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Abstract
The proliferation of trajectory data in various application domains has inspired tremendous research efforts to analyze large-
scale trajectory data from a variety of aspects. A fundamental ingredient of these trajectory analysis tasks and applications
is distance measures for effectively determining how similar two trajectories are. We conduct a comprehensive survey of the
trajectory distancemeasures. The trajectory distancemeasures are classified into four categories according to the trajectory data
type andwhether the temporal information ismeasured. In addition, the effectiveness and complexity of each distancemeasure
are studied. The experimental study is also conducted on their effectiveness in the six different trajectory transformations.

Keywords Trajectory distance measure · Trajectory transformation · Objective evaluation

1 Introduction

Driven by major advances in sensor technology, GPS-
enabled mobile devices, and wireless communication, large
amounts of data describing the motion history of mov-
ing objects, known as trajectory, are currently generated
and managed in scores of application domains, such as
environmental information systems, meteorology, wireless
technology, video tracking, and video motion capture. Typ-
ical examples include collecting GPS location histories of
taxicabs for safety and management purpose, tracking ani-
mals for their migration patterns, gathering human motion
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data by tracking body joints, and tracing the evolution of
migrating particles in biological sciences. This inspires a
tremendous amount of research efforts in analyzing large-
scale trajectory data from a variety of aspects in the last
decade. Representative works include the design of effective
trajectory indexing structures [7,9,15,19,27,59,90,91], built
to manage trajectories and support high-performance trajec-
tory queries [15,27,98]. Data mining methods are applied
to trajectories to detect points of interest (POI), find pop-
ular routes from a source to a destination, predict traffic
conditions, discover significant patterns, and perform data
compression [40,41,49,52,99,100]. As a result, trajectories
are used in many applications across different domains. For
example, public transportation system may go back in time
to any particular instant or period to analyze the pattern of
traffic flow and the causes of traffic jams. Movements of
animals may be analyzed in biological studies with consider-
ation of road networks to reveal the impact of human activity
on wild life; the urban planning authority of a city council
may analyze the trajectories to predict the development of
suburbs and provide support to decision making; other appli-
cations include path optimization of logistics companies,
improvement in public security management, personalized
location-based service, etc.

Despite various kinds of analysis tasks and applications of
moving objects data, measuring the distance between the tra-
jectories of moving objects is a common procedure of most
tasks and applications. Thus, a fundamental ingredient of
those trajectory analysis tasks and applications is distances
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that allow to effectively determine how similar two trajec-
tories are. However, unlike other simple data types, such as
ordinal variables or geometric points where the distance def-
inition is straightforward, the distance between trajectories
needs to be carefully defined in order to reflect the true under-
lying distance. This is due to the fact that trajectories are
essentially high-dimensional data attached with both spa-
tial and temporal attributes, which needs to be considered
for distance measures. As such, there are dozens of distance
measures for trajectory data in the literature. For example,
there are distance measures measuring the sequence-only
distance between trajectories, such as Euclidean distance
and dynamic time wrapping distance (DTW); there are also
trajectory distancemeasures measuring both spatial and tem-
poral dimensions of two trajectories, such as spatiotemporal
longest common subsequence (STLCSS) similarity and spa-
tiotemporal locality in-between polyline (STLIP) distance.
Many of these works, and some of their extensions, have
been widely cited in the literature and used to facilitate query
processing and mining of trajectory data.

Being faced with the multitude of competitive techniques,
we need a systematic survey that studies the contribution of
each individual research and explore the relations and dif-
ferences among them. Gudmundsson et al. [33] and Toohey
and Duckham [88] both review four basic trajectory distance
measures, i.e., Euclidean distance, DTW, LCSS, and Fréchet
distance.However,manyotherwidely used or recent distance
measures, e.g., EDR, ERP, MD, STLC, and EDwP, are not
introduced in these two papers. In addition, comprehensive
empirical evaluation and comparison of these measures are
not sufficiently studied in previous work.

Motivated by these observations, we conduct a most
comprehensive survey on the trajectory distance measures
proposed in studies of referred conferences and journals.
We studied all 15 distance measures in the following per-
spectives, namely: (1) the targeted trajectory data type, (2)
considering temporal information or not, (3) properties of
distance measure function, e.g., parameter free or not, metric
or not, indexing, pruning, etc., and (4) time complexity of the
distance measure. What’s more, as collected in the complex
real-life environment, trajectory data usually have character-
istics such as asynchronous observations, explicit temporal
attribute, and some other quality issues (detailed in Sect. 2.2).
We provide a benchmark to simulate these characteristics in
a real setting by introducing six trajectory transformations
of three different types, i.e., point shift, trajectory shift, and
noise (see Sect. 5.3), on three real-life and synthetic datasets.
We also extensively studied and compared the capability of
handling the above-mentioned characteristics for all distance
measures. The contributions of this article are as follows:

– We complete a comprehensive literature review on tra-
jectory distance measures and classify these measures

into four categories in terms of the trajectory data type
and whether the temporal information is measured by the
measure.

– We design three types of trajectory transformations and
run extensive experiments based on large-scale real tra-
jectory datasets to evaluate the capabilities of all the
trajectory distance measures.

– We have a key observation that DTW, LCSS, ERP, MD,
and STLC are distancemeasures with capabilities of han-
dling at least four transformations. Among them, STLC
is the best distance measures that can handle all the trans-
formations.

– We have a key observation that the distance measures
with low time costs have low effectiveness in handling
all transformations.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the preliminary concepts of trajectory and
overviews the classification of trajectory distance measures.
We introduce the trajectory distance measures in Sects. 3 and
4. The capability evaluation of distancemeasures is presented
in Sect. 5. Section 6 concludes the survey and outlines the
observations we make.

2 Overview

2.1 Preliminary concepts

In this subsection, we will introduce the preliminary con-
cepts about trajectories and formalize the operations and
notations that will be used frequently in the remainder of
the paper. A trajectory is a sequence of time-stamped point
records describing the motion history of any kind of moving
objects, such as people, vehicles, animals, and natural phe-
nomenon. Theoretically, a trajectory should be a continuous
record, i.e., a continuous function of time mathematically,
since the object movement is continuous in nature. In prac-
tice, however, the continuous location record for a moving
object is usually not available since the positioning technol-
ogy (e.g., GPS devices, roadside sensors) can only collect
the current position of the moving object in a periodic man-
ner. Due to the intrinsic limitations of data acquisition and
storage devices, such inherently continuous phenomena are
acquired and stored (thus, represented) in a discreteway. This
subsection starts with approximations of object trajectories.
Intuitively, themore the data about thewhereabouts of amov-
ing object are available, the more accurate its true trajectory
can be determined. Still, to be consistent with existingworks,
we refer to such kind of discrete representation as the trajec-
tory, despite the fact that it is just an approximation of the
original trajectory of the moving object. Next, we formalize
this kind of representation for a trajectory.
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Definition 1 (Trajectory sample point) A trajectory sample
point p is a location in d-dimensional space, and p.t is the
time stamp when p is observed.

The location and time stamp pair ((116.364629,
39.940511), 3/1/2012 12:00:31 AM) is an example of a sam-
ple point, where ‘116.364629’ and ‘39.940511’ are longitude
and latitude, respectively, and ‘3/1/2012 12:00:31 AM’ is the
time stamp. In practice, a trajectory sample point p is usu-
ally two or three dimensional. Without loss of generality, we
assume objects are moving in a two-dimensional space, i.e.,
p is a two-dimensional vector, and the time attribute is dis-
crete. Therefore, the trajectory distance functions discussed
in this paper are all defined in two-dimensional space.

Definition 2 (Trajectory) Trajectory is a sequence of trajec-
tory sample points, ordered by time stamps t . Trajectory T is
represented by a sequence of trajectory sample points. There-
fore, T = [p1, p2, . . . , pn].
Definition 3 (Trajectory distance measure) A trajectory dis-
tancemeasure is amethod that evaluates the distance between
two trajectories. d(T1, T2) denotes the distance between two
trajectories T1 and T2. The larger the value is, the less similar
the two trajectories are.

Definition 4 (Metric distance measure) A distance measure
d is metric if for all T1, T2, and T3 of a trajectory dataset the
following conditions are satisfied:

1. Nonnegativity: d(T1, T2) ≥ 0.
2. Identity of indiscernibles: d(T1, T2) = 0 ⇔ T1 = T2.
3. Symmetry: d(T1, T2) = d(T2, T1).
4. Triangle inequality: d(T1, T3) ≤ d(T1, T2) + d(T2, T3).

As we shall see in the rest of our paper, trajectory distance
measures may or may not satisfy all the above conditions,
which means not all of the proposed trajectory distance mea-
sures are metric. This will impact how the index structures
and pruning strategies are designed and applied to query the
trajectories as some index structures and pruning strategies
only work properly in a metric space.

With the definition of trajectory, we define some operators
on the sample point p and trajectory T that will be used
throughout the remainder of this paper. Notations used in
this paper are listed in Table 1.

1. d(p1, p2): d(p1, p2) stands for the distance between
sample points p1 and p2. Without specifying, d(p1, p2)
is the Euclidean distance between p1 and p2.

2. t(p1, p2): t(p1, p2) stands for the time interval between
sample points p1 and p2, i.e., t(p1, p2) = p2.t − p1.t .

3. Head(T ): For trajectory T = [p1, p2, . . . , pn], Head
(T ) is to get the first sample point of a trajectory, that is
Head(T ) = p1.

Table 1 Notations used in the paper

Notation Explanation

p A trajectory sample point

p.t Time stamp of a trajectory sample point

d(pi , p j ) Distance between two sample points pi and p j

T A trajectory

pi, j The j th sample point of trajectory Ti

d(Ti , Tj ) Distance between two trajectories Ti and Tj

4. Rest(T ): For trajectory T = [p1, p2, . . . , pn], Rest(T )

is to get the tail sample points of the trajectory except the
first sample point. Therefore, Rest(T )=[p2,p3, . . . ,pn].

5. Length(T ): Length(T ) represents the absolute length of
trajectory T = [p1, p2, . . . , pn] in space, i.e., Length(T )

= ∑n−1
i=1 d(pi , pi+1). For example, the Length(T )

for a trajectory T = [((0, 0), 0), ((2, 0), 1), ((4, 0), 2),
((6, 0), 3)] is 6.

6. Size(T ): Size(T ) represents the number of trajectory
sample points of T . For example, the Size(T ) for a
linear trajectory T = [((0, 0), 0), ((2, 0), 1), ((4, 0), 2),
((6, 0), 3)] is 4.

7. T ime(T ): T ime(T ) represents the absolute time interval
of a trajectory T = [p1, . . . , pn] travels, i.e., T ime(T ) =
∑n−1

i=1 t(pi , pi+1). For example, the T ime(T ) for a tra-
jectory T = [((0, 0), 0), ((2, 0), 1), ((4, 0), 2), ((6, 0),
3)] is 3.

2.2 Characteristics of trajectory data

Trajectories are usually treated as multidimensional (2D or
3D in most cases) time series data; hence, existing distance
measures for 1D time series (e.g., stock market data) can be
applied directly or with minor extension. Typical examples
include the distance measures based on DTW, edit distance,
and longest common subsequence (LCSS), which were orig-
inally designed for traditional time series but now have been
extensively adopted for trajectories. However, with the more
widely applicability and deeper understanding of trajectory
data, it turns out that trajectories are not simply multidi-
mensional extensions of time series, but have some unique
characteristics to be taken into account during the design of
effective distance measures. We summarize them below.

