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ABSTRACT

Crowdsourcing aims to enable the assignment of available
resources to the completion of tasks at scale. The continued
digitization of societal processes translates into increased
opportunities for crowdsourcing. For example, crowdsourcing
enables the assignment of computational resources of humans,
called workers, to tasks that are notoriously hard for com-
puters. In settings faced with malicious actors, detection of
such actors holds the potential to increase the robustness
of crowdsourcing platform. We propose a framework called
Outlier Detection for Streaming Task Assignment that aims
to improve robustness by detecting malicious actors. In par-
ticular, we model the arrival of workers and the submission of
tasks as evolving time series and provide means of detecting
malicious actors by means of outlier detection. We propose a
novel socially aware Generative Adversarial Network (GAN)
based architecture that is capable of contending with the
complex distributions found in time series. The architecture
includes two GANs that are designed to adversarially train an
autoencoder to learn the patterns of distributions in worker
and task time series, thus enabling outlier detection based on
reconstruction errors. A GAN structure encompasses a game
between a generator and a discriminator, where it is desirable
that the two can learn to coordinate towards socially optimal
outcomes, while avoiding being exploited by selfish opponents.
To this end, we propose a novel training approach that in-
corporates social awareness into the loss functions of the two
GANs. Additionally, to improve task assignment efficiency,
we propose an efficient greedy algorithm based on degree
reduction that transforms task assignment into a bipartite
graph matching. Extensive experiments offer insight into the
effectiveness and efficiency of the proposed framework.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3512067

CCS CONCEPTS

• Information systems → Location based services; •
Computing methodologies → Machine learning ; • Human-
centered computing → Empirical studies in collaborative
and social computing .

KEYWORDS

outlier detection, time series, task assignment, crowdsourcing

ACM Reference Format:
Yan Zhao1, Xuanhao Chen2, Liwei Deng2, Tung Kieu1, Chen-

juan Guo1, Bin Yang1, Kai Zheng2,B, Christian S. Jensen1, 1Department
of Computer Science, Aalborg University, Denmark, 2University of
Electronic Science and Technology of China, China, yanz@cs.aau.dk,
xhc@std.uestc.edu.cn, denglw0830@gmail.com,, {tungkvt, cguo,
byang}@cs.aau.dk, zhengkai@uestc.edu.cn, csj@cs.aau.dk, . 2022.
Outlier Detection for Streaming Task Assignment in Crowdsourc-
ing. In Proceedings of the ACM Web Conference 2022 (WWW ’22),

April 25–29, 2022, Virtual Event, Lyon, France. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3485447.3512067

1 INTRODUCTION

Crowdsourcing enables a computing paradigm, where hu-
mans, called workers, actively or passively contribute to
computing tasks, especially in cases where tasks are intrinsi-
cally easier for humans than for computers [27]. Research on
crowdsourcing [7, 11, 40] has contributed many techniques for
task assignment in different application scenarios, which are
based generally on the assumption that workers are trusted
and that tasks are meaningful. However, in practice, some
workers and task requesters may be malicious. Such actors
may complete tasks with low quality or may even sabotage
tasks [6, 9, 13], or they may submit “invalid” tasks requests
that cannot be finished by their deadlines or that do not
bring any rewards to workers. Such malicious actors impact
platforms and their workers and requesters negatively. Con-
trolling the quality of workers and tasks is thus a major
challenge in crowdsourcing. Recent studies have explored
the malicious behavior of workers [8, 28]. Gadiraju et al. [8]
analyze prevalent malicious activities in crowdsourcing plat-
forms and study the behavior exhibited by trustworthy and
untrustworthy workers. On this basis, they identify different
types of malicious behaviors and provide guidelines for task
requesters to design crowdsourced surveys efficiently. Wang
et al. [28] integrate gold standards into the learning of the
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Figure 1: ODSTA Framework Overview
quality of workers, where gold standards are questions with
correct answers that are known a priori to the crowdsourcing
platforms. Typically, the platforms insert a small amount of
questions into their tasks, observe the performance of work-
ers, and compute error rates of completed tasks to detect
malicious workers. But these studies focus either on a specific
task type or use only the error rates to detect malicious
workers. They also do not consider malicious task requesters
and fail to consider the combination of malicious workers and
malicious task requesters in task assignment.

