3; ~w1 ¼ ð0:1; 0:4; 0:5ÞÞ. We can
see ðk1; ~w1Þ ranks o7 3-rd, ðk2; ~w2Þ ranks o7 2-nd, and ðk3; ~w3Þ
ranks o7 3-rd. The corresponding Dk and Dw are also shown
in Fig. 3. Given the 5 settings of �, we can see ðk1; ~w1Þ is the
refined querywithminimumpenalty in all 5 cases.

3 PROBLEM ANALYSIS AND SOLUTION OVERVIEW

In this section, we analyse the problem and provide a solu-
tion overview for computing the WGSK query. For simp-
licity, we consider only one missing object ~m.

3.1 Dominance Relationship
When a WGSK query ðQ; tq; ko; ~woÞ with missing object ~m is
issued, all objects that contain keyword tq are easily
obtained. The closer an object is to the users’ locations, the
more desirable it is. Next we define the dominance relation-
ship between two objects.

Definition 5 (Dominance). Given objects~a and~b, if~a½i� � ~b½i�
for i 2 ½1; h� and at least one dimension exists where~a½i� < ~b½i�,
~a is dominated by~b, denoted as~a � ~b. Otherwise,~a 6� ~b.

For example, in Fig. 2, the spatial proximity at each
dimension of ~o12 exceeds that of ~o14, meaning that ~o14 � ~o12.

Observation 1. If an object~o dominates themissing object ~m,
the utility of ~o exceeds that of ~m, i.e., u~wð~oÞ > u~wð~mÞ for
any weighting vector [25]. In other words, no matter how
we choose the weighting vector,~o is always more prefera-
ble than ~m. Likewise, if~o � ~m, we have u~wðmÞ > u~wðoÞ.
Based on this observation, we have the following defini-

tion of competitor:

Definition 6 (Competitor). Given a missing object ~m and an
object~o that also contains query keyword tq, if ~m does not dom-
inate~o, and vice versa, we say that~o is a competitor w.r.t. ~m.

Categories of Candidate Objects. Based on the notations of
dominance and competitor, the objects that contain tq can be
partitioned into categories I1, C, and I2. Sets I1 and I2

contain non-competitors such that each object in I1 dominates
~m and each object in I2 is dominated by ~m. Set C contains
competitorsw.r.t. ~m.

Example 5. If o7 is the missing object in Fig. 2 then objects
fo1; o9; o14g are its competitors. Moreover, we have
I1 ¼ fo12g and I2 ¼ fo13g.
The Rank of Competitors. It is easy to see that any object in

I1 and I2 always scores higher or lower than ~m. The higher
an object scores, the higher it ranks among all objects. Thus,
we define the rank of an object~o as follows:

rankð~o; ~wÞ ¼ 1þ jf~o0 : u~wð~oÞ < u~wð~o0Þ; tq 2 o0:fgj:
It suffices to know that the relative ranks of objects in I1 or
I2 w.r.t. ~m remain unchanged and that these objects do not
affect WGSK query processing. Therefore, only the competi-
tors are taken into consideration in the later phases of query
processing.

3.2 Hardness of the Problem
Answering a WGSK query amounts to modifying ko and ~wo

in the original query to increase the rank of ~mwhile keeping
the penalty as low as possible. A naive approach would be
to increase ko to ~m’s original rank under ~wo. However, this
solution fails to deliver the desired result. Rather, we need
to find a refined query with new values for both k and ~w in
order to minimize the penalty.

Preparation for Increasing the Rank. To increase the rank of a
missing object, the first step is to extract the competitors that
may affect its rank. This extraction of objects from the dataset
may benefit from the availability of a spatio-textual index that
enables filtering according to both the textual information and
spatial dominance relationships. Suppose we have already
obtained the set C of competitors with cardinality c. Then the
rank of ~m is in the range ½jI1j þ 1; jI1j þ cþ 1� depending on ~w.
To keep the presentation simple, we assume that the objects in
I1 and I2 are removed fromD, sowehave rankð~mÞ 2 ½1; cþ 1�.

Partition Hyperplane. Given an object ~o 2 C and the miss-
ing object ~m, the equation u~wð~oÞ ¼ u~wð~mÞ corresponds to a
partitioning hyperplane Hð~oÞ in the preference space, such
that every weighting vector that falls on this hyperplane
renders~o and ~m equally preferable.

Observation 2. Hyperplane Hð~oÞ partitions the preference
space into two halfspaces, Hþð~oÞ and H�ð~oÞ. For every ~w
in Hþð~oÞ, we have u~wð~oÞ > u~wð~mÞ. Likewise, in H�u~wð~oÞ,
we have u~wð~oÞ < u~wð~mÞ.
Given that the rank of ~m is jþ 1, j 2 ½0; c�, j competitors

exist that have scores higher than ~m, and c� j competitors
exist that have scores lower than ~m. With the constraints
wi 2 ð0; 1Þ, and

Ph
i¼1 wi ¼ 1, we obtain the following

inequalities:

Hþð~or1Þ : u~wð~or1Þ ¼~or1 � ~w > u~wð~mÞ ¼ ~m � ~w
� � � � � �
Hþð~orjÞ : u~wð~orjÞ ¼ ~orj � ~w > u~wð~mÞ ¼ ~m � ~w
H�ð~orjþ2Þ : u~wð~orjþ2Þ ¼~orjþ2 � ~w < u~wð~mÞ ¼ ~m � ~w
� � � � � �
H�ð~orcþ1Þ : u~wð~orcþ1Þ ¼~orcþ1 � ~w < u~wð~mÞ ¼ ~m � ~w
8i 2 ½1; h�; wi 2 ð0; 1Þ;

Ph
i¼1 wi ¼ 1

8>>>>>>>>>>><
>>>>>>>>>>>:

(5)

Here,~ori is the competitor with rank i.

Fig. 3. Example of why-not GSK queries.
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Solving by Quadratic Programming. The solution to this
system of inequalities is an infinite set of weighting vectors
that forms a convex polytope and every ~w in it ranks ~m as
ðjþ 1Þ-st.
Example 6. In the example in Fig. 4, arrows indicate positive

halfspaces partitioned by hyperplanes. Therefore, the poly-
tope in Fig. 4a is constructed by fH�ðo1Þ;Hþðo9Þ;H�ðo14Þg,
and we have rankðo7Þ ¼ 2. Likewise, in Fig. 4b, the poly-
tope is bounded by fH�ðo1Þ;H�ðo9Þ;H�ðo14Þg, and
rankðo7Þ ¼ 1.