– Asynchronous observations Time series databases usu-
ally have a central and synchronized mechanism, by
which all the data points can be observed and reported
to the central repository simultaneously in a controlled
manner. For example, in the stock market, the data of all
stocks, such as trade price and amount, are reported every
5 s simultaneously. In thisway, the data points of the stock
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time series are synchronized, which makes the compar-
ison of two stock data relatively simple. It just needs to
compare the pairs of values reported at the same time
instant. However, in trajectory databases there is usually
no such mechanism to control the timing of collecting
location data. Moving objects, such as GPS-embedded
vehicles, may have different strategies when they need
to report their locations to a central repository, such as
time-based, distance-based, and prediction-based strate-
gies. Evenworse, theymight suspend the communication
with a central server for a while and resume later. The
overall result is that the lengths and time stamps of dif-
ferent trajectories are not the same.

– Explicit temporal attribute Although time series data
always have the time attribute attached with each data
point, in practice we do not explicitly use this informa-
tion. In other words, time series are usually treated as
sequences without temporal information. The reason for
doing this is, as mentioned in the first property, all time
series data in a system have the same time stamps; hence,
explicitlymaintaining the time attributes is not necessary.
However, in trajectory databases, time stamps cannot be
dropped because they are asynchronous among different
trajectories. To make this point clear, we consider two
moving objects which travel through the exactly same
set of geographical locations, but take different time dura-
tion. Without looking at the temporal attribute, the two
trajectories are identical, despite the fact that they have
different time periods.

– More data quality issues Traditional time series data-
bases are expected to contain high-quality data since they
usually have stable and quality-guaranteed sources to col-
lect the data. Financial data may be one of the most
precise time series data and almost error free. In envi-
ronmental monitoring applications, data readings from
sensors also have little noise. In contrast, trajectory data
are faced with more quality issues, since they are gen-
erated by individuals in a complex environment. First,
GPS devices have measurement precision limits; in other
words, what they report to the servermight not be the true
location of the moving object, but with a certain devia-
tion. Evenworse, aGPS devicemight report a completely
wrong location when it cannot find enough satellites to
calculate its coordinate. Second, when a device loses
power or the moving object travels to a region without
GPS signals, its position cannot be sent to the server,
resulting in a period of “missing values” in its trajectory
data.

2.3 Capabilities of trajectory distancemeasures

As introduced before, trajectory data have several signifi-
cant characteristics. A trajectory distance measure needs the

capability of handling a certain characteristic if their evalua-
tion is not affected by the characteristic. Thus, we summarize
the capabilities of handling trajectory distance measures as
follows.

– Point shift A trajectory can be added/deleted from some
sample points or even totally be sampled by different
sampling strategies and different sampling rates, while
its shape and trend are not modified. A distance measure
with the capability of handling point shifting should keep
the low distance values between a trajectory and its point
shifted counterparts.

– Trajectory shift There are several kinds of trajectory
shifts, e.g., time stretch shift and space scale suppress.
A distance measure with the capability of handling time
stretch can detect trajectories moving on the same path
regardless of their speed. A distance measure with the
capability of handling space suppress can identify two
trajectories moving on the paths with similar shapes.

– Noise Since the trajectory data are generally of low qual-
ity, the collected sample points of a trajectory are often
not accurate, or simply noisy points. A distance measure
with the capability of handling noise can correctly mea-
sure the distance between trajectories even if the data
quality of these trajectories is low.

2.4 Classification of trajectory similarity measures

In this survey, we study and compare 15 widely used trajec-
tory distance measures in the literature. We systematically
label these measures by two classification dimensions: (1)
whether the measure considers the spatial attribute only,
i.e., treating two compared trajectories as sequences, or
consider both spatial and temporal information in the tra-
jectory. Spatial information means the sequence order of
trajectory. Temporal information is time-related informa-
tion. For distance measures that only measure the spatial
distance between trajectories, we name them sequence-only
distance measures. For distance measures which measure
both the spatial and temporal distance between trajecto-
ries, we name them spatiotemporal distance measures; (2)
whether the measure is defined in a discrete or continuous
way, i.e., considering the sample point only, or the sample
point as well as the movement in-between. For distance mea-
sures of which distance values are only calculated on sample
points, we name them discrete distance measures. For dis-
tance measures of which distance values are calculated on
both sample points and movement in-between, we name
them continuous distance measures. For distance measures
within the same category, theoretically they have the same
targeted trajectory data type (continuous or discrete) and
the same requirement of information type (sequence-only or
spatiotemporal). By thismeans, each trajectory distancemea-
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Fig. 1 Categorization of trajectory distance measures

sure can be put into one of the four classes, i.e., continuous
sequence-only measures, discrete sequence-only measures,
continuous spatiotemporalmeasures, and discrete spatiotem-
poral measures. Figure 1 shows this classification.

It is worth noting that this classification is not unique,
and there are many other aspects that can be used to con-
nect and distinguish those distance measures. For instances,
ED, DTW, PDTW, OWD, LIP, MD, STLC, Fréchet distance,
STED, and SLIP are all derived by calculating the Euclidean
distance between certain parts of the given two trajectories,
while EDR, ERP, EDwP, LCSS, and STLCSS actually reflect
the proportion of the two trajectories that are close to each
other based on a distance function. From the perspective of
distance function adoption, they can be grouped into Lp-
norm family (ED, DTW, PDTW, OWD, LIP, MD, STLC,
Fréchet distance, STED, and SLIP) and edit distance family
(EDR, ERP, EDwP, LCSS, and STLCSS).

2.5 Trajectory indexing and pruning

Trajectory retrieval is arguably the most important applica-
tion for trajectory distance measures, that is, given a target
trajectory retrieving the most similar trajectories in terms
of some distance/similarity measures to the inquired target.
The most representative scenario is the K -nearest neighbor
queries (KNN),which is to return top-kmost similar trajecto-
ries by a given query trajectory. When extracting qualitative
information by querying databases containing large numbers
of trajectories, the performance crucially depends upon an
efficient index of trajectories that can cluster close-by trajec-
tories together and help pruning trajectories far apart as early
as possible.

This survey focuses on studying the application of the
distance measures in R-tree-based indexing and pruning
methods, due to its popularity in academia and industry. In
particular, KNN queries are used as the example. Some dis-
tance measures, such as EDwP, OWD, and STLCSS, have
their specially designed indexing methods. Due to the lim-
ited application scope of these indexing methods, we briefly

summarize them in Table 2without giving details for the sake
of space.

R-tree and its variations R-tree [35] is a height-balanced
data structure. Each node in R-tree represents a region which
is the minimum bounding rectangle (MBR) of all its children
nodes. Each data entry in a node contains the information of
the MBR associated with the referenced children node. R-
tree is widely used in the processing of KNN queries for a
given query trajectory. Because of its popularity, there are
also many index structures that are variants of R-tree. Most
of them can be divided into two types. The first type uses
anymultidimensional accessmethod likeR-tree indexeswith
augmentation in temporary dimensions such as 3D R-tree
[68] and STR-tree [68]. The second type uses multiversion
structures, such as MR-tree [94], HR-tree [58], HR+-tree
[86], and MV3R-tree [87]. This approach builds a separate
R-tree for each time stamp and shares common parts between
two consecutive R-trees.

Query processing for KNN Since enumerating all trajecto-
ries and computing distances is expensive and impractical,
the basic idea behind arguably all KNN query processing
techniques in literal is to employ a filter-and-refine approach
to aggressively pruning. Algorithm 1 shows the general
framework of the filter-and-refine approach to the spatial
query processing. Basically in a filter-and-refine scheme, the
filtering step uses relatively low computation cost to find a
set of candidate trajectories that are likely to be the results;
the refining step then identifies the actual query result from
the small set of candidates.

The overall performance of a spatial query processing
algorithm heavily relies on the effectiveness of the filtering
step, where distance measures are used for pruning the tra-
jectories that are impossible to be returned. There are many
filtering methods (pruning strategies), such as mean value
Q-gram pruning strategy [15] and morphological pruning
strategy [34].Among them, the lower boundingpruning strat-
egy and triangle inequality pruning strategy are the most
commonly used in practice.

– Lower bounding pruning strategy In lower bounding
pruning strategy, we start the search with an initial lower
bound l. We randomly select k nearby trajectories and
calculate the distances between the query trajectory Q
and these k trajectories. The initial lower bound is set as
themaximum distance among the k distances. During the
search in the R-tree, we calculate the minimum distance
dmin(Q, M) from the query trajectory Q and a MBR M .
If dmin(Q, M) is greater than the current lower bound l,
we can safely filter out all trajectories within the MBR;
otherwise, we need to recursively check MBRs within
the current MBR. The lower bound l can be adjusted and
tightened during the search. The lower bounding prun-
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Algorithm 1: The filter-and-refine algorithm for KNN

1 N ← the root node of R-tree;
2 Q ← a priority queue initialized with one element < N >;
3 C ← ∅;
4 while Q is not empty do
5 E ← Q.pop_ f irst();
6 if E is a leaf node then
7 if filter(E, Oq) then
8 C ← C ∪ {E}
9 else

10 foreach E ′ ∈ E .children do
11 if filter(E ′, Oq) then
12 Q.add(E ′);

13 return refine(C);

ing strategy can be used with most trajectory distance
measures.

– Triangle inequality pruning strategy Triangle inequal-
ity pruning strategy is only applicable to distance mea-
sures that satisfy triangle inequality, such as ERP and
STED. In triangle inequality pruning strategy, we usu-
ally pre-compute the pairwise distance for every two
trajectories of a trajectory dataset. During the search, we
record the true distances of a set of candidate trajecto-
ries {T1, T2, . . . , Ti , . . . , Tu} and the queried trajectory
Q, denoted by A. For a trajectory T ∗ currently being
evaluated, if this distance d(Q, Ti )−d(Ti , T ∗) is already
worse than the current KNN distance stored in the result,
then T ∗ can be filtered out entirely. This is because the
triangle inequality ensures that d(Q, T ∗) ≥ d(Q, Ti ) −
d(Ti , T ∗),∀1 ≤ i ≤ u. Otherwise, the true distance
d(Q, T ∗) is computed, and A is updated to include T ∗.
As d(Ti , T ∗) is pre-computed, it is usually faster than the
process of computing d(Q, Ti ) directly.

For brevity, in the following section,we simplymarkwhether
a distance measure satisfies triangle inequality, and corre-
sponding applicable pruning strategies as discussed above.

3 Sequence-only distancemeasures

This section introduces the sequence-only distancemeasures,
which measure the spatial distance of two trajectories with-
out considering their temporal information. Existing works
in this field usually consider a trajectory as a sequence of
geo-spatial points, while ignoring the explicit time stamps
associated with the points. Sequence-only distance measures
are suitable for the caseswhere the shape is the only consider-
ation in measuring the distance between two trajectories. For
example, in the study of migrating animals, we may be only

interested in the shape of the migration path; the sequence-
only distance measures can be applied to this case.