Addressing these unmet challenges, this study goes beyond
the state of the art and develops a crowdsourcing frame-
work, called Outlier Detection for Streaming Task Assign-
ment (ODSTA), that aims to enable effective task assignment
in settings with malicious workers and task requesters. Specif-
ically, the ODSTA framework consists of a malicious worker
and invalid task detection component and a task assignment
component, as shown in Figure 1. The arrivals of workers, as
well as the arrivals of tasks (or task requests), at a crowd-
sourcing platform can be modeled as streaming, multivariate
time series. Thus, the first component models the detection
of malicious workers and invalid tasks as a correlated time
series outlier detection problem. The basic task is to deter-
mine whether multidimensional data points that represent
workers or tasks conform to an expected data distribution.
Non-conforming data points then represent malicious work-
ers and invalid tasks. This component is equipped with a
novel Socially Aware GAN (SA-GAN) outlier detector that
operates in an unsupervised manner. More specifically, we
design two SA-GANs, namely a distribution-based SA-GAN
and a reconstruction-based SA-GAN, where a socially aware
loss function is introduced to achieve better reconstruction.
We use the SA-GANs to train an autoencoder adversarially
in order to learn the regular patterns of worker and task time
series and to calculate outlier scores for workers and tasks.
The second component addresses the computational task of
matching workers and tasks. Specifically, we propose a greedy
algorithm based on degree reduction that transforms task
assignment into a bipartite graph matching while considering
the outlier scores of workers and tasks. Finally, the worker
and task matches, i.e., the task assignments, are obtained.

Our main contributions can be summarized as follows:
1) We propose a general and efficient task assignment

framework for crowdsourcing, called Outlier Detection for
Streaming Task Assignment (ODSTA), that considers mali-
cious workers and invalid tasks during task assignment.

2) We propose an SA-GAN architecture for worker and task
time series outlier detection, where two adversarial training

processes are designed to train an autoencoder. To the best of
our knowledge, this is the first comprehensive study that aims
to identify malicious workers and invalid tasks by modeling
them as outliers in time series.

3) An efficient degree-reduction-based greedy algorithm is
given that transforms task assignment into a bipartite graph
matching.

4) We report on experiments using real data, offering
evidence of the effectiveness and efficiency of the proposed
framework.

2 PROBLEM STATEMENT

Definition 1 (Worker). A worker, denoted as 𝑤 =
(𝑤, 𝑎, 𝑑), is able to perform tasks. A worker is in online mode
when the worker is ready to accept tasks; otherwise, the worker
is in offline mode. An online worker 𝑤 is associated with a
𝑘-dimensional vector 𝑤 ∈ R𝑘 that describes features of 𝑤,
e.g., the completion quality of historical tasks, the error rate
of completed tasks, and other statistical information derived
from historical data, an arrival time 𝑤.𝑎, and a deadline 𝑤.𝑑.

Definition 2 (Task). A task, denoted by 𝑡 = (𝑡, 𝑎, 𝑑), is

given by a 𝑘′-dimensional vector 𝑡 ∈ R𝑘′
that describes the

features of the task, where each dimension corresponds to
a feature, e.g., task type, task pricing, task popularity, task
difficulty, work volume, and skill requirements. A task 𝑡 also
has an arrival time 𝑡.𝑎, and a task expiration deadline 𝑡.𝑑.

Definition 3 (Multivariate Time Series). A multi-
variate time series is a time-ordered sequence of vectors or
data points, each representing an entity at a specific time
instance. In particular, a 𝑘-dimensional (𝑘 > 1) time series
𝑆 is a sequence of 𝑘-dimensional vectors 𝑆 = ⟨𝑠1, 𝑠2, ..., 𝑠|𝑆|⟩,
where |𝑆| is the length of 𝑆, 𝑠𝑖 ∈ R𝑘 is a 𝑘-dimensional vec-
tor that describes an entity at time 𝒯𝑖, and each dimension
corresponds to a feature.