For each such convex polytope, we need to find the ~w
such that Dw ¼ jj~w� ~wojj2 is minimized, which can be
solved by applying a quadratic programming solver [26].

Theorem 1. The time complexity of exactly computingWGSK is
Oðcost1 þ 2c � costqpÞ.

Proof. We first assume that the cost of extracting competi-
tors is Oðcost1Þ. For each rank jþ 1 of ~m, j competitors
exist that score higher than ~m. These form Cj

c combina-
tions with corresponding convex polytopes. Therefore,
for all possible rankings, we have

Pc
j¼0 C

j
c ¼ 2c convex

polytopes in the worst case. We assume that the cost of
answering an instance of Equation (5) with a solver is
OðcostqpÞ. Therefore, the time complexity of WGSK
is Oðcost1 þ 2c � costqpÞ, which is impractical given a large
number of competitors. tu

3.3 Solution Overview
As described above, it is expensive to obtain an optimal
refined query. Instead of computing an exact result, we target
a good approximate solution by generating a set of weighting
vectors that are near optimal. Intuitively, the more weighting
vectors we have, the higher the chance we have of finding a
good approximation. In addition, after generating a set of
weighting vectors, we also need to consider the cost of deter-
mining the penalty of each refined query. To this end, we
design a sampling algorithm to enable a tradeoff between the
approximation quality and the computational cost. More-
over, a well-designed algorithm for penalty computation is
desirable.

Fig. 5 illustrates the three steps of our framework that are
also described briefly below; the algorithmic details of the
framework are presented in Sections 4, 5, and 6.

(i) Retrieving competitors. This step finds a set of compet-
itors C as the initial candidates. In this step, we build
an IR2-tree [27] on D. An IR2-tree integrates signa-
ture files into the nodes of an R-tree, such that each
node contains two types of information: (i) the MBR

of its subtree and (ii) a signature file, which is the
union of all signatures of its entries. We propose a
geo-textual dominance search algorithm on top of
the IR2-tree to extract the competitors fromD.

(ii) Sampling weightings. This step samples a set of candi-
date weighting vectors, which is a critical step in our
solution that must take into account both the approx-
imation quality and the computation efficiency.
Specifically, we propose an incremental sampling
approach that considers three different heuristic
strategies against a random sampling approach.

(iii) Determining penalty. After the weighting vectors are
generated, this step aims to find the weighting vector
with lowest penalty. Instead of computing the pen-
alty of all weighing vectors, we propose a branch-
and-bound algorithm that disregards vectors with
costs that are not competitive.

4 RETRIEVING COMPETITORS

We proceed to present a geo-textual dominance search
(GTD) algorithm that retrieves the competitors of ~m from D.
It is straightforward to first adopt a keyword Boolean filter-
ing that selects the geo-textual objects whose textual
descriptions contain tq. Then, for each of such object ~o, we
can compare it with ~m to determine whether it is a competi-
tor. This approach can be supported using simply an
inverted index. However, database D may contain a large
amount of objects, especially for frequent keywords. There-
fore, this approach, which may need to perform a linear
scan of D in the worst case, is unlikely to perform well. The
main idea in GTD is to follow the divide-and-conquer para-
digm to search an IR2-tree on D to retrieve competitor set C
efficiently. GTD considers both the textual information
and spatial dominance for the object filtering. In addition to
utilizing the IR2-tree to find competitors, we can also use it
to answer the GSK query and computing ro for ~m in the
original query, which serves as a prerequisite for the why-
not question. We disregard the details since this is not the
focus of the paper.

4.1 Search Algorithm
The GTD algorithm first initializes a set C that will contain
competitors and an empty heap H to hold entries (either
nodes or objects) from the IR2-tree. Let e be an entry with
MBR Me. Let MINDIST ðqi;MeÞ be the minimum and
MAXDIST ðqi;MeÞ be the maximum normalized distance
between point qi and MBR Me. For the processing of entries,
we have the following:

Lemma 1. For an entry e and the missing object ~m, if for all
dimensions i 2 ½1; h�, we have

Fig. 5. Solution overview.

Fig. 4. Convex polytopes for missing object o7.
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m½i� � 1�MINDIST ðqi;MeÞ;
then all objects in Me are dominated by ~m and belong to I2.
Likewise, if for all i, we have

m½i� � 1�MAXDIST ðqi;MeÞ;
then all objects inMe dominate ~m and belong to I1.

Algorithm 1. Geo-Textual Dominance Search (GTD)

Input: fQ; tq; ~wo; ko;mg and IR2-tree onD
Output: The set of competitors C

1: Initialize an empty set C, an empty heapH;
2: Add root node intoH;
3: whileH is not empty do
4: e top entry ofH;
5: if e is non-leaf entry then
6: for each child e0 of e do
7: check ifM 0

e dominates or is dominated by ~m;
8: if yes, we skip; otherwise, insert e0 intoH;
9: else
10: for each o in e do
11: check if o is a competitor of ~m and insert into C if yes;
12: return C;

Algorithm Outline. Initially, we insert the root entry into
H. Then GTD iteratively removes the top entry e from H
and then performs the following operations depending on
the entry type, and it terminates when H becomes empty.
Checking a Non-Leaf Node. We consider a combination of a
textual and spatial check for the pruning. Given a node e,
we proceed as follows.

(i) We first check sðe0Þ ^ sðtqÞ for each of its child entries
e0. If sðe0Þ ^ sðtqÞ is zero, e0 is discarded immediately.
Otherwise, we continue to perform a dominance
check to see if e0 is dominated by ~m or dominates ~m;

(ii) To determine which category the entry e0 belongs to,
we use a flag to distinguish it based on Lemma 1.
For i ¼ 1, we first compare m½1� with 1�MINDIST
ðq1;MeÞ. If m½1� > 1�MINDIST ðqi;MeÞ, we set the
current flag to I2. Otherwise, we set it to I1. Then we
proceed to check other dimensions. If the flag of a new
dimension violates the current flag then the entry is
likely to contain competitors and is inserted into heap
H. It is worth noting that we do not have to finish the
remaining dimensions, since e0 now has no chance of
being dominated by or to dominate ~m. If all dimen-
sions are processed and no flag violations occur, then
e0 is dismissed since all the objects covered by e0 are
either in I1 or in I2.