3.1 Discrete sequence-only distancemeasures

In this subsection, we review six discrete sequence-only
distance measures. Though these distance measures are dif-
ferent, they share similar steps in measuring distance. Firstly,
these distance measures find all the sample point match pairs
among the two compared trajectories T1 and T2. A sample
point match pair, pair(pi , p j ), is formed by two sample
points where pi ∈ T1 and p j ∈ T2. There are several sample
point matching strategies such as minimal Euclidean dis-
tance or minimal transformation cost. Then, these distance
measures accumulate the distance for matched pairs or count
the number of match pairs to get the final distance results.
Thus, the sample point matching strategy is the key for every
discrete sequence-only distance measure. The sample point
matching strategies can be divided into the following two
types:

– Complete match For two compared trajectories T1 and
T2, complete match strategy requires every sample points
of T1 and T2 should be in a match pair, as shown in
Fig. 2a. Thus, the match pair number of complete match
is max(si ze(T1), si ze(T2)).

– Partial match For two compared trajectories T1 and
T2, partial match strategy does not require every sam-
ple points of T1 and T2 should be in a match pair, as

Fig. 2 Twomatchingmethods used by discrete trajectory distancemea-
sures
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A survey of trajectory distance measures and performance evaluation 9

shown in Fig. 2b. Thus, some sample points will not be
matched to any sample points.

3.1.1 Complete match measures

Complete match measures require all sample points to have
their match points (Fig. 2a). Since the size of two comparing
trajectories may be different, some sample points have dupli-
cate match points. In this case, trajectories need to be shifted,
stretched, and/or squeezed to find best match pairs of sam-
ple points. Euclidean distance is a special case of complete
match measures since it requires two comparing trajectories
should be of the equal size. Among many complete match
distancemeasures, dynamic timewarping (DTW) is themost
representative one. This subsection mainly introduces the
Euclidean distance, DTW, and piecewise DTW (PDTW) (an
extension of DTW).

Euclidean distance

The most commonly used equal-size discrete sequence-
only distance measure is Lp-norm distance. It is a distance
measure that pairwisely computes the distance between
corresponding points of two trajectories. Among all other
L p-norms, L2-norm, also known as Euclidean distance, is
the most commonly adopted distance measures in the liter-
ature. Besides being relatively straightforward and intuitive,
Euclidean distance and its variants have several other advan-
tages. The complexity of evaluating these measures is linear;
in addition, they are easy to implement, indexable with any
access method, and parameter free. Euclidean distance was
proposed as a distance measure between time series and
was once considered as one of the most widely used dis-
tance functions since the 1960s [24,45,67,70]. As trajectories
are closely related to time series, Euclidean distance is also
adopted in measuring trajectory distance [18,42,72,77,85].

For two trajectories T1 and T2 with the same size n, the
Euclidean distance dEuclidean(T1, T2) is defined as follows:

dEuclidean(T1, T2) =
∑n

i=1 d(p1,i , p2,i )

n
(1)

where p1,i and p2,i are the i th sample point of T1 and T2,
respectively. The time complexity is O(n). Euclidean dis-
tance measure is straightforward; however, it requires the
comparing trajectories to be the same size, which is not com-

mon in the actual situation; otherwise, it will fail to decide
the match pairs of the trajectories to be compared. Hence,
in reality, people always use a sliding widow of size n to
measure the distance of T1 and T2, where si ze(T1) = n,
si ze(T2) = m and n ≤ m. Thus, the Euclidean distance with
a sliding window can be defined as follows:

dEuclidean(T1, T2) = m−n+1
min
j=1

∑n
i=1 d(p1,i , p2, j+i )

n
. (2)

Thus, the time complexity of Euclidean distance with a
sliding window is O(nm). It is parameter free. Since it is
metric, it satisfies triangle inequality and can use R-tree as
an index structure. The lower bounding pruning strategy and
triangle inequality pruning strategy can be used to speed up
the Euclidean-distance-based k-NN queries. However, it is
sensitive to noisy data.

dDTW (T 1, T2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if n = 0 and m = 0
∞, if n = 0 or m = 0
d(Head(T 1), Head(T 2)) + min{dDTW (T1, Rest(T2)),
dDTW (Rest(T1), T2),
dDTW (Rest(T 1), Rest(T 2))} otherwise

. (3)

DTW distance

Dynamic time warping (DTW) is an algorithm for measur-
ing the distance between two sequences. DTW has existed
for over a hundred years. Initially, DTW was introduced
to compute the distance of time series [30,57]. In 1980s,
[48,56,61,69,81] introduced DTW to measure trajectory dis-
tance. DTW has become one of the most popular trajectory
distance measures since then. DTW distance is defined in a
recursive manner and can be easily applied in dynamic pro-
gramming. It searches through all possible points’ alignment
between two trajectories for the one with minimal distance.
Specifically, the DTW dDTW (T1, T2) between two trajecto-
ries T1 and T2 with lengths of n and m is defined as Eq. (3).

The time complexity of DTW is O(mn). Since DTW is
one of the most widely used trajectory distance measures,
people have brought up many pruning methods to accelerate
the efficiency of DTW, such as preprocessing methods (e.g.,
FastMap algorithm and piecewise dynamic time warping)
and lower bound methods [75,96]. FastMap is an algorithm
reducing the dimension of trajectory data while preserving
the dissimilarities between trajectories. Piecewise dynamic
time warping (PDTW) operates on higher-level abstrac-
tion of the data, namely piecewise aggregate approximation
(PAA), which will be introduced in detail later.

Piecewise dynamic time warping (PDTW) [10,29,32,45,
46,76,90] is a trajectory distance function that speeds up
DTW by a large constant c, where c is data dependent.
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10 H. Su et al.

Same as DTW, PDTW was originally designed for time
series. PDTW takes advantage of the fact that a piecewise
aggregate approximation can approximate most trajectories.
PDTW takes the following two steps to speed up DTW.

– Piecewise aggregate approximation (PAA) PAA cuts
a trajectory T of size n into N = n/c pieces, where
[pc·(i−1)+1, pc·(i−1)+2, . . . , pc·i ] is the i th piece. For
piece i , PAAcomputes p̄i as a representative point, where
p̄i is defined as

p̄i =
∑c∗i

j=c(i−1)+1 p j

c
. (4)

It transforms T into piecewise approximation T̄ =
[ p̄1, p̄2, . . . , p̄N ]. For example, Fig. 3a demonstrates the
twooriginal trajectories denotedby thick lines andFig. 3b
demonstrates the two compared trajectories after PAA.
The figure shows the trajectories after PAA can roughly
keep the shape of the original trajectories. In other words,
the distance between the trajectories after PAA is similar
to that between the original trajectories.

– DTW For the compared two trajectories T1 and T2
with the size n and m, respectively, the algorithm
then computes DTW distance on PAA trajectories T̄1
and T̄2. This DTW distance is used as an approx-
imation of dDTW (T1, T2), that is dDTW (T1, T2) ∼=
dPDTW (T1, T2) = dDTW (T̄1, T̄2). As shown in Fig. 3a,
b, the number of match pairs reduces significantly from
original trajectories to trajectories after PAA. Thus, it
speeds up the DTW calculation.

Fig. 3 Match pairs of DTW and PDTW

The time complexity of PDTW is O(NM), where N =
n/c (n is the size of T1) and M = m/c (m is the size of
T2). Compared to the original DTW algorithm with the com-
plexity of O(nm), PDTW speeds DTW up by a factor of
O(c2). Overall, DTW distance is free of parameters. It is
non-metric, since it does not satisfy the triangle inequality.
It can use R-tree as an index structure. It mainly supports
the lower bounding pruning strategy when answering k-NN
queries. Similar to Euclidean distance, it is sensitive to noisy
data.

sLCSS(T1, T2) =

⎧
⎪⎨

⎪⎩

φ, if i = 0 or j = 0

sLCSS(Rest(T1), Rest(T2)) + 1, if d(Head(T1), Head(T2)) ≤ ε

max {sLCSS(T1, Rest(T2)), sLCSS(Rest(T1), T2)}, otherwise

(5)

3.1.2 Partial match measures

Partial match measures are distance measures which do not
require all the sample points to be in match pairs (Fig. 2b).
The existing partial match measures compare trajectories
using some similar methods of compared strings. Longest
common subsequence (LCSS) and edit distance-based dis-
tancemeasures are themainly used distancemetrics of partial
match measures. LCSS is a traditional similarity metric for
strings, which is to find the longest subsequence common
to two compared strings. ED quantifies how dissimilar two
strings are to one another by counting the minimum num-
ber of operations required to transform one string into the
other. The following paragraph will introduce how LCSS
measures the similarity between two trajectories, followed by
the description of distance-based distance measures includ-
ing ERP and EDR, and their usage in measuring trajectory
distance.

LCSS distance

The value of LCSS similarity between sequences S1 and S2
stands for the size of the longest common subsequence of S1
and S2. Trajectory can be treated as a sequence of sample
points, so [38,44,74] used LCSS to measure the similarity
between trajectories. The value of LCSS similarity between
trajectories T1 and T2 stands for the size of the longest com-
mon subsequence of T1 and T2. However, it can hardly find
any two sample points with the exact same location infor-
mation. Thus, in measuring the similarity of trajectories T1
and T2, LCSS treats pi (pi ∈ T1) and p j (p j ∈ T2) to be the
same as long as the distance between pi and p j , which is less
than a threshold ε. In other words, LCSS finds all match pairs
(pi , p j ) where d(pi , p j ) ≤ ε. Thus, some sample points of
T1 and T2 cannot be in any match pairs. Then, LCSS dis-
tance simply counts the number of match pairs between T1
and T2. Since the sample points far apart do not contribute
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A survey of trajectory distance measures and performance evaluation 11

to the value of LCSS distance, these sample points do not
have match points. In contrast to Euclidean distance, LCSS
is robust to noise. The algorithm of sLCSS(T1, T2) is given
by Eq. (5).

LCSS measures the similarity of two trajectories. Using
Eq. (6) [74], LCSS similarity can be transformed to LCSS
distance. Hence, the LCSS distance between trajectories is
defined as:

dLCSS(T1, T2) = si ze(T1) + si ze(T2) − 2 · sLCSS(T1, T2)

(6)

And the normalized LCSS distance is defined as:

dLCSS(T1, T2) = 1 − sLCSS(T1, T2)

si ze(T1) + si ze(T2) − sLCSS(T1, T2)
(7)

The time complexity of LCSS is O(nm), where n and m
are the size of the T1 and T2, respectively. LCSS works well
with noisy trajectory data since noisy sample points will not
affect the value of LCSS. The disadvantage of LCSS is that
the value of LCSS highly relies on the size of compared tra-
jectories. Therefore, when the sampling rates of comparing
trajectories change, the result can be quite different. More-
over, LCSS value is not parameter free and its effectiveness
highly relies on the value of ε. And LCSS is not a metric dis-
tance measure. This is because it does not satisfy the identity
of indiscernibles and the triangle inequality. It can use R-tree
as an index structure and supports the mean value Q-gram
pruning strategy, the near triangle inequality pruning strat-
egy, and the histogram pruning strategy [15] when answering
k-NN queries.

Similar to LCSS, edit distance is another string metric for
measuring the amount of difference between two sequences.
The edit distance between two strings is defined as the min-
imum number of edits needed to transform one string into
the other, with the allowable edit operations including inser-
tion, deletion, and substitution of a single character. Given
two strings s = “ab” and r = “ac,” s1 and r1 are a match pair
since they have the same character “a,” while s2 and r2 are
not. Hence, the edit distance between s and r is 1 (one sub-
stitution). EDR and ERP are two distance measures based

on edit distance, which will be introduced in the following
subsection.