We use bold letters, e.g., 𝑆 and 𝑠, to denote vectors. In
crowdsourcing, a worker multivariate time series is denoted
by 𝑊 = ⟨𝑤1.𝑤, 𝑤2.𝑤, ..., 𝑤|𝑊 |.𝑤⟩, where 𝑤𝑖.𝑤 is a feature
vector of worker 𝑤𝑖. Thus, the workers in 𝑊 arrive at the
crowdsourcing platform in the order on their index, i.e.,
𝑤1.𝑎 < 𝑤2.𝑎 < ... < 𝑤|𝑊 |.𝑎. Next, a task multivariate time
series is denoted by 𝑇 = ⟨𝑡1.𝑡, 𝑡2.𝑡, ..., 𝑡|𝑇 |.𝑡⟩, where each 𝑡𝑖.𝑡
is a task feature vector of task 𝑡𝑖.

Definition 4 (Multivariate Time Series Outlier
Detection). Assuming that the current time is 𝒯𝑖 (𝑖 >
1) and given a historical 𝑘-dimensional time series 𝑆 =
⟨𝑠1, 𝑠2, ..., 𝑠𝑖−1⟩, we aim to assign an outlier score to each
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vector 𝑠𝑖 such that the higher the outlier score of 𝑠𝑖 is, the
more likely it is that 𝑠𝑖 is an outlier.

In crowdsourcing setting, we assign outlier scores to each
feature vector 𝑤.𝑤 and 𝑡.𝑡 in 𝑊 and 𝑇 , meaning that we
assign outlier scores to the corresponding workers and tasks.

When assigning workers to tasks, the crowdsourcing plat-
form will consider all available workers and tasks at a given
time instance, and it assigns a task to each worker. Once
a task is assigned to a worker, the worker goes offline until
the task is completed. A task 𝑡 can be assigned to a work-
er 𝑤 only if their associated time intervals intersect, i.e.,
[𝑤.𝑎,𝑤.𝑑)∩ [𝑡.𝑎, 𝑡.𝑑) ̸= ∅. In single-task assignment mode, the
server assigns one task to a worker at a time.

Definition 5 (Task Assignment). Given a set of work-
ers 𝑊 and a set of tasks 𝑇 , a task assignment 𝐴 is a set of
worker-task pairs in the form of (𝑤, 𝑡), where each worker or
task can be assigned at most once.

Each pair (𝑤, 𝑡) has a utility 𝑈(𝑤, 𝑡) that may capture the
reward given to worker 𝑤 for completing task 𝑡, the spatial
distance that 𝑤 must travel to complete 𝑡, or similar. Since we
study general task assignment, we fix neither the features of
workers and tasks, nor the basic utility, which are application
specific. Different instances of the framework are obtained
when using different configurations.

We use 𝐴.𝑈 to denote the total utility of all the worker-task
pairs in 𝐴. The problem investigated is stated as follows.

Problem Statement. Given a set of workers and a set
of tasks at the current time instance in a crowdsourcing
platform, compute the outlier scores for all workers and tasks
and use these to obtain an optimal task assignment Aopt that
maximizes the total utility of non-outlier workers and tasks,
i.e., ∀ Ai ∈ A (Ai .U≤Aopt .U ), where A denotes all possible
assignments that involve only non-outlier workers and tasks.

3 MALICIOUS WORKERS AND
INVALID TASKS DETECTION

Since the worker and task data can be deemed as streaming
multivariate time series, and the malicious workers and invalid
tasks can be regarded as outliers in time series accordingly, we
propose an outlier detector, namely SA-GAN outlier detector,
to identify the outliers. We first introduce some preliminaries,
then give an overview of the outlier detector, and finally
provide specifics on each component in the detector.

3.1 Preliminaries

Generative Adversarial Networks. GANs establish min-
max adversarial games between a generator (𝐺) and a dis-
criminator (𝐷), which are typically implemented as neural
networks. The generator generates fake samples by capturing
the distribution of true samples, and the discriminator, usual-
ly a binary classifier, aims to classify samples as real or fake
(generated by the generator). Given a 𝑘-dimensional time
series 𝑆 = ⟨𝑠1, 𝑠2, ..., 𝑠|𝑆|⟩, let 𝑍 = ⟨𝑧1,𝑧2, ..., 𝑧|𝑍|⟩ denote
noise samples from a random latent space, where |𝑆| = |𝑍|.
Following the architecture of a regular GAN [10], we train 𝐺

and 𝐷 with the following two-player minimax game:

min
𝐺

max
𝐷

E𝑠∼𝑝data (𝑠)[log𝐷(𝑠)] + E𝑧∼𝑝(𝑧)[log(1 − 𝐷(𝐺(𝑧)))], (1)

where 𝐺(·) implicitly defines a probability distribution for
the generated samples, 𝐷(𝑠) represents the probability that
𝑠 comes from the real data, and 𝑝(𝑧) is a prior on the input
noise variables.