Checking a Leaf Node. If e is a leaf node then it contains
objects only. Thus, we conduct a same keyword check. For
each object ~o, if sðoÞ ^ sðtqÞ is zero, it cannot be considered
as a competitor. Otherwise, GTD performs the same domi-
nance check. The difference is that we compare m½i� with
o½i� directly. If~o is a competitor, we insert~o into C.

Theorem 2 (Correctness of GTD). The GTD algorithm cor-
rectly reports all competitors in C.

Proof. We prove this by contradiction. Assume ~o is a com-
petitor but is pruned by GTD. It is easy to see that ~o will
not be pruned in a leaf node. For a non-leaf node e that
contains ~o, if e is pruned then we know 8~o0 2 e, it holds

for i 2 ½1; h� that m½i� � o0½i� or m½i� � o0½i�, which contra-
dicts the assumption. Thus, the theorem follows. tu

5 SAMPLING WEIGHTINGS

We proceed to describe our method for sampling weights ~w
from the preference space. As previously discussed, it is
impractical to find the optimal refined query in the infinite
preference space, but we can find a good approximation of
the optimal ~w by means of a trade-off between the quality of
the refined query and the running time. The basic idea of
sampling weights is as follows. First, we sample a certain
number of weighting vectors W ¼ f~w1; ~w2; . . . ; ~wsg. Then
for each ~wi 2W , we compute the corresponding ki that
introduces ~m into the result with minimal penalty. Specifi-
cally, we take the following issues into consideration: (i)
Where to obtain a set of weighting vectors with high quality
and (ii) how to choose an appropriate number of weighting
vectors. Next, we introduce a random sampling approach
(RSA) [18] as a baseline algorithm, and then we present our
incremental sampling approach (ISA).

5.1 Random Sampling Approach
Recall that the rank of ~m belongs to ½1; cþ 1�. For each possible
rank i, an infinite set of weighting vectors Wri exist that are
built by Ci

c convex polytopes. Therefore, a set W ¼ [cþ1ri¼1Wri
exists from which we can sample a finite set of weighting vec-
tors for processing the next step. If we sample a ~w inWri then a
refined query qð~w; riÞ is obtained. Then the penalty can be
determined after we compute the rank ri of ~m under the
refined ~w.

5.1.1 Sampling Space

We first introduce an important theorem that indicates
where we can obtain weighting vectors that are good
approximations of the optimal one.

Theorem 3. If the original query qoð~wo; koÞ is not the optimal
answer then the optimal refined query qopt with the minimum
penalty has a weighting vector ~wopt on the boundary of the
union weighting vector setW.

Proof. As we know, each inequality system given in Equa-
tion (5) corresponds to a convex polytope. The boundary
of the convex polytope is exactly the hyperplane where
competitors and missing objects have the same score.
Therefore, the weighting vectors on the boundary rank
~m higher or equal to those inside the convex polytope.
In addition, the weighting vectors on the boundary have
a smaller Dw. Therefore, the weighing vector ~wopt of the
optimal refined query qopt must be on the boundary of
W. Interested readers may refer to [18] for a detailed
proof. tu
Theorem 3 tells that in order to obtain a good approx-

imation, we can sample candidate weighting vectors on
the boundary of W. Instead of computing the boundary
of each convex polytope, which is too time consuming,
we can directly use the partition hyperplane of each
competitor ~o given by ~w � ð~m�~oÞ ¼ 0 in Equation (6),
which collectively forms the boundary of the convex pol-
ytopes.

Hð~oÞ : u~wð~oÞ ¼ ~o � ~w ¼ u~wð~mÞ ¼ ~m � ~w
8i 2 ½1; h�; wi 2 ð0; 1Þ;

Ph
i¼1 wi ¼ 1:

�
(6)
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5.1.2 Sampling Cardinality

Intuitively, the more weighting vectors we sample, the more
likely we are to find one that is close to the optimal one.
However, considering more weighting vectors also increase
the running time, since for each weighting vector ~w, we
have to determine the exact rank of ~m under ~w in the pen-
alty determination step. We employ a general equation
below to decide on a cardinality of the weighting vector set

s � log ð1� PrÞ=log ð1� T%Þ: (7)

Specifically, if we hope the probability of getting at least one
of the best T%weighting vectors to be sampled is no smaller
than Pr, the cardinality of samples s must be larger than a
certain threshold. From Equation (7) we know the cardinal-
ity of the weighting vector set is independent of the cardi-
nality of the set of competitors. Therefore, an appropriate
setting of T% and Pr is required to control the quality of the
samples. Intuitively, the quality can be improved by gener-
ating more samples if we decrease T% and enlarge Pr,
which is verified by experiments in Section 7.

5.2 Incremental Sampling Approach
Although the random sampling approach may likely gener-
ate promising weighting vectors, the quality, however, can-
not be guaranteed. The random sampling approach suffers
from two shortcomings:

(i) The weighting vectors are sampled randomly on dif-
ferent partition hyperplanes, so it is possible that
many vectors are taken from less promising hyper-
planes, which reduces the possibility of considering
the optimal weighting vectors;

(ii) If many weighting vectors are taken from unpromis-
ing hyperplanes, computational resources are wasted
on penalty computations.

This motivates an incremental sampling approach (ISA) that
devotes particular attention to selecting high quality weight-
ing vectors. In order to overcome these shortcomings, we take
all hyperplanes into consideration by first sampling a weight-
ing vector from each hyperplane, then continue to generate
the rest samples from themore promising ones. Therefore, we
are supposed to generate at least cweighting vectors to make
ISA work. Fortunately, we always have s larger than c deter-
mined by an appropriate setting of T% and Pr for an accept-
able sampling quality. In the experimental setting of
Section 7, all the evaluated queries fall into this category.

Algorithm Initialization. We first initialize a priority queue
PQ. For each competitor ~o, we sample a weighting vector
from the partition hyperplane Hð~oÞ between ~o and ~m. Then
we insert each hyperplane Hð~oÞ into PQ based on the score
of the weighting vector sampled from it.