EDR distance

Edit distance on real sequence (EDR) [2,12,15,21,37,49,62,
80] is an ED-based trajectory distance measure. The EDR
distance dEDR (T1, T2) between two trajectories T1 and T2
with lengths of n and m, respectively, is the number of edits
(insertion, deletion, or substitutions) needed to changeT1 into
T2. Similar to LCSS, it can hardly find any two sample points
with exactly the same location information. To measure the
distance of trajectories T1 and T2, EDR treats pi (pi ∈ T1)
and p j (p j ∈ T2) the same only if the locations of pi and
p j are within a range ε. EDR uses subcost(p1, p2) (Eq. 8)
to represent the contribution of p1, p2 to the value of EDR
distance. The algorithmofdEDR(T1, T2) is defined asEq. (9):

subcost(p1, p2) =
{
0 , d(p1, p2) ≤ ε

1, otherwise
(8)

dEDR(T1, T2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n, if m = 0

m, if n = 0

min {dEDR(Rest(T1), Rest(T2))+subcost(Head(T1), Head(T2)),

dEDR(Rest(T1), T2) + 1, dEDR(T1, Rest(T2)) + 1}, otherwise

(9)

Similar to LCSS, EDR is robust to noisy trajectory data.
For example, there are four trajectories shown in Fig. 4a,
T1 = [p1, p2, p3, p4], T2 = [p5, p6, p7, p8], T3 =
[p1, p9, p3, p4], and T4 = [p1, p9, p10, p3, p4]. Assume
that T1 is the query trajectory, and p9 and p10 are noise points
(they are significantly different from other points). The cor-
rect ranking in terms of similarity to T1 is: T3, T4, and T2.
This is because, except noise, the rest of the elements of T3
and T4 match the elements of Q perfectly. Previous distance
measures, i.e., Euclidean distance and DTW, rank T2 as the
most similar trajectory of T1. However, even from general
movement trends (subsequent values increase or decrease)
of the two trajectories, it is obvious that T3 is more similar to
T1 than T2. Since the EDR distance is not affected by a noisy
sample point, EDR ranks T3 to the most similar trajectory of
T1.

The disadvantage of EDR is that the distance value of
EDR heavily relies on the parameter ε, which is not easy
for users to adjust; a not well-adjusted ε may cause inac-
curacy. For example, there are three trajectories shown in
Fig. 4b, T5 = [p1, p2, p3, p4], T6 = [p5, p6, p7, p8], and
T7 = [p9, p10, p11, p12]. We set ε to be d(p1, p9) (the dis-
tance between p1 and p9). According to this ε, the dEDR(T1,
T2) and dEDR(T1, T3) are both 0. EDR cannot tell that T6 is
obviously more likely near to T5 than T7.
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12 H. Su et al.

The time complexity ofEDR isO(mn). EDR is not param-
eter free. Not satisfying the identity of indiscernibles and the
triangle inequality, EDR is not a metric distance measure. R-
Tree can be used as its index structure. It supports the mean
value Q-gram pruning strategy, the near triangle inequality
pruning strategy, and the histogram pruning strategy when
answering k-NN queries.

ERP distance

Edit distance with real penalty (ERP) [1,14,16,47,51,55,102]
is a trajectory distance measure that combines Lp-norm and
edit distance. As introduced above, Euclidean distance and
DTW both use Lp-norm for measuring the distance between
trajectories. However, they require every sample point to be
in a match pair. ERP uses the edit-distance-like sample point
matchingmethod. In edit distance, there are three operations,
i.e., addition, deletion, and substitution. Thus, when a sub-
stitution operation happens on a sample point pi from T1 for
transforming T1 to T2, theremust be a counterpart p j from T2
and ERP treats pi and p j as a match pair. When an addition
operation happens, p j is added to T1 for transforming T1 to
T2. ERP treats p j to be matched to an empty point, namely
gap. When a deletion operation happens, pi is deleted from
T1 for transforming T1 to T2, and ERP treats pi to bematched
to a gap. [14] claims that for most applications, strict equal-
ity will not make sense. For instance, the distance d(p1, p2)
between sample points p1 = 1 and p2 = 2 should be less
than the distance d(p1, p3) between sample points p1 = 1
and p3 = 10,000. Thus, instead of using the number of edits
which edit distance uses, ERP uses L1-norm as the distance
of match pairs.

Specifically, ERP uses edit distance to get match pairs.
And then for every match pair (p1, p2), ERP calculates the
L1-norm distance between p1 and p2; for every sample point
p3 that matches to a gap, ERP calculates the L1-norm dis-
tance from p3 to a constant. Formally, the distance metric
between sample points used by ERP is as follows:

distE RP (p1, p2) =
⎧
⎨

⎩

|p1 − p2|, if p1, p2 not gaps
|p1 − g|, if p2 is a gap
|p2 − g|, if p1 is a gap

(10)

where g is a user-defined constant. Chen and Ng [14] suggest
g should be chosen as 0.

dERP (T1, T2) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑n distE RP (p1,i , g), if m = 0
∑m

1 distE RP (p2,i , g), if n = 0

min {dERP (Rest(T1), Rest(T2)) + distE RP (Head(T1), Head(T2)),

dERP (Rest(T1), T2) + distE RP (Head(T1), g),

dERP (T1, Rest(T2)) + distE RP (Head(T2), g)} otherwise

(11)

Fig. 4 Example of EDR
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The time complexity of ERP is O(mn). Introducing
L1-norm makes ERP a measure that satisfies the triangle
inequality, which is a prominent advantage over edit dis-
tance and EDR. It allows efficient pruning by using tri-
angle inequality. For example, there are three trajecto-
ries T1 = [((0, 0), 1)], T2 = [((1, 0), 1), ((2, 0), 2)],
and T3 = [((2, 0), 1), ((3, 0), 2), ((3, 0), 3)]. Let ε to
be 1. Thus, the EDR distances between these trajecto-
ries are dEDR (T1, T2) = 1, dEDR(T2, T3) = 1, and
dEDR(T1, T3) = 3. This leads to dEDR (T1, T3) >

dEDR(T1, T2) + dEDR(T2, T3), so that EDR does not sat-
isfy the triangle inequality. The ERP distances between these
trajectories are dERP (T1, T2) = 3, dERP (T2, T3) = 5,
and dERP (T1, T3) = 8. And this leads to dERP (T1, T3) ≤
dERP (T1, T2)+dERP (T2, T3), so that ERP satisfies the trian-
gle inequality. However, ERP uses L1-norm as the distance
measure which is sensitive to outliers. In addition, ERP is
not parameter free due to the involvement of parameter g.

3.2 Continuous sequence-only distancemeasures

This subsection will introduce four continuous sequence-
only distance measures, i.e., EDwP, OWD, LIP, and MD.
Continuous sequence-only distance measures view trajecto-
ries as continuous functions, i.e., interpolating the sequence
of sample points into a sequence of line segments. Gener-
ally, they compare the shapes of the compared trajectories or
the re-synchronized line segments instead of matching the
trajectory sample points directly.

EDwP distance

Edit distance with projections (EDwP) [8,25,54,71,84,93]
uses dynamic interpolation to match sample points and
calculates how far two trajectories are based on their edit dis-
tances, i.e., how many edit operations must be done to make
the trajectories similar to each other. EDwP uses two edit
operations, substitution and addition, in order to match the
sampling point of the compared trajectories using dynamic
interpolation. The idea is to compute the smallest sequence
of edits that makes the compared trajectories T1 and T2
identical; edits are calculated by computing the cost of the
projection of a sample point from T1 onto T2 in order tomatch
them. Given two segments e1 and e2 from trajectories T1
and T2, respectively, the two edit operations, substitution and
addition, performed by the EDwP are described as follows:

Addition The addition operation, denoted by add(e1, e2), is
the operation of inserting a point into e1 in order to make it
identical to e2, thus splitting e1 into two new segments. The
operation inserts new points into the trajectories in order to
allow a robust matching between the segments of T1 and T2.
The point pins to be inserted is in e1 that is the closest to the
end point of e2, that is:

pins = arg min
p∈e1

d(p, e2.p2)

Substitution The substitution operation sub(e1, e2) repre-
sents the cost of matching e1 with e2, and it is defined as:

sub(e1; e2) = d(e1.p1, e2.p1) + d(e1.p2, e2.p2).

Given the previously specified edit functions, the EDwP dis-
tance between two trajectories T1 and T2 is given by the
recursive function as Eq. (12):

dEDwP (T1, T2) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if |T1| = |T2| = 0
∞, else if |T1| = 0 or |T2| = 0
min{dEDwP (Rest(T1), Rest(T2))

+(sub(T1.e1, T2.e1) × Coverage(T1.e1, T2.e1)),
dEDwP (add(T1, T2), T2), dEDwP (T1, add(T2, T1))} otherwise

(12)

where Coverage (e1, e2) = length(e1) + length(e2). It
means that segments with large length will add a higher cost
to the edit function.

The time complexity of EDwP is O((m + n)2). EDwP
is parameter free. It is not a metric distance measure since
it does not satisfy the triangle inequality. EDwP can use an
index structure called TrajTree [71] to answer k-NN queries
efficiently on large trajectory databases. It supports the lower
bounding pruning strategy when answering k-NN queries.

One-way distance

One-way distance (OWD) [17,22,28,53,64] is a typical con-
tinuous sequence-only distance measure. Instead of finding
match pairs and using the distance of each match pair,
OWD distance between trajectories T1 and T2 is the aver-
age minimal distance of T1’s all sample points to the line
approximated T2. OWD is an asymmetric distance measure,
i.e., the distance from T1 to T2 is not necessarily equal to that
from T2 to T1.

OWD approximates a trajectory using a sequence of line
segments.A line segment is represented by a pair of trajectory
sample points (pi , p j ), the length of which is defined as the
Euclidean distance between pi and p j . A linear trajectory
is a sequence of points (p1, . . . , pn), where each adjacent
pair of points (pi , pi+1) (1 ≤ i ≤ n − 1) is a line segment
in the trajectory. The OWD distance measure is to find the
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Fig. 5 Linear representation OWD distance and grid representation
OWD distance (colour figure online)

average minimal distance of sampling points of a trajectory
T1 to another linearly represented trajectory T2, as shown
in Fig. 5a. The distance from a point p to a trajectory T is
defined as:

dpoint (p, T ) = min
p′∈T

d(p, p′). (13)

With the definition of dpoint (p, T ), the OWD distance from
T1 to T2 is defined as:

dowd(T1 → T2) = 1

Size(T1)
·
∑

p∈T1
dpoint (p, T2). (14)

Since OWD is asymmetric, the distance between two trajec-
tories T1 and T2 is the average of their one-way distances:

dOWD(T1, T2) = 1

2
(dowd(T1 → T2) + dowd(T2 → T1)).

(15)

The time complexity of OWD is O(nm), hindering its
scalability to trajectory data with a large number of sample
points. In order to improve the performance, another repre-
sentation method called grid representation is designed.