Autoencoders. An autoencoder is a feedforward fully-
connected neural network, where the number of neurons in
the input and output layers are the same and where there are
much fewer neurons in the hidden layers [2, 14, 31]. In partic-
ular, given a 𝑘-dimensional input vector 𝑠𝑖 = (𝑠1𝑖 , 𝑠

2
𝑖 , ..., 𝑠

𝑘
𝑖 ),

where 𝑠𝑗𝑖 denotes the 𝑗th (1 ≤ 𝑗 ≤ 𝑘) feature value of 𝑠𝑖,
an autoencoder, consisting of an encoder and an decoder,
outputs another 𝑘-dimensional vector 𝑠′

𝑖 = (𝑠′1𝑖 , 𝑠
′2
𝑖 , ..., 𝑠

′𝑘
𝑖 )

that is a reproduction of the input. Formally, we define the
encoder and decoder by two functions 𝑓𝑒 and 𝑓𝑑:

𝑓𝑒(𝑠𝑖) : R𝑘 → R𝑚, 𝑓𝑑(𝑥) : R𝑚 → R𝑘, (2)

where 𝑥 ∈ R𝑚 (𝑚 < 𝑘) denotes an intermediate𝑚-dimensional
vector mapped from 𝑠𝑖 ∈ R𝑘 by the encoder. Next, the de-
coder maps 𝑥 to a reconstructed vector 𝑠′

𝑖 ∈ R𝑘. The objective
of an autoencoder is to minimize the reconstruction error
between 𝑠𝑖 and 𝑠′

𝑖 using the 𝐿1 distance as follows:

argmin
𝑓𝑒,𝑓𝑑

‖𝑠𝑖 − 𝑠
′
𝑖‖1 = argmin

𝑓𝑒,𝑓𝑑

𝑘∑︁
𝑗=1

|𝑠𝑗𝑖 − 𝑠
′𝑗
𝑖 | (3)

We can use existing algorithms, e.g., gradient descent and
back-propagation, to learn the functions, 𝑓𝑒 and 𝑓𝑑.

3.2 Solution Overview

The SA-GAN outlier detector is based on two GANs using
CNN-based autoencoders as generators and CNNs as dis-
criminators to capture complex patterns and distributions of
time series. We use one-dimensional CNNs with filters sliding
along the temporal dimension as base models to capture
temporal correlations in time series, as recent studies [21, 23]
show that CNNs are more robust than LSTMs for time series.
The framework has three components: data processing, model
training, and outlier detection, as shown in Figure 2.

The data processing component performs data normaliza-
tion, negative sampling, and segmentation, which are nec-
essary for model training. The model training component
encompasses two adversarial training processes, namely a
distribution-based SA-GAN (including the encoder as its gen-
erator 𝐺1 and a distribution-based discriminator 𝐷1, marked
in green) and a reconstruction-based SA-GAN (including the
whole autoencoder as its generator 𝐺2 and a reconstruction-
based discriminator 𝐷2, marked in blue), which aim to learn
the patterns and distributions of time series. We will elab-
orate the training in Section 3.4. After the model training,
the trained model is transferred to the outlier detector in the
outlier detection component. When a new time series arrives,
it is first normalized and segmented, and then reconstructed
by the outlier detector. Finally the outlier score is computed
based on the reconstruction error between the original time
series and the reconstructed one.
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Figure 2: SA-GAN Outlier Detector
3.3 Data Processing

Data Normalization. We apply min-max normalization to
each dimension of the time series 𝑆 = ⟨𝑠1, 𝑠2, ..., 𝑠|𝑆|⟩:

̃︀
𝑠𝑗𝑖 =

𝑠𝑗𝑖 − min{𝑆𝑗}
max{𝑆𝑗} − min{𝑆𝑗}

, (4)

where min{𝑆𝑗} and max{𝑆𝑗} denote the minimal and maxi-
mal values of the 𝑗th dimension.