Updating Priority Queue. As s exceeds c, we have s� c
weighting vectors left to sample. To do that, we invoke a pro-
cedureSelectHyperðÞ that selects the hyperplane fromwhich
to sample the next candidate weighting vector. In each
round, we pop the hyperplane with the highest score from
PQ and sample a weighting vector on it. Then we recompute
the score of the hyperplane based on particular heuristics
adopted by SelectHyperðÞ and insert it into PQ again. The
intuition is that we want to sample the next weighting vector
from the currently most promising hyperplane. This process
terminates when all s samples are obtained. Algorithm 2
describes the details of the incremental sampling approach.

In SelectHyperðÞ, we use three selection strategies based on
different heuristics.

Algorithm 2. Incremental Sampling Approach(ISA)

Input: The competitors C, ~m, T , and Pr
Output: The set of weighting vectorsW

1: s log ð1� PrÞ=log ð1� T%Þ;
2: Initialize a priority queue PQ of size c;
3: for eachHð~oÞ do
4: Sample a ~w and insert toW ;
5: Compute a score based on heuristics;
6: InsertHð~oÞ into PQ;
7: while c < s do
8: PopH from PQ;
9: Sample a ~w onH and insert it intoW ;
10: Compute a score based on heuristics;
11: InsertH into PQ;
12: c++;
13: returnW ;

Utility Score (US) Based Strategy. The straightforward
approach to selecting the next hyperplane to sample from is
to pick the one that scores the missing object with the highest
utility among all c hyperplanes. The reason is that the hyper-
plane with the highest utility score is likely to rank the miss-
ing object the highest. In detail, we sample aweighting vector
~w from each Hð~oÞ, compute u~wð~mÞ, and insert Hð~oÞ into PQ
according to u~wð~mÞ. Then SelectHyperðÞ selects Hð~oÞ the

top element from PQ and resamples a ~w0. After computing
u~w0 ð~mÞ, we insertHð~oÞ into PQ again.

Weight Modification (WM) Strategy. The US strategy suffers
from the fact that the increase in the utility score does not
directly reflect the extent of the modification of the original
query. Even if the utility score of a sampled weighting vector
is high, themodification of the original query is uncertain, and
it is possible that the penalty of a refined query is not competi-
tive. So we consider a supervised method where we continue
to sample the next ~w0 on the hyperplaneHð~oÞwith the current
minimum Dw. The rest of the algorithm follows the US
strategy.

Rank Improving (RI) Strategy. The WM strategy aims to
minimize the modification of weight by sampling from the
hyperplane with the sampled weighting vector that main-
tains the current minimum Dw, but does not guarantee
the modification of the rank of ~m. Therefore, we take a step
further to consider both weight modification and rank
improvement. For each hyperplane Hð~oÞ, we sample a
weighting vector ~w and randomly choose a constant num-
ber h of competitors from C. Then we compute the utility of
each competitor under ~w and compare it with that of ~m.
Assuming that t competitors score higher than ~m, from the
rank of ~m among the subset of competitors, we can roughly
estimate rankð~m; ~wÞ as follows:

grankð~m; ~wÞ ¼ t

h
� c

� �
þ 1: (8)

Then we can use Dw and grankð~m; ~wÞ to estimate the penalty
and insert the corresponding hyperplane into PQ.

Time Complexity. Assume the time for sampling a weight-
ing vector is OðfÞ. The random sampling approach (RSA)
sequentially samples s weighting vector, so the time for
RSA is Oðs � fÞ. The incremental sampling approach (ISA)
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needs to sample the same number of weighting vectors, but
it maintains a PQ with size c and requires additional costs
to insert a new element into PQ. Therefore, the time com-
plexity of ISA is Oðs log c � fÞ.

6 DETERMINING PENALTY

We proceed to present the algorithm for determining penal-
ties of refined queries. Given a weighting vector ~w0, we need
to compute rankð~m; ~w0Þ and form the refined query ðk0; ~w0Þ,
where k0 ¼ rankð~m; ~w0Þ. Then we compare the penalty of all
refined queries and return the one with minimum penalty.
We notice that the penalty determination roughly corre-
sponds to the rank-aware processing that occurs in the reverse
top-k query. Given an object ~m and a set of weighting vectors,
the reverse top-k query identifies all weighting vectors for
which ~m belongs to the top-k result set. The main differences
between penalty validation and reverse top-k query are that:
(i) we need to exactly determine rankð~m; ~w0Þ of ~m, not just to
check if ~m is one of the top-k results; and (ii) only the weight-
ing vector with minimum penalty will be reported, not all
weighting vectors that include ~m as a top-k result.

It is easy to see that the brute force approach to comput-
ing rankð~m; ~w0Þ under each ~w0 requires Oðs � cÞ time for s
weighting vectors and c competitors, since rankð~m; ~w0Þ is
simply the number of objects score higher than ~m. To avoid
redundant computations, a progressive top-k algorithm can
be applied to speed up the computation of rankð~m; ~w0Þ
for each weighting vector ~w0 and to prune unnecessary
weighting vectors. However, the progressive top-k algo-
rithm suffers from twomain drawbacks: (i) it requires access
to all weighting vectors sampled in the previous step; and
(ii) it cannot avoid executing the top-k query for each of
them. Therefore, we instead introduce a branch-and-bound
algorithm for efficient penalty determination.

6.1 Progressive Top-k Algorithm

To apply a progressive top-k algorithm, we can directly
adopt any existing method, such as [23], to determine
rankð~m; ~wÞ. The details of the algorithm are omitted, but
two pruning conditions are discussed.

Upper Bound Penalty. Given an original query ðko; ~woÞ and
a missing object ~m, we have ro ¼ rankð~m; ~woÞ. If we simply
increase k to ro, we obtain the penalty Penaltyðk0; ~w0Þ ¼ �,
which can serve as an initial upper bound penalty, denoted
by UBp. Therefore, if the partial penalty caused by Dw of a
sampled weighing vector ~w already exceeds UBp, it can be
discarded immediately.

(i) Pruning by Upper Bound Rank. With the current upper
bound penalty, the upper bound rank of ~m under the next
weighting vector, i.e., UBr can be determined by:

Lemma 2. Given a refined query ðk0; ~w0Þ, let the upper bound
rank UBr be defined as follows:

UBr ¼ ko þ UBp � ð1� �Þ Dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þP

wo½i�2
q

8><
>:

9>=
>;

ro � ko
�

� �66664
77775:
(9)

Then, if rankð~m; ~w0Þ exceeds UBr then ðk0; ~w0Þ cannot be a
result, and the progressive top-k process can be ended early.