Grid representation is an approximation ofOWDto reduce
the computation cost. In a grid representation, the entire
workspace is divided into equal-size grid cells, and each grid
cell is labeled by its x, y coordinates. Trajectories T1 and T2

are approximated in grid representation as shown in Fig. 5b,
denoted by red grids. Given a grid cell g = (i, j), i is the
x-label of g (i.e., g.x) and j is the y-label of g (i.e., g.y).
The distance between two grid cells g1 and g2 is defined as:

dgrid(g1, g2) =
√

((g1.x − g2.x)2 + (g1.y − g2.y)2).

(16)

With grids, a trajectory can be represented as a grid sequence,
that is, T g = (g1, . . . , gn), so that for each 1 ≤ i < n, gi
and gi+1 are adjacent. The number of grid cells, n, is called
the length of T g , denoted as |T g|. The distance from a grid
cell g to a grid trajectory T g is the shortest distance from g
to T g .

dgpoint (g, T
g) = min

g′∈T g
dgrid(g, g

′). (17)

The one-way distance from T g
1 to T g

2 in the grid representa-
tion is defined as the sum of the distance from all grid cells
of T g

1 to T g
2 normalized by the length of T g

1 .

dowd(T
g
1 → T g

2 ) = 1

|T g
1 |

∑

p∈T g
1

dgpoint (p, T
g
2 ). (18)

The distance between two grid trajectories T g
1 and T g

2 is
defined as the average of dgowd(T

g
1 → T g

2 ) and dgowd(T
g
2 →

T g
1 ).

dg(T g
1 , T g

2 ) = 1

2
(dgowd(T

g
1 → T g

2 ) + dgowd(T
g
2 → T g

1 )).

(19)

The time complexity of grid-based OWD is O(MN ), where
M and N are the size of T g

1 and T g
2 , respectively. If the

average size of the original trajectory is c times of that of
grid represented trajectory, the grid representation can speed
up the calculation of OWD by a factor of O(c2). OWD is
parameter free. It is not symmetry, hence non-metric. The
index structure [75] composed of multiple granularity levels
can be employed to improve the efficiency of k-NN search.
And it supports the lower bounding pruning strategy.

Locality in-between polylines distance

More specific to a two-dimensional trajectory, Refs. [3,4,65,
73] suggest that it can be mapped to the two-dimensional
geometry space. Figure 6 demonstrates how trajectories T1
and T2 can be mapped to a XY -plane. All the sample points
of T1 are mapped to XY -plane and connect the adjacent two
sample points by a line, so do those of T2. Then, the two
start (end) points are connected using a line, and the inter-
section points of T1 and T2, e.g., i1, i2, etc., are marked. After
the mapping, the distance between T1 and T2 can be easily
transformed into a geometry problem according to [65].
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Fig. 6 Mapping trajectories T1 and T2 to 2D the geometry space

With mapped trajectories, the locality in-between poly-
lines (LIP) distance between two trajectories T1 and T2 can
be defined as the area between two polylines T1 and T2. The
LIP algorithm is shown as follows:

dL I P (T1, T2) =
∑

∀polygoni
Areai ∗ wi . (20)

In order to reduce data noise, LIP gives weight to each poly-
gon area. Let LengthT (ik, ik+1) be the length of the portion
of trajectory polyline T that participates in the contribution
of polygonk . The weight is defined as:

wk = LengthT1(ik, ik+1) + LengthT2(ik, ik+1)

Length(T1) + Length(T2)
. (21)

Regarding the complexity of dL I P (T1, T2) computation, let
N denote the total size of the sample point, i.e., N =
Length(T1) + Length(T2), and K denote the size of intersec-
tion points. Finding intersection points can be transformed
into the red–blue intersection problem [11], which can be
solved in O( N logN + K ) [13]. Since the number of poly-
gons defined over the K intersection points is K , O(K ) time
is required to calculate the areas of polygons. In total, the time
complexity of LIP is O(N logN ), assuming that K and N are
of the same order. Using the shape information to compare
the trajectories can avoid many problems in sampling-based
trajectory distancemeasures such as different sampling rates.
However, since this distance measure requires mapping the
trajectory to the geometry space, it can only workwell on tra-
jectories whose spatial deployment follows, on the average,
a stable trend without dramatic rotations; otherwise, it fails
to measure the distance. If a trajectory T has the shape as
shown in Fig. 7a, the distance from T to itself T may not be
zero according to thismethod. Also, it will fail tomeasure the
distance of two cycling moving objects’ trajectories shown
in Fig. 7b. Overall, LIP is parameter free. It is non-metric for
not satisfying the triangle inequality. Index structures and
pruning strategies for LIP have not been studied yet.

Fig. 7 Two kinds of trajectory shapes LIP cannot handle

Fig. 8 Example of merge distance (colour figure online)

Merge distance

Merge distance (MD) [39,50,66,78] is to find the shortest
trajectory that is a super-trajectory of the two compared tra-
jectories. As shown in Fig. 8a, T1 and T2 are two compared
trajectories; MD is to find a shortest super-trajectory Tsuper
connecting all the sample points of T1 and T2, denoted by
the green line. Intuitively, this length should be similar to the
length of two compared trajectories when the two trajecto-
ries come from the same curve. For example, as shown in
Fig. 8b, the two compared trajectories from the same curve
are denoted by the red dotted line and the blue dotted line,
respectively, and the shortest super-trajectory is denoted by
the green solid line. Obviously, the length of the green line
is almost equal to the lengths of the red line and the blue
line.

The length of the shortest super-trajectory Tsuper is
denoted by Length(Tsuper ). Let T (1, i) denote the subtrajec-
tory [p1, p2, . . . , pi ], and Length(T1(1, i), T2(1, j)) denote
the length of the shortest super-trajectory that connects
T1(1, i) and T2(1, j), so that its last point is the i th point of T1,
i.e., T1,i . For two compared trajectories T1(Size(T1) = m)

and T2(Size(T2) = n), Length(Tsuper ) can be computed
using Eq. 22:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Length(T1(1, i), T2(1, j)) = min(Length(T1(1, i − 1), T2(1, j)) + d(T1,i−1, T1,i ),
Length(T2(1, j), T1(1, i − 1)) + d(T2, j , T1,i )), if ≤ i ≤ m and 1 ≤ j ≤ n

Length(T2(1, j), T1(1, i)) = min(Length(T1(1, i), T2(1, j − 1)) + d(T1,i , T2, j ),
Length(T2(1, j − 1), T1(1, i)) + d(T2, j−1, T2, j )), if ≤ i ≤ m and 2 ≤ j ≤ n

Length(T1(1, i), T2(1, j)) =
(

j−1∑

k=1
d(T2,k, T2,k+1)

)

+ d(T2, j , T1,1), if i = 1

Length(T1(1, i), T2(1, j)) =
(
i−1∑

k=1
d(T1,k, T1,k+1)

)

+ d(T1,i , T2,1), if j = 1

Length(Tsuper ) = min (Length(T1(1,m), T2(1, n)), Length(T2(1, n), T1(1,m)))

(22)

After computing the length of the shortest super-trajectory,
Length(Tsuper ), the merge distance can be obtained as:

dMD(T1, T2) = Length(Tsuper )

Length(T1) + Length(T2)
− 1. (23)

The time complexity of merge distance is O(mn). It is robust
in detecting trajectories with different sampling rate, as GPS
devices only provide sample points along the actual trajec-
tory. MD is parameter free and non-metric since it does not
satisfy the identity of indiscernibles. Index structures and
pruning strategies for MD have not been studied yet.

4 Spatiotemporal distancemeasures

This section will introduce the spatiotemporal distance mea-
sures that measure the distance between two trajectories by
both their spatial and temporal attributes. Sometimes, tem-
poral information is a key feature to determining whether
two trajectories are similar. For example, the moving paths
of athletes on tracks are always the same while the differ-
ence in these trajectories is their moving speed. Thus, in
this case, spatiotemporal distance measures are much more
suitable. Also considering merely spatial information of tra-
jectory may cause some inaccuracy when time interval of
the trajectory sampling ranges a lot. For example, there are
three trajectories T1 = {((1, 0), 1), ((2, 0), 2), ((3, 0), 3)},
T2 = {((1, 0), 1), ((2, 0), 2), ((3, 0), 100)}, and T3 =
{((1, 0), 1), ((2, 0), 2), ((2.9, 0), 3)}. If we only consider the
spatial information, T2 is more similar to T1 than to T3.
But obviously, T1 and T3 are more alike. Spatiotemporal
distance measures can be further classified into discrete
spatiotemporal distancemeasures and continuous spatiotem-
poral distance measures.

4.1 Discrete spatiotemporal distancemeasures

The following subsectionwill introduce 2 discrete spatiotem-
poral distance measures, i.e., STLCSS and STLC.

Spatiotemporal LCSS

As mentioned in Sect. 3.1.2, LCSS was originally designed
to measure the distance of strings, not considering temporal
information. Several extensions to LCSS have been pro-
posed in order to consider temporal information inmeasuring
trajectory distance. In [90], Vlachos et al. introduced a time-
sensitive LCSS distance measure, the spatiotemporal longest
common subsequence STLCSS. Kahveci et al. [43], Vlachos
et al. [89], and Patel et al. [63] also used STLCSS as trajec-
tory distance measure. However, it can hardly find any two
sample points with exactly the same location information
and temporal information. Thus, in measuring the distance
between two sample points p1 and p2, STLCSS involves
two constants: one integer δ and one real number ε > 0. The
constant δ controls how far in time two trajectories can go in
order to match a given point from one trajectory to a point in
another trajectory; the constant ε is the matching threshold.
STLCSS treats p1 and p2 to be spatially same only if the
distance between p1 and p2 is less than the threshold ε. In
Fig. 9, the gray region is the matching region of a trajectory
with δ and ε.

Consider two trajectories T1 and T2 with a size of n andm,
respectively. The STLCSS similarity sST LCSS(T1, T2) with
constants δ and ε is shown in Eq. (24):

Fig. 9 Matching region of a trajectory with δ and ε
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sST LCSS(T1, T2) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if T1 or T2 is empty

1 + sST LCSS(Rest(T1), Rest(T2)), if |Head(T1).x − Head(T2).x | < ε and

|Head(T1).y − Head(T2).y| < ε and

|Head(T1).t − Head(T2).t | ≤ δ

max (sST LCSS(Rest(T1), T2), sST LCSS(T1, Rest(T2))), otherwise

.

(24)

The key idea of this extended LCSS is to allow stretching the
restricted time (≤ δ). The STLCSS distance is defined as:

dST LCSS(T1, T2) = 1 − sST LCSS(T1, T2)

min(n,m)
. (25)

This measure tries to givemore weight to the similar portions
of the sequences.

The time complexity of STLCSS is O(mn). It is robust
to noisy trajectory data. The drawback of STLCSS is that
it involves two parameters δ and ε, making the choice of
parameters an important issue. Similar to LCSS, it violates
identity of indiscernibles and triangle inequality, becoming a
non-metric distance measure. A hierarchical tree introduced
by [90] can be used as an index structure of STLCSS in order
to efficiently answer k-NN queries in a dataset of trajecto-
ries. It supports the lower bounding pruning strategy when
answering k-NN queries.

Spatiotemporal linear combine distance

STLCSS extends LCSS to consider temporal information
using a string-based distance. Naturally, there is another way
to define a distancemeasure by theLp-norm. Shang et al. [79]
proposed the spatiotemporal linear combine distance, STLC
which linearly combines spatial distance and temporal dis-
tance between two compared trajectories. Shang et al. [79]
uses L2-norm to measure the spatial distance and L1-norm
to measure the temporal distance. Thus, given a sample point
p and a trajectory T , the spatial distance dspa(p, T ), and the
temporal distance dtem(p, T ) between p and T are defined
as:

dspa(p, T ) = min
p′∈T

{d(p, p′)}
dtem(p, T ) = min

p′∈T
{|p.t − p′.t |}.

Given trajectories T1 and T2, their spatial and temporal sim-
ilarities, sspa(T1, T2) and stem(T1, T2), are defined as:

sspa(T1, T2) =
∑

p∈T1 e
−dspa(p,T2)

Size(T1)
+

∑
p′∈T2 e

−dspa(p′,T1)

Size(T2)
(26)

stem(T1, T2) =
∑

p∈T1 e
−dtem (p,T2)

Size(T1)
+

∑
p′∈T2 e

−dtem (p′,T1)

Size(T2)
.

(27)

The spatial and temporal similarities are in the range [0,
2]. Finally, a linear combination method is used to combine
spatial and temporal similarities, and the spatiotemporal sim-
ilarity is defined as:

sST LC (T1, T2) = λ · sspa(T1, T2) + (1 − λ) · stem(T1, T2).

(28)

Here, parameter λ ∈ [0, 1] controls the relative importance
of the spatial and temporal similarities.

The time complexity of STLC is O(mn). It is not param-
eter free. Due to violating triangle inequality, STLC is
non-metric. A hierarchical grid index introduced by [79] can
be used as an index structure of STLC in order to efficiently
answer k-NN queries in a dataset of trajectories. It mainly
supports the lower bounding and upper bounding pruning
strategies when answering k-NN queries.

4.2 Continuous spatiotemporal distancemeasures

This section will introduce three continuous spatiotemporal
distance measures, i.e., Fréchet distance, STED, and STLIP.
Generally, they compare the shapes of compared trajectories
or the re-synchronized line segments, instead of matching
the trajectory sample points directly.

Fréchet distance

The Fréchet distance [92] is a distance measure between
curves in mathematics, which considers the location and
order of the points along the curves. The Fréchet distance
between two curves is defined as the minimum length of a
leash required to connect two separate paths. The Fréchet dis-
tance and its variants find application in several problems,
from morphing, handwriting recognition to protein struc-
ture alignment. Gasmelseed and Mahmood [30], Lin and Su
[53], and Xie et al. [93] used the Fréchet distance as a time-
sensitive trajectory distance measure.
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Fig. 10 Fréchet distance between trajectories T1 and T2

Let T1 and T2 be two trajectories which can be repre-
sented as two continuous functions f1 and f2 over time t ,
where the stating time and end time of time period t are
denoted by t .start and t .end, respectively. The Fréchet dis-
tance between T1 and T2 is defined as the infimum over all
reparametrizations f1(t) and f2(t). Figure 10 shows the dis-
tance between trajectories T1 and T2. The Fréchet distance
algorithm is shown as follows:

dFréchet(T1, T2) = inf max
t∈[t .start,t .end] {d( f1(t), f2(t))}. (29)

The time complexity of Fréchet distance is O(mn) [23].
Since its value is the longest distancebetween two trajectories
at the same time, a noisy point is always far away from a
trajectory, causing Fréchet distance to be very sensitive to
noise. It is parameter free and metric and can use R-tree as an
index structure. It supports the morphological characteristic
pruning strategy and the ordered coverage judgment pruning
strategy proposed by [34] when answering k-NN queries.

Spatiotemporal Euclidean distance

D’Auria et al. [20] proposed a spatiotemporal Euclidean dis-
tancemeasure (STED) to describe the distance of trajectories
along time. More precisely, this distance measure only con-
siders pairs of contemporary instantiations of objects; in other
words, for each time instant it compares the object positions
at that moment. This measure excludes subsequence match-
ing, and shifting transformation that tries to align trajectories.

This distance measure assumes the object moves in a
piecewise linear manner: It moves along a straight line at
some constant speed and reports a sample point when it
changes the direction and/or speed. Following the assump-
tion, the moving object’s position function p(t) over time t
can be generated. The distance function d(T1, T2) between
two trajectories T1 and T2 is the average distance between
objects. Formally, let l be the temporal interval over which
trajectories T1 and T2 exist. The distance is shown as:

dST ED(T1, T2) =
∫

ld(p1(t), p2(t))dt

|l| . (30)

The time complexity of STED is O(mn) [5]. This Euclidean-
distance-based spatiotemporal similarity measure is a natu-
ral extension of the Euclidean spatial distance. Similar to
Euclidean distance, STED is parameter free. And it is met-
ric, thus allowing the use of several indexing techniques such
as R-tree to improve performances in k-NN queries. It sup-
ports the lower bounding pruning strategy and the triangle
inequality pruning strategy when answering k-NN queries.

Spatiotemporal LIP

The sequence-only LIP distance introduced in Sect. 3.2 does
not take temporal information into consideration. Pelekis
et al. [64] proposed a spatiotemporal version locality in-
between polylines distance STLIP which takes temporal
information into consideration. The STLIP distance between
two trajectories T1 and T2, as shown in Fig. 6, is defined as:

dST L I P (T1, T2, k, θ) =
∑

∀polygoni
ST L I Pi , (31)

where ST L I Pi for polygoni is defined as:

ST L I Pi = L I Pi ∗ (1 + k ∗ T L I Pi ), where k ≥ 0. (32)

As shown in Eq. (32), STLIP is defined as a multiple of LIP
(by a factor greater than 1). Temporal LIP (TLIP) is ameasure
modeling the local temporal distance and participates in the
STLIP measure by a penalty factor k which represents user-
assigned importance to the time factor. In order to define
the local temporal distance T L I Pi and associate it with the
corresponding L I Pi , which is implicitly introduced by the
polygons, the time points when T1 and T2 cross each other
need to be found. Let T1_Ii be the time point when T1 passes
from intersection point Ii and T1_Ii+1 be the time point when
T1 reaches the next intersection point Ii+1. Let T1_pi =
[T1_Ii , T1_Ii+1) be the time interval for trajectory T1 moving
from Ii to Ii+1. Then, T L I Pi is formulated in Eq. (33):

T L I Pi =
∥
∥
∥
∥1 − 2 ∗ max{T1_pi , T2_pi }

DurationT1 + DurationT2

∥
∥
∥
∥ . (33)

The time complexity of STLIP is O(n log n). It can only be
applied to trajectories with two-dimensional spatial data. In
addition, it fails to measure the distance shown in Fig. 7a, b.
Overall, STLIP is parameter free. It is a non-metric distance
measure, since it violates the triangle inequality. Index struc-
tures and pruning strategies for STLIP have not been studied
yet.

For eachdistancemeasure,we analyzefive characteristics:
(1) what is the time complexity, (2) whether it is parameter
free, (3) whether it is a metric, (4) whether it supports index-
ing, and (5) whether it supports pruning. Table 2 summarizes
all these aspects.

123



A survey of trajectory distance measures and performance evaluation 19

Table 2 Characteristics of distance measures

Measure Time complexity Parameter free Metric Indexing structure Pruning strategy

ED O(nm) � � R-tree Lower bounding, triangle inequality

DTW O(nm) � R-tree Lower bounding

LCSS O(nm) R-tree Mean value Q-gram, near triangle inequality, histogram

EDR O(nm) R-tree Mean value Q-gram, near triangle inequality, histogram

ERP O(nm) � R-tree Lower bounding, triangle inequality

EDwP O(n + m)2 � TrajTree Lower bounding

OWD O(nm) � Multiple granularity level index Lower bounding

LIP O(n log n) � Not studied Not studied

MD O(nm) � Not studied Not studied

STLCSS O(nm) Hierarchical tree Lower bounding

STLC O(nm) R-tree Lower bounding, upper bounding

Fréchet O(mn) � � R-tree Morphological characteristic, ordered coverage judgment

STED O(mn) � � R-tree Lower bounding, triangle inequality

STLIP O(n log n) � Not studied Not studied

5 Capability evaluation

This section presents our objective experimental evaluation
on the capability of different trajectory distance measures.
To test the capability of these trajectory distance measures,
we define three types of transformations on trajectory, as
shown in Table 3, and find out which trajectory distancemea-
sures can identify the transformation. We firstly introduce
the testing dataset and our capability evaluation framework
of trajectory distance measures. Then, we present the result
of our objective experiments. At last, we analyze the appro-
priate usage occasion of every trajectory distance function
and their limitations.

5.1 Dataset

We employed three datasets for our experimental study, i.e.,
Geolife data [101], Planet.gpx data [60], and synthetic data.
Both GeoLife data and Planet.gpx data are real-world and
public data.

The Geolife data are created by 178 users in a period of
over four years (from April 2007 to October 2011). This
dataset contains 17,621 trajectories with a total distance of
1,251,654km and a total duration of 48,203h. These trajecto-
rieswere recorded by differentGPS loggers andGPS phones,
with a variety of sampling rates. About 91% of the trajecto-
ries are logged in a dense representation, e.g., every 1–5s or
every 5–10m per point.

Planet.gpx is a trajectory dataset uploaded by OpenStreet-
Map users within 7.5 years. In this dataset, there are about
2.7 billion sample points and 11 million trajectories in total.
The data only consist of spatial information, i.e., latitude
and longitude. Thus, when using Planet.gpx data to test spa-

tiotemporal distance measures, we artificially add temporal
information to every sample point.

The synthetic data are artificially generated continuous
trajectories. Adopting the methods provided by [6,26,95,97],
we build several trajectory generators to artificially generate
continuous trajectories.Given any time stampof a continuous
trajectory, we can get its corresponding coordinate (latitude
and longitude). Also, we conduct sampling on the continu-
ous trajectory in order to get sample-based trajectories. It is
similar to the real-world trajectory dataset.

5.2 Capability evaluation framework

Since the distance of two trajectories does not have a bench-
mark, it is hard to determine whether the value given by
trajectory distance measures for measuring the distance of
two trajectories is right or not. What’s more, different dis-
tance measures give varied values to measure the distance of
two trajectories T1 and T2. It is meaningless to cross-check
the distance value provided by different distance measures.
And it is always nomeans to compare the values of a distance,
since most distance measures are non-metric. For example,
even given dEDR(T1, T2) < dEDR(T3, T4), we cannot say T1
and T2 are more alike than T3 and T4.

Since the distance measures are always incomparable, we
cannot simply tell which distance measure is the best. In
this work, we tackle this problem from a novel aspect. As
some distance measures are suitable for noisy data and some
are suitable for different sampling, we conduct an objective
experimental evaluation to check the capability of a distance
measure has to handle certain problems of trajectory data.
Our evaluation procedure is listed as follows.
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Table 3 Trajectory
transformations

Transformation type Transformation Adjustable parameters

Point shift Add sampling points Ratio

Delete sampling points Ratio

Sample trajectory with different sampling rate Sampling frequency

Trajectory shift Stretch and suppression temporal information Scale

Stretch and suppress spatial information Scale

Noise Add outlier Ratio, distance

– We construct a ground truth result set by computing the k-
NN list for a randomly chosen query T from the original
trajectories. The k-NN list is denoted as listbe f oreT .

– We perform three types (six operations) of transforma-
tions on the trajectory dataset in a controlled way (by
usingparameters), resulting in several sets of transformed
trajectories.