Proof. A refined query ðk0; ~w0Þ is worse than the current best
refined query if its penalty exceeds the current UBp. It is

obvious that the penalty is controlled by Dk and Dw, and
from Equation (4) we can easily compute UBr by Dw of
ðk0; ~w0Þ. tu
By adopting the pruning condition in Lemma 2, if ~m does

not appear in the top-UBr results of the progressive query,
it can stop early, and ðk0; ~w0Þ can be safely removed.

(ii) Pruning by Caching Previous Top-k Results. The intui-
tion of this pruning condition is that two similar weighting
vectors may have similar top-k results, which can be uti-
lized to skip unnecessary attempts of progressive query.

Lemma 3. Given a refined query ðk1; ~w1Þ that has already been
processed with result R1, and a new refined query ðk2; ~w2Þ.
Comparing u ~w2

ð~mÞ and u ~w1
ð~oÞ for each ~o 2 R1, if more than

UBr � 1 competitors in R1 score higher than u ~w2
ð~mÞ among

R1 then ðk2; ~w2Þ can be removed.

Proof. This can be proved by using Lemma 2. tu
The progressive top-k algorithm sequentially examines

eachweighting vector while applying the two pruning rules.

6.2 Branch-and-Bound Algorithm

To address the limitations of the progressive top-k
algorithm, we propose a branch-and-bound algorithm that
efficiently returns the weighting vector with minimum pen-
alty. Two aggregate R-tree like data structures, weightRtree
and compRtree, are utilized to organize hierarchically the
weighting vectors and competitors, respectively. On top of
them, several pruning strategies are adopted to reduce the
time cost of penalty validation.

6.2.1 Index Structures: weightRtree and compRtree

The weightRtree and compRtree are both aggregate R-tree like
index structures, whereweightRtree indexes all the weighting
vectors and compRtree indexes all the competitors of ~m in
a space of h derived dimensions.

In the compRtree, each entry ec represents a group of com-
petitors and stores (i) the minimum bounding rectangle
(MBR) and (ii) the number of competitors in its subtree,
denoted by NðecÞ. In the weightRtree, each entry ew stores
(i) the MBR of its subtree, (ii) the lower bound Dw of all
weighting vectors in its subtree, denoted by LBDwðewÞ,
and (iii) the upper and lower bound utility of the missing
object under all weighting vectors in its subtree, denoted
by UBuð~mÞðewÞ and LBuð~mÞðewÞ. Fig. 6 shows an example of
a weightRtree and a compRtree.

6.2.2 Pruning Strategies

We prune the competitors and weighting vectors according
to the rank of ~m and the overall penalty.

Upper and Lower Bound Utility of ~m Under ew. Given an
entry ew and a competitor~o, we are able to derive the upper
and lower bound utility in a straightforward manner.

Lemma 4. Given an entry ew that covers a set of weighting
vectors and a competitor ~o, the upper and lower bound utility
of~o under ew

UBuð~oÞðewÞ ¼
Xh

i¼1 max~w2ewðw½i�Þ � o½i�

LBuð~oÞðewÞ ¼
Xh

i¼1 min~w2ewðw½i�Þ � o½i�:
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Proof. Assume two artificial weighting vectors ~wl and ~wr,
where wl½i� ¼ min~w2ewðw½i�Þ and wr½i� ¼ max~w2ewðw½i�Þ.
Then we have u~wl

ð~oÞ ¼ LBuð~oÞðewÞ and u ~wrð~oÞ ¼ UBuð~oÞðewÞ.
Therefore it is easy to see that LBuð~oÞðewÞ � u~wð~oÞ �
UBuð~oÞðewÞ holds for all ~w 2 ew. tu
This pruning is applied when building the weightRtree

during precomputation. Basically, we use it to compare the
utilities of ~m and ~o under a given ew. After obtaining the
upper and lower bound utility of~o by Lemma 4, we are able
to determine the relative rank of~o and ~m:

(i) if UBuð~oÞðewÞ < LBuð~mÞðewÞ, ~m ranks higher than~o;
(ii) if LBuð~oÞðewÞ > UBuð~mÞðewÞ, ~m ranks lower than~o.

Upper and Lower Bound Utility of ec Under ew. Given an entry
ew and ec, we derive the upper and lower bound utility of ec
under ew as follows.

Lemma 5. Given an entry ec and ew, the upper and lower bound
utility of ec under ew can be obtained as follows:

UBuðecÞðewÞ ¼
Xh

i¼1 max~w2ewðw½i�Þ �max~o2ecðo½i�Þ
LBuðecÞðewÞ ¼

Xh

i¼1 min~w2ewðw½i�Þ �min~o2ecðo½i�Þ:

Proof. Assume two artificial competitors ~ol and ~or, where
ol½i� ¼ min~o2ecðo½i�Þ and or½i� ¼ max~o2ecðo½i�Þ. From Defini-
tion 5 and Observation 1, we know that any ~o 2 ec domi-
nates ~ol and is dominated by ~or. From Lemma 4, we obtain
the upper and lower bound utility of ~o under ew. There-
fore, the upper bound utility of ec under ew is bounded by
that of or under ew. Likewise, the lower bound utility of ec
under ew is bounded by that of ol under ew. tu
Rank Range of ~m Under ew. With Lemmas 4 and 5, we

are able to derive the range of rankð~m; ewÞ, which can be
utilized for pruning.

Lemma 6. For an entry ew and ec, if LBuð~mÞðewÞ is greater than
UBuðecÞðewÞ, we have rankð~m; ewÞ � c�NðecÞ þ 1. Likewise,
if UBuð~mÞðewÞ is smaller than LBuðecÞðewÞ, we have
rankð~m; ewÞ � NðecÞ þ 1.

Proof. IfLBuð~mÞðewÞ � UBuðecÞðewÞ holds, then ~m ranks higher
than NðecÞ competitors; If UBuð~mÞðewÞ < LBuðecÞðewÞ, then
~m ranks lower thanNðecÞ competitors. Thus it is proved. tu
Penalty Based Pruning. Given an entry ew, assume the

range of rankð~m; ewÞ has already been obtained. As we can
obtain LBDwðewÞ directly from the weightRtree, the lower
bound penalty LBpðewÞ can be computed easily.