– We re-compute the k-NN list for the samequery trajectory
T in each transformed dataset. The re-computed k-NN
list is denoted as lista f terT .

– A distance measure with the capability of handling a
certain transformation should produce an answer list
lista f terT that is close to the k-NN list on the original

dataset listbe f oreT . Based on this hypotheses, we compute
Spearman’s rank correlation coefficient [31] between the
two k-NN lists. The closer the correlation is to 1, the bet-
ter capability of handling the transformation a distance
measure has.

– We conclude the distance measures that have the capa-
bility to handle certain transformations.

5.3 Transformations

Trajectory data usually have characteristics such as asyn-
chronous observations, explicit temporal attribute, and some
other quality issues. In order to benchmark the trajectory
measures in a real setting, following similar methodology as
in [71,82,83], we simulate these characteristics by introduc-
ing six trajectory transformations of three different types, i.e.,
point shift, trajectory shift, and noise, on trajectory datasets.
These transformations are controlled by four parameters,
ratio, sampling frequency, scale, and distance. The parame-
ter ratio is used to specify the percentage of sample points to
be changed in a trajectory. For instance, ratio = 15%means
that 15%of the sample points need to be changed by the trans-
formation function. The parameter sampling rate determines
the sampling rate of the transformed trajectory. The parame-
ter scale indicates the scale that the text trajectory should be
stretched or suppressed to form the transformed trajectory.
For instance, spatial scale = 2 indicates that a trajectory is
generated by stretching aa original trajectory by two times
in space. The parameter distance is a threshold on how far

Fig. 11 Trajectory sampling points of T

a sample point might be shifted with respect to the original
trajectory. Table 3 summarizes all the transformations and
their corresponding parameters.

As the table demonstrates, there are three ways to re-
sample a trajectory, i.e., adding sampling points, removing
sampling points, and sampling a trajectory with different
sampling rates. For the whole trajectory shifting, transforma-
tions are conducted on stretching or suppressing both spatial
and temporal information. In terms of noise, we add some
significant outliers to the original trajectory. The following
subsection will detail the transformations.

5.3.1 Transformation of point shift

Point shift transformation is to modify the sample point
sequence of a trajectory rather than the shape and trend. We
know that the sample point sequences of a continuous trajec-
tory can be quite different. For instance, both sampling point
sequence [p1, p3, p5, p7, p8] and sampling point sequence
[p1, p2, p4, p6, p8] can represent the trajectory T shown in
Fig. 11.

However, adding or deleting some important sampling
points may change the trajectory a lot. For example, [p1, p3,
p5, p7, p8] represents the rough trendofT ,while [p1, p3, p7,
p8] may not. In order to avoid significant changes in the
original trajectory, we try to avoid adding or deleting some
skeleton points to the original trajectory. The skeleton points
are key turning sampling points that can largely change the
trend of a trajectory, such as [p3, p5, p7] of T . We use
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Fig. 12 Transformation example of adding sample points (colour figure
online)

Ramer–Douglas–Peucker (RDP) method [36] to get a tra-
jectory’s skeleton points.

1. Transformation of adding sampling points

For the transformation of adding sampling points, two meth-
ods were used to transform the real-world trajectory data and
the synthetic trajectory data, respectively. First, regarding the
real-world trajectory data, we add a point p̄ between two con-
tinuous sampling points pi and pi+1 in the sampling point
sequence, where the coordinate of p̄ is the mean coordinate
of pi and pi+1 as well as the time. After adding p̄, we will
use RDP to test whether p̄ is in skeleton point sequence; if
not, p̄ is a suitable adding point. The user-defined parameter
of adding sampling points is ratio r . Adding ratio r to a real-
world trajectory T with a size of n is repeatedly adding the
sample point method for n · r times. A real-world trajectory
is shown in Fig. 12a where the blue dots represent its sam-
ple points. Figure 12b exemplifies the transformed trajectory
after adding sample points with a ratio of 50%.

Second, regarding the synthetic trajectory, we collect the
skeleton point sequence using RDFfirstly. Then, the skeleton
point sequence forms a representative trajectory T̄ of the
simulated continuous trajectory T . We use T̄ as the original
trajectory. Then, adding a point is just randomly adding a
non-skeleton points to T̄ , as well as its time stamp. Adding

Fig. 13 Transformed trajectory after deleting sample points

ratio r sampling points to a T̄ , with a size of n, is adding n · r
sample points to T̄ .

2. Transformation of deleting sampling points

Similar to transformation of adding sampling points trans-
formation, two methods are also used for deleting sampling
points transformation on real-world trajectory data and the
synthetic trajectory data. 1). Regarding the real-world tra-
jectory data, we use RDF to get the skeleton point sequence
P of T . We delete a point pi /∈ P from the sampling point
sequence of a trajectory. In this way, we keep the shape of
the original trajectory. Deleting ratio r of sampling points to
a real-world trajectory T with a size of n is repeatedly the
method of deleting sample point for n · r times. Figure 13
exemplifies the transformed trajectory after deleting sample
points with a ratio of 50%.

2). Regarding the synthetic trajectory, we use RDF to get
the skeleton point P with a size of n. We form the original
trajectory T by randomly adding 9n non-skeleton sampling
points to the skeleton trajectory, where the size of T is 10n.
Deleting a point from T is just randomly deleting a non-
skeleton point from T . In the same way, deleting ratio r
sampling points is deleting 10n·r sampling points repeatedly.

3. Transformation of sampling with different rates

For a real-world trajectory T = [p1, p2, . . . , pn], we assume
the moving object moves in a state of uniform motion
between any two consecutive sample points pi and pi+1.
Thus, we can get a continuous trajectory. In the transforma-
tion of sampling with different rates, sampling rate sr is used
to indicate every sr time interval a sample point is collected.
For instance, when sr = 10s, regardless of the original sam-
pling rate, a transformed trajectory is obtained of which the
time interval between two consecutive sample points is 10s.
The time stamp of the k’s sample point of the re-sampled
trajectory is p1.t + 10 · (n − 1).

5.3.2 Transformation of trajectory shift

All the previous transformations focus on the partial shift of
sample points of trajectories. This subsection will introduce
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Fig. 14 Transformed trajectory after spatial stretch and suppression

two transformation methods that affect the whole sampling
points. Trajectory T̄ transformed by these transformation
methods has the same length as the original trajectory T ; but
all sampling points of T̄ are different from their correspond-
ing sampling points of T .We divide thewhole trajectory shift
into two types, spatial stretch and suppression, and temporal
stretch and suppression.

1. Transformation of spatial stretch and suppression

We implement the transformation of spatial stretch and sup-
pression on the real-world trajectory data and the synthetic
trajectory data. The phenomenon is commonly observed in
real life that the trajectory lengths or radii of two moving
objects are quite different but have many similar moving
patterns after normalization, e.g., the moving trajectory of
the Earth and Mars. A transformed trajectory T̄ after spatial
stretch and suppression has the same moving trend as the
original trajectory T̄ , but the trajectory length or the moving
radius is quite different. In transformation implementation,
we use the parameter scale tomeasure the stretch or suppres-
sion scale of the spatial information (coordinate) of original
trajectories. Figure 14 shows the original trajectory T and its
transformed trajectory T̄ with scale=2. In transformation of
spatial stretch and suppression, we keep the temporal infor-
mation unchanged.

2. Transformation of temporal stretch and suppression

There are many objects moving along the same path but with
different speeds. In this transformation, we use parameter
scale to change the speed of a trajectory. For the original
trajectory T = [p1, p2, . . . , pn], we use ti to denote the time
interval of pi and pi+1. Then, the transformed trajectory T̄
can be denoted as [ p̄1, p̄2, . . . , p̄n], where the coordinate of
p̄i is the same as pi , but the time interval between p̄i and
p̄i+1 is ti · scale.

5.3.3 Transformation of adding outlier

In real life, trajectory collectors may report some quite
strange sampling points that are far away from real locations.
There aremany trajectory distancemeasures dealingwith this

Fig. 15 Transformed trajectory after adding noise

problem such as LCSS, EDR, and ERP. Here, the method of
the adding outlier transformation is used. It adds some signif-
icant outliers to the original trajectory T = [p1, p2, . . . , pn]
to get the transformed trajectory T̄ . We use parameter ratio
to control the number of outliers added to the original trajec-
tory T , with a size of n.We use parameter distance to control
how far away the outliers might be shifted. Figure 15 shows a
transformed trajectory after adding noisewith a ratio = 25%.
The time stamp of a noisy point is a random time stamp
between p1.t and pn .t .

5.4 Capability of handling transformation of point
shift

This part describes the test of the capabilities of these distance
measures to handle point shift. As mentioned in Sect. 5.2,
we use Spearman’s rank correlation between two k-NN lists
listbe f oreT and lista f terT to check the capabilities of distance
measures.

5.4.1 Capability of handling transformation of adding
sample points

Specifically, for transformation of adding sample points, we
test the correlation of every distance measure by tuning the
parameter ratio. The parameter ratio decides the number
of sampling points to be added to the original trajectory. We
select a series of numbers as the parameter ratio, which
are 25%, 50%, 100%, and 200%. For EDR, LCSS measures
use another threshold ε to determine whether two sampling
points can be regarded as the same. We fix ε to be a quarter
of the maximum standard deviation of trajectories recom-
mended by [15]. STLC uses λ to combine spatial distance
and temporal distance. Hence, we set λ = 0.5 as the authors
recommended. Frechet distance and STED require handling
two trajectories with overlapping time intervals. Thus, in this
survey, we extended Frechet distance and STED by compar-
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(a) ratio = 25%
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(b) ratio = 25%

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 50

C
or

re
la

tio
n

k

DTW
EDR
ERP

LCSS
PDTW

ED
STLCSS

STLC

(c) ratio = 50%
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(d) ratio = 50%
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(e) ratio = 100%
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(f) ratio = 100%
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(g) ratio = 200%
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(h) ratio = 200%

Fig. 16 Transformation correlations of adding sample points

ing relative time instead of absolute time. Specifically, we
align the start time of the two trajectories in comparison, and
shift all time points in the trajectories accordingly. Figure 16
shows the correlations of discrete and continuous distance
measures with respect to the transformation of adding sam-
ple points. Moreover, since the results on different datasets
are similar, the figures in the experiments study are the aver-
age performance over three datasets.

From Fig. 16, we can see that the correlations of a cer-
tain distance measure do not vary a lot with the changing
ratio. Among these measures, STLC has the best capability
of handling the transformation of adding sample points, since
its correlations remain over 0.9 for all values of ratio. DTW,
ERP, LCSS, and MD are also insensitive algorithms under
this transformation; their correlations are over 0.8 under all
conditions. This is because the value of LCSS is affected by
the number ofmatch pairs, while the added sample points can

hardly form new match pairs for two different trajectories.
Since the added sample points do not change the shape of
transformed trajectories, continuous distance measures MD
is insensitive to the transformation of adding sample points.

According to the correlations of each distance measure,
we find STLC, DTW, ERP, LCSS, and MD are not sensitive
to the transformation of adding sample points. In otherwords,
they have the capability of handling transformation of adding
sample points.