Lemma 7. If LBpðewÞ exceeds current upper bound penalty UBp,
then ew can be discarded safely.

Observation 3. For an entry ew, based on Lemmas 2 and 7,
we can derive a UBr from Equation (9). Thus, we do not
need to determine the rank range of rankð~m; ewÞ exactly.
Instead, once more than UBr competitors are seen to score
higher than ~m, ew can be removed.

6.2.3 Search Algorithm

The algorithm involves two levels of branch-and-bound
search. Before introducing the BAB algorithm, we present a
procedure ComputeLBRðÞ that determines the lower bound
of rankð~m; ewÞ, i.e., LBRð~m; ewÞ. WithComputeLBRðÞ, we are
able to derive the lower bound penalty of the missing object
under a set of weighting vectors and decide if we can prune
them by comparing with the current UBp. In ComputeLBRðÞ,
we initialize an empty heap H to keep entries ec from the
compRtree based on their LBuðecÞðewÞ and conduct a best-first
search to examine the entries. Given an entry ew, we insert
the root entry of the compRtree intoH. In each round, we pop
the top entry ec of H and apply operations based on its type.
The details are presented inAlgorithm 3.

(i) Pruning at non-leaf nodes. For each subnode e0c of
ec, we first compute LBuðe0cÞðewÞ and compare with
UBuð~mÞðewÞ. From Lemma 6, if LBuðe0cÞðewÞ is no

smaller than UBuð~mÞðewÞ, we update LBRð~m; ewÞ by
addingNðe0cÞ. Otherwise, we insert e0c intoH.

(ii) Pruning at leaf nodes. For each ~o in ec, we compute
LBuð~oÞðewÞ and compare with UBuð~mÞðewÞ. From
Lemma 4, if LBuð~oÞðewÞ is no smaller than UBuð~mÞðewÞ,
we update LBRð~m; ewÞ by adding 1.

Algorithm 3. Procedure ComputeLBRðÞ
Input: ew, compRtree on C and UBr

Output: LBRð~m; ewÞ
1: Initialize H and insert the root of compRtree intoH;
2: whileH is not empty do
3: Pop the top entry ec ofH;
4: if ec is a leaf node then
5: foreach~o 2 ec do
6: Compute LBuð~oÞðewÞ;
7: if LBuð~oÞðewÞ � UBuð~mÞðewÞ then
8: Update LBRð~m; ewÞ by adding 1;
9: if LBRð~m; ewÞ > UBr then
10: return false;
11: else
12: foreach e0c 2 ec do
13: Compute LBuðe0cÞðewÞ;
14: if LBuðe0cÞðewÞ � UBuðe0cÞðewÞ then
15: Update LBRð~m; ewÞ by adding Nðe0cÞ;
16: if LBRð~m; ewÞ > UBr then
17: return false;
18: return LBRð~m; ewÞ;

Terminate Condition. From Observation 3, if the current
LBRð~m; ewÞ already exceeds UBr, ComputeLBRðÞ stops,
and all weighting vectors in ew are eliminated from consid-
eration as a result. Otherwise, it stops when H is empty and
returns the current lower bound rank LBRð~m; ewÞ.

It is worth noting that ComputeLBRðÞ returns the exact
rankð~m; ~wÞ if the input contains only one ~w. Algorithm BAB
uses ComputeLBRðÞ. The algorithm keeps an empty heap H
to store entries ew from the weightRtree, and the entries in H

Fig. 6. The weightRtree and compRtree.
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are sorted based on their LBpðewÞ value. We initialize H by
inserting the root node of the weightRtree into H and set the
initial UBp ¼ �. Each ew or ~w that renders the partial penalty
of Dw higher than the current UBp is discarded immedi-
ately. The traversal of the weightRtree terminates when H
becomes empty.

(i) Pruning at non-leaf nodes. For each subnode e0w of ew, we
first compute UBr with LBDwðe0wÞ and the current UBp

based on Observation 3 and apply ComputeLBRðÞ on
it. If LBRð~m; e0wÞ is successfully returned, we compute
LBpðe0wÞ and insert e0w intoH.

(ii) Pruning at leaf nodes. For each ~w in ew, we first compute
UBr with Dw and the current UBp using Equation (9).
If ComputeLBRðÞ successfully returns rankð~m; ~wÞ, we
updateUBp by Penaltyðrankð~m; ~wÞ; ~wÞ.

Algorithm 4. Branch-and-Bound Algorithm (BAB)

Input: weightRtree onW and compRtree on C
Output: The best refined query ðkb; ~wbÞ
1: InitializeH, UBp and insert the root of weightRtree intoH;
2: whileH is not empty do
3: Pop the top entry ew ofH;
4: if ew is a leaf node then
5: foreach ~w 2 ew do
6: Compute UBr with Dw and UBp;
7: if ComputeLBR() is true then
8: Update UBp and ðkb; ~wbÞ;
9: else
10: foreach e0w 2 ew do
11: Compute UBr with LBDwðe0wÞ and UBp;
12: if ComputeLBR() is true then
13: Add e0w intoH;
14: returnUBp and ðkb; ~wbÞ;

In the worst case, BAB has to enumerate all the competi-
tors and weights stored in compRtree and weightRtree. In
practice, BAB runs fast due to the pruning power.

7 EXPERIMENTS

We report on extensive experiments with real geo-textual
datasets that offer insight into the performance of the pro-
posed index structures and algorithms.

7.1 Experimental Settings
All algorithms were implemented in GNU C++ on Linux
and run on an Intel(R) CPU i7-4770@3.4 GHz and 32G RAM.

Datasets. We use two real PoI datasets, Beijing PoI and
New York PoI, that consist of keywords of PoIs from the

OpenStreetMap5 and Foursquare,6 and a synthetic dataset.

Each PoI has a name, a location (in the form of longitude
and latitude), and category tags (with several subcatego-
ries). We combine the name and categories of a PoI to form
its textual information of each PoI. As shown in Table 2, for
Beijing, we have 329,481 PoIs and 88,190 keywords, and the
average occurrence of a keyword is 21. For New York, we
have 206,416 PoIs and 87,394 keywords, and the average
occurrence of a keyword is 18. As these two real datasets
are similar in terms of scale and keyword distribution, we
only present the performance on the Bejing and synthetic
datasets due to the space limitation.

Algorithms. We evaluate the performance of the pro-
posed algorithms: geo-textual dominance search algo-
rithm (GTD), the incremental sampling algorithm (ISA),
and the branch-and-bound algorithm (BAB). In ISA, we
use three different heuristic strategies, i.e., ISA-US,
ISA-WM, ISA-RI, and compare with the baseline RSA. We
set h in ISA-RI to 100. For BAB, we evaluate the perform-
ances by comparing with the baseline progressive top-k
algorithm (PTK).

Parameter Settings. We randomly generate 100 queries for
each experiment and report their average performance. To
evaluate the algorithms in different settings, we vary the
values of parameters, as shown in Table 3. As default set-
tings, we choose 320 K for the dataset cardinality, 0.5 for �,
3 for the number of users, 10 km for the diameter of query
locations, 10 for the top-k, 101 for the actual rank of ~m, 2 per-
cent for T%, 0.7 for Pr, 1 for the number of missing objects
and 1 for the number of query keywords. For the original
query ðko; ~woÞ, we set ~wo ¼ ð1=h; . . . ; 1=hÞ and ko ¼ k.

7.2 Performance Evaluation
Table 4 compares the proposed algorithms with respect
to query time and penalty by using the default settings.
For the penalty, we can see that ISA generate weighting

TABLE 2
Statistics of Dataset

Beijing New York Synthetic

# of PoIs 329,481 206,416 1,000,000
# of keywords 88,190 47,394 80,000

Avg occurrence of a keyword 22 35 75
Avg # of keywords per PoI 6 8 6

TABLE 3
Parameter Settings

Parameters Values

Dataset cardinality 20K, 40K, 80K, 160K, 320K
� 0.1, 0.3, 0.5, 0.7, 0.9
# of users h 3, 4, 5, 6, 7
the diameter of Q (km) 5, 10, 20, 30, 50
k 5, 10, 20, 50, 100
Actual rank of ~m 11, 101, 501, 1001
T% 0.3%, 0.25%, 0.2%, 0.15%, 0.1%
Pr 0.5, 0.6, 0.7, 0.8, 0.9
# of missing objects jMj 1, 3, 5, 7
# of query keywords 1, 2, 3, 4, 5

TABLE 4
Performance of Algorithms on QT (Query Time (ms))

and P (Penalty)

Algo GTD RSA+PTK ISA-US
+BAB

ISA-WM
+BAB

ISA-RI
+BAB

QT BJ 198 277 1701 347 680 365 377 394 264
NY 133 238 1299 278 645 284 389 319 176
SYN 682 372 3421 424 2241 519 1256 592 772

P BJ N/A 0.31 0.20 0.18 0.15
NY N/A 0.42 0.28 0.22 0.17

SYN N/A 0.51 0.32 0.25 0.23

5. https://www.openstreetmap.org
6. https://foursquare.com/
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vectors with higher quality than RSA, especially when
using the RI method. Thus, the penalty is smaller and closer
to optimal result. For the query time, we can see that BAB
algorithm reduces the time of validating refined queries,
and even if ISA takes more time than RSA for sampling,
ISA-RIþ BAB still takes the least overall query time. In the
remaining experiments, we only show the performance on
the Beijing and synthetic datasets since the performance on
the Beijing and New York datasets are similar.

Effect of Dataset Cardinality. We study the effect of
the dataset cardinality on the performance of algorithms
RSAþ PTK, ISA-USþ BAB, ISA-WMþ BAB, and ISA-
RI þBAB. We sample 4 datasets from the Beijing dataset
with 20 to 160 K PoIs, and 4 datasets from the synthetic
dataset with 60 to 500z K. As can be seen in Figs. 7a and
8a, our algorithms scale linearly with the dataset cardinal-
ity. In general, the ISAþ BAB algorithm outperforms the
baseline RSAþ PTK increasingly when the we enlarge the
cardinality. A possible explanation is that when more com-
petitors are involved, the computeLBRðÞ speeds up the
query by efficiently pruning weighting vectors.

Effect of �. We study the effect of � on the performance.
We choose 5 values of � from 0.1 to 0.9. As we can see in
Figs. 7b and 8b, the query takes more time when � increases.
As we mentioned in Section 6.1, the initial upper bound
penalty is set to �. Therefore, when � is smaller, the pruning
power is stronger. However, the performance of the algo-
rithms do not differ much.

Effect of the Number of Users h. We study the effect of the
number of users on the performance by varying h from 3 to
7. As we know, h is the dimensionality of the objects and
the weighting vectors. In Figs. 7c and 8c we can see that the
performance of all the algorithms degrades with the growth
of the dimensionality. This is because all the algorithms
need to traverse the IR2-tree by using GTD, and BAB needs
to traverse the compRtree and the weightRtree. However, our
proposed methods still outperform the baseline.

Effect of Q’s Diameter. We examine the effect of the distri-
bution of query locations. The diameter of the query, which
is the maximum distance among all pairs of query locations.
As can be seen in Figs. 7d and 8d, the query time increases
when we enlarge the diameter from 5 to 50 km. This occurs
because more objects are involved when the area increases,
which affects the number of competitors and the weighting
vectors in the query.

Effect of k. We study the effect of k on the performance by
varying k from 5 to 100. For instance, given a top-5 GSK
query, the corresponding WGSK looks for the missing
object ranked 51th. Thus, a higher k increases the time
needed for traversing R-tree. Moreover, a worse rank of the
missing object consumes more time in each step of the solu-
tion. As shown in Figs. 7e and 8e, our proposed algorithms
scale well with the increase of k compared with the baseline.

Effect of ~m’s Actual Rank. We study the effect of ~m’s
actual rank on the performance. We use the default set-
ting of k ¼ 10 and vary ~m’s actual rank from 11 to 1,001.
Not surprisingly, in Figs. 7f and 8f, the proposed algo-
rithms outperform the baseline and scale well. As men-
tioned in the last experiment, the penalty validation
takes more time when the missing object has a worse
rank since we need to determine the rank under a set of
candidate weighting vectors.