5.4.2 Capability of handling transformation of deleting
sample points

For transformation of deleting sample points, we test the
Spearman’s rank correlation between two k-NN lists of every
distancemeasure by tuning the parameter ratio. The parame-
ter ratio decides the number of sampling points to be deleted
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(a) ratio = 10%
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(b) ratio = 10%
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(c) ratio = 20%
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(d) ratio = 20%
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(e) ratio = 40%
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(f) ratio = 40%
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(g) ratio = 80%
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(h) ratio = 80%

Fig. 17 Transformation correlations of deleting sample points

from the original trajectory. We select a series of numbers as
the parameter ratio, which are 10%, 20%, 40%, and 80%.
The correlation values of every distance measure are shown
in Fig. 17.

Just like the transformation of adding sample points, most
distance measures share the same trend that correlations of
distancemeasures do not vary a lot with the increasing ratio.
STLC still has the highest correlation values, indicating the
best capability of handling transformation of deleting sample
points. DTW, ERP, LCSS, EDwP, and MD have high corre-
lations over 0.8. According to the correlation values of each
distance measure, we find DTW, ERP, LCSS, EDwP, MD,
and STLC are not sensitive to the transformation of deleting
sample points. Hence, they have the capability of handling
the transformation of deleting sample points.

5.4.3 Capability of handling transformation of different
sample rates

For the transformation of different sampling rates, we test
the Spearman’s rank correlation of every distance measure
by tuning the parameter’s sampling rate. The parameter’s
sampling rate ranges from 20 to 80s with a asymmetry step.
Figure 18 shows correlation values for discrete and continu-
ous distance measures.

As Fig. 18 demonstrates, the correlations of all the dis-
tance measures change slightly with the increasing sampling
rate. Generally, the discrete distance measures have higher
correlations than continuous distance measures. DTW, ERP,
LCSS, STLC, EDwP, andMD perform well under this trans-
formation, and their correlations are over 0.8. Except for
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(a) Sampling rate = 20s
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(b) Sampling rate = 20s
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(c) Sampling rate = 40s
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(d) Sampling rate = 40s
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(e) Sampling rate = 80s
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(f) Sampling rate = 80s

Fig. 18 Transformation correlations of changing sampling rates

LCSS, all these distance measures use the Lp-norm distance
metric to measure the distance between sample points or
segments in-between. STLC is still the best distance mea-
sure of handling transformation of changing sampling rate,
with correlations over 0.9. In contrast, EDR and OWD are
the most sensitive distance measures with correlations less
than 0.6.

5.5 Capability of handling transformation of
trajectory shift

In this part,we evaluate howeffective each trajectory distance
measure to recognize the whole shift trajectories.

5.5.1 Capability of handling transformation of spatial
stretch and suppression

Transformation of spatial stretch and suppression is simu-
lating the similar moving patterns but with different moving
lengths or radii in reality. We tune the parameter scale from
0.25 to 4.0 to find out the trajectory distance measures able
to handle the transformation of spatial stretch and suppres-
sion. The correlations of all trajectory distance measures are
shown in Fig. 19.

As Fig. 19 shows, the correlations of discrete distance
measures are generally higher than those of continuous dis-
tance measures. Correlations of distance measures do not
vary a lot with the increasing scale. DTW, ERP, LCSS, and

STLC are not sensitive to the transformation of spatial stretch
and suppression, and their correlations are over 0.8. STLC
still has the highest correlations of over 0.9. Thus,DTW,ERP,
LCSS, and STLC have the capability of handling the trans-
formation of spatial stretch ad suppression. Among them,
STLC has the best capability. In contrast, OWD again does
not work well under this transformation.

5.5.2 Capability of handling transformation of temporal
stretch and suppression

Transformation of temporal stretch and suppression is sim-
ulating objects moving in the same path but with different
speeds. We tune the parameter scale from 0.25 to 2.0 to get
the correlations for distancemeasures. Since temporal stretch
does not affect the k-NN lists of sequence-only distancemea-
sures,we only demonstrate the correlations of spatiotemporal
distance measures in Fig. 20.

As Fig. 20 shows, the correlations of different spatiotem-
poral distance measures do not change dramatically with the
increasing scale. STLC has the highest correlations among
all the spatiotemporal distancemeasures, with the correlation
of more than 0.9. STLCSS and STLIP also have correlations
over 0.8 with all scale values. According to the correlation
values, we find STLCSS, STLIP, and STLC are not sensi-
tive to the transformation of temporal stretch ad suppression;
hence, they have the capability of handling transformation of
temporal stretch ad suppression.
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(a) Scale = 0.25
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(b) Scale = 0.25
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(c) Scale = 0.5
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(d) Scale = 0.5
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(e) Scale = 2
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(f) Scale = 2
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(g) Scale = 4
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(h) Scale = 4

Fig. 19 Transformation correlations of spatial stretch and suppression
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(b) Scale = 0.5
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(c) Scale = 2

Fig. 20 Transformation correlations of temporal stretch and suppression

5.6 Capability of handling transformation of adding
outliers

Regarding adding noise, here we just add some significant
outliers to the original trajectory. For the transformation of

adding outliers transformation, we tune the parameter ratio
to be 1% and 5% and the parameter distance to be 0.02,
0.05, and 0.1.Hence,weget six parameter combinations. The
correlations of all trajectory distance measures are shown in
Fig. 21.
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(a) Ratio = 1%, distance = 0.02
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(b) Ratio = 1%, distance = 0.02
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(c) Ratio = 1%, distance = 0.05
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(d) Ratio = 1%, distance = 0.05
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(e) Ratio = 1%, distance = 0.1
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(f) Ratio = 1%, distance = 0.1
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(g) Ratio = 5%, distance = 0.02
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(h) Ratio = 5%, distance = 0.02
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(i) Ratio = 5%, distance = 0.05
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(j) Ratio = 5%, distance = 0.05
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(k) Ratio = 5%, distance = 0.1
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(l) Ratio = 5%, distance = 0.1

Fig. 21 Transformation correlations of adding outliers

Figure 21 reveals the correlations of all distance measures
increase with the growing ratio and distance. The correla-
tions of EDR, ERP, LCSS, STLC, and MD are all over 0.8,
indicating that they have the capability of handling transfor-
mation of adding outliers. EDR, ERP, and LCSS all use some
string distance metric to measure the distance of trajectories

making them robust to noise. OWD and Fréchet distance
are the most sensitive to the transformation of adding noise.
This is because a noisy sample point can largely change the
maximum distance between sample points and the value of
OWD, and Fréchet distance is determined by the maximum
distance.
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Fig. 22 Correlations of mixed
transformation
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5.7 Capability of handlingmixed transformations

We have studied the distance measures under each trans-
formation individually. However, in practice trajectory data
usually have multiple problems mixed at the same time. For
example, a low-resolution GPS under poor network connec-
tion can cause noisy sample points as well as missing sample
points. Therefore, this section studies the performance of
different distance measures under a mixed transformations.
We follow the same experiment setup (using k-NN) as in
Sect. 5.2. Differently, in the second step we perform six
operations of transformations on the trajectory dataset with
random parameters.

As shown in Fig. 22, traditional distance measures that
have been widely used, such as DTW, LCSS, and Euclidean
distance,workwell in handlingmixed transformations. Some
newly proposed distance measures, i.e., STLC, EDwP, and
MD, also work well in handling mixed transformations.
STLC, with the capability of all transformations, still has the
highest correlation. It means STLC has the best capability of
handling mixed transformations.

5.8 Performance evaluation

We also evaluate the time cost of each distance measure,
which is especially important for online trajectory appli-
cations. The average time cost for measuring the distance
between two trajectories is shown in Fig. 23. We observe
that most distance measures can return the distance between
two trajectories within tens of milliseconds. PDTW and LIP
turn out to be the most efficient algorithms of which the time
cost is 76ms and 78ms, respectively. Other distance mea-
sures share a similar time cost of around 90ms.

5.9 Application scope

This subsection summarizes the application scope of the sur-
veyed distance measures under real-life scenarios, as shown
in Fig. 24.

Fig. 23 Time cost

Point shift Point shift is the most common type of trajec-
tory transformations in practice. In this paper, we consider
three concrete transformations in this type, that is, adding
sample points, deleting sample points, and changing the sam-
pling rate. They are usually applicable to the case where the
trajectory data are unsynchronized sampled. In such appli-
cations, the sampling strategies used to collect trajectory
data can vary significantly. First of all, there are different
sampling methods, such as distance-based methods (e.g.,
reporting every 100m), time-based methods (e.g., report-
ing every 30s), or prediction-based methods (e.g., reporting
when the actual location exceeds a certain distance from the
predicted location). Secondly, even for the same sampling
strategy, different parameters may be used. For example,
although using the time-based sampling strategy, a geolo-
gist equipped with specialized GPS devices can report her
locations with high frequency (say every 5 s), while a casual
mobile phone user may only check in on a location-based
web service every couple of hours or even days. As we can
see from Fig. 24, DTW, LCSS, ERP, EDwP, MD, and STLC
are capable to handle point shifts, and are good choices in
the applications discussed above.
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Fig. 24 Application scope of different distance measures in terms of transformation types

Trajectory shift Trajectory shift consists of two transforma-
tions: spatial stretch and suppression, temporal stretch and
suppression.

DTW, LCSS, ERP, and STLC perform well in handling
spatial stretch and suppression, indicating that they can detect
the trajectorieswith similar shape andmoving trends,modulo
different moving radius and real geographical location. This
capability is especially valuable in applications that care only
the moving shape and the trend of trajectories, such as the
movement of planets and animal migration.

STLCSS, STLC, and STLIP are not sensitive to the vari-
ation of moving speeds and thus have good performance in
handling temporal stretch and suppression. These three mea-
sures are very useful in applications where only the spatial
aspect of trajectories matters. In contrast, for applications
where speed information is critical, for instance, analyzing
the trajectory of an athlete, one should use speed-sensitive
measures, such as Fréchet distance and STED.

Noise data Noise data are usually caused by low-resolution
GPS equipments or obstacles during data collection. It is a
popular problem in practice. For example, car trajectories
collected in large cities, especially in CBD areas, are usually
full of noises, due to the tall buildings around. LCSS, EDR,
ERP, MD, and STLC have the strong denoise capability, and
are good choices in such scenarios.

Summary Overall, DTW, LCSS, ERP, MD, and STLC are
distance measures with capabilities of handling at least four
transformations. Among them, STLC is the best distance
measures that can handle all the six transformations. For
every transformation, we can find at least three distancemea-
sures with the capability of handling it. In handling mixed
transformations, DTW, LCSS, Euclidean distance, EDwP,
MD, and STLC demonstrate their good capability. STLC

again is the best distance measure of handling multiple trans-
formations. The most efficient distance algorithms, i.e., ED
and LIP, fail to handle most transformations. Therefore,
under performance or latency critical circumstances, one has
to consider the trade-off between efficiency and effectiveness
when picking distance measure algorithms.

6 Conclusions

We classify trajectory distancemeasures into four categories,
based on (1) whether the trajectory data are discrete or con-
tinuous and (2) whether the measure considers temporal
information. Each distance measure has its pros and cons.
For six trajectory transformations that are common in appli-
cations, we identify the most effective trajectory distance
measures and experimentally verify the conclusion on large-
scale trajectory data.Wefind thatDTW,LCSS,ERP,MD, and
STLCare able to handle at least four transformations.Among
them, STLC is the best distance measure that can handle all
the transformations. In addition, we make a key observation
that the efficient distance measures have low effectiveness in
handling all transformations.
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