Effect of T% and Pr. We study the effect by varying T%
from 0.3 to 0.1 percent, and by varying Pr from 0.5 to 0.9.
These two parameters are used to control the quality of the
weighting vectors we sampled. In addition to the efficiency
evaluation, we also study the effectiveness of our algorithms
with different values of T% and Pr. As the same in [18], we
use the penalty to reflect the effectiveness, where a lower
and convergent penalty indicates a higher degree of approxi-
mation to the optimal result. Figs. 9a and 9c show the query
time and penalty with different quality guarantee. When
enlarging T%, more weighting vectors are sampled, and the
query time increases since steps 2 and 3 involve more com-
putation.Moreover, we notice that the penalty decreases and
tends to converge as T% increases. The ISA-RIþ BAB out-
performs ISA-USþ BAB and ISA�WMþ BAB since it
achieves both lower penalty and less running time. As we
can see in Figs. 9b and 9d the query time increases and pen-
alty decreases. As both T% and Pr are used for the quality
control, the trends are similar and converge gradually.
The results for the synthetic dataset are similar to those for
the Beijing dataset, as shown in Fig. 10.

Effect of Multiple Query Keywords. We study the effect of
multiple query keywords on the performance by varying the
number of keywords from 1 to 5.We consider the disjunctive
case where an object that contains any query keyword is a
candidate for the GSK query result. It is easy to see that this
only increases the number of competitors in Step (i). The rest
of the solution is the same. Thus, more keywords means

Fig. 7. Effect of varying parameters, Beijing dataset.

Fig. 8. Effect of varying parameters, synthetic dataset.

36 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 1, JANUARY 2020

Authorized licensed use limited to: Soochow University. Downloaded on February 27,2020 at 23:53:33 UTC from IEEE Xplore.  Restrictions apply. 



more candidate objects. In Figs. 11a and 12a, our methods
again outperform the baseline.

Effect of Multiple Missing Objects. We study the effect of
multiple missing objects on the performance by consider-
ing 1, 3, 5, and 7 objects. To cope with multiple missing
objects M, we assume there is no dominance relationship
between any two missing objects. In Step (i), we extract
the competitors for all missing objects. In Step (ii), we
sample the weighting vectors on the partition hyperplane
between the competitor and the corresponding missing
object. In Step (iii), we only need to consider the missing
object with minimum utility or lower bound utility among
all ~m 2M in computeLBRðÞ. As we can see in Figs. 11b and
12b, the time increases when more missing objects are con-
sidered. This is because more competitors can be obtained
and because we have to consider the missing object with the
worst rank.

8 RELATED WORK

8.1 Spatial Keyword Search
Searching geo-textual objects based on a query location
and keywords has attracted substantial attention. In
euclidean space, the IR2-tree [27] integrates signature files
and the R-tree to answer Boolean keyword queries. The
IR-tree [28] is an R-tree augmented with inverted files that
supports the ranking of objects based on a scoring

function that involves spatial distance and text relevancy.
A recent study [29] provides a survey of twelve state-of-
the-art geo-textual indices and presents a performance
comparison of the indices. Cao et al. [3] propose a collec-
tive spatial keyword query, that returns a group of objects
whose textual descriptions cover given query keywords
and ranks the highest according to spatial criteria, such
as having the smallest sum of distances to a query loca-
tion. ROAD [30] organizes a road network as a hierarchy
of subgraphs and connects these using shortcuts. For each
subgraph, an object abstract is generated for keyword
checking. By using network expansion, the subgraphs
without intended objects are pruned. The G-tree [31]
adopts a graph partitioning approach to form a hierarchy
of subgraphs. Within each subgraph, a distance matrix is
kept, and for any two subgraphs, the distances between
their borders are stored as well. Based on these distances,
the distance between a query vertex and target vertices or
tree nodes can be computed efficiently.

8.2 Why-Not Queries
To answer why-not questions, Huang et al. [17] first
explored the provenance of non-answers. Extensive efforts
have subsequently been put into answering why-not ques-
tions. The existing approaches can be classified into three
categories: (i) manipulation identification (e.g., why-not
questions on SPJ queries [14] and SPJUA queries [15]), (ii)

Fig. 10. Effect of T% and Pr on query time (ms) and penalty, synthetic dataset.

Fig. 11. Effect of multiple keywords and objects, Beijing dataset. Fig. 12. Effect of multiple keywords and objects, synthetic dataset.

Fig. 9. Effect of T% and Pr on query time (ms) and penalty, Beijing dataset.
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database modification (e.g., why-not questions on SPJ
queries [17]), and (iii) query refinement (e.g., why-not ques-
tions on SPJA queries [16], top-k queries [18], reverse
skyline queries [32], spatial keyword top-k queries [19],
and metric probabilistic range queries [33]). In addition,
Herschel [34] tries to identify hybrid why-not explanations
for SQL queries. Next Ten Cate et al. [35] present a frame-
work for why-not explanations by leveraging concepts from
an ontology. Bidoit et al. [36] provide a new formalization
of why-not explanations as polynomials. Liu et al. [37] con-
duct an excellent work on answering why-not and why
questions on reverse top-k queries. In contrast, we offer the
first study of why-not query processing for the relatively
complex top-k group spatial keyword query. He et al. [18]
study a related problem on minimizing the overall change
of ~w and k while achieving the inclusion. However, their
solutions can only work for static datasets, and do not apply
to spatial keyword queries where query locations are
dynamic and precomputation based on spatial distance is
infeasible. Chen et al. [19] answer the why-not questions on
top-k spatial keyword queries, which is the most related
work, but their changing on ~w is limited to spatial and tex-
tual dimensions only, which can not be applied to high
dimensions.

9 CONCLUSION AND FUTURE WORK

Given the result of a top-k group spatial keyword query, users
may wonder why the result fails to include an expected
answer. In this setting, the why-not group spatial keyword
query is able to return the result of minimally modified query
that does include the expected answer. We present a frame-
work that provides a three-phase solution to computing such
why-not queries. We adopt query refinement to modify the
users preference ~w andparameter k in the original top-k query
so that the expected answer is included in the result of the
modified query. The first phase extracts competitors from the
data set. The second phase generates candidate weightings to
reform promising queries. Finally, we return the query that is
most similar to the original query. Several directions for
future research are promising. First, the query model can be
extended to road networks, enabling users to search for geo-
textual objectwhile considering the networkdistance. Second,
the top-k group spatial keyword query only considers the spa-
tial proximity between the object and users. Extensions to
support additional aspects, such as popularity, rating, price,
and the number of reviews are of interest.
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