Negative Sampling. To address the class-imbalanced
problem, where normal samples by far exceed abnormal
ones are universal in outlier detection which presents ad-
ditional challenges to outlier detection in time series, we
introduce negative sampling [24] to create negative samples
(i.e., abnormal samples) from the observed positive sam-
ples (i.e., normal samples) globally and locally when pro-
cessing the training data. Specifically, we design a simple
negative sampling method to obtain synthetic global and
local negative samples. Specifically, given a set of positive
time series samples 𝑆 = ⟨𝑠1, 𝑠2, ..., 𝑠|𝑆|⟩ from training data,
there are sufficient positive samples, but only few negative
samples are expected because time series contain only few
outliers. The probability that any point drawn from the time
series is normal is nearly one. Therefore, we regard range
[min{𝑆𝑗},max{𝑆𝑗}] as the normal range for the 𝑗th dimen-
sion (1 ≤ 𝑗 ≤ 𝑘), where min{𝑆𝑗} and max{𝑆𝑗} denote the
minimal and maximal values of the 𝑗th dimension. We gen-
erate negatives in a range that is slightly larger than the
normal range and then use GANs for reconstruction. Specif-
ically, the value in the 𝑗th dimension of negative samples
𝑆′ = ⟨𝑠′

1, 𝑠
′
2, ..., 𝑠

′
|𝑆′|⟩ is chosen independently and uni-

formly from range [min{𝑆𝑗} − 𝛿,max{𝑆𝑗} + 𝛿], where 𝛿 is
a small positive number denoting the deviation of negative
samples from the normal range. The sampling ratio, denot-

ed as 𝑅 = |𝑆′|
|𝑆| , is the ratio between the synthetic and the

original sample size. We generate negative samples based on
the sampling ratio on the whole time series (i.e., in a global
manner) or on each time series subsequence segmented by a
sliding window (i.e., in a local manner). The choice of global
versus local generation needs to be fitted to time series data.

Data Segmentation. Instead of treating each feature
independently, the SA-GAN outlier detector considers the

entire feature set concurrently to capture latent interac-
tions among features. We divide the time series into sub-
sequences with a sliding window. Given an entity 𝑠𝑖 at
time 𝒯𝑖, we use 𝑊 𝑠𝑖 to denote the corresponding subse-
quence of 𝑠𝑖 segmented by a sliding window, where 𝑊 𝑠𝑖 =
⟨𝑠𝑖−|𝑊 |+1, 𝑠𝑖−|𝑊 |+2, ..., 𝑠𝑖⟩ and |𝑊 | is the length of 𝑊 𝑠i .

3.4 Model Training

Distribution-based GAN Training. In the Distribution-
based SA-GAN, the encoder is regarded as the generator and
takes a time series subsequence 𝑊 𝑠𝑖 as input and outputs a
hidden variable 𝑧. The Distribution-based SA-GAN aims to
guide the matching between the prior distribution 𝑝(𝑧) and
the posterior distribution 𝑞(𝑧) of the hidden variable 𝑧, in
which 𝑞(𝑧) is calculated according to Equation 5.

𝑞(𝑧) =

∫︁
𝑊𝑠𝑖

𝑞
(︀
𝑧 | 𝑊 𝑠𝑖

)︀
𝑝data

(︀
𝑊 𝑠𝑖

)︀
𝑑𝑊 𝑠𝑖

, (5)

where 𝑞 (𝑧 | 𝑊 𝑠𝑖) is the encoding distribution and 𝑝data (𝑊 𝑠𝑖)
is the data distribution. We assume that 𝑞 (𝑧 | 𝑊 𝑠𝑖) is a
Gaussian distribution and use the parametrization of Kingma
and Welling [15] for back-propagation through the encoder.

The distribution-based discriminator 𝐷1 is used to guide
the posterior 𝑞(𝑧) to match the prior 𝑝(𝑧), which tries to
maximize the following loss function:

ℒ𝐷1
= E

𝑧∼𝑝(𝑧)
[log (𝐷1(𝑧))]

+ E
𝑊𝑠𝑖

∼𝑝𝑑𝑎𝑡𝑎(𝑊𝑠𝑖 )

[︀
log

(︀
1 − 𝐷1

(︀
𝐺1

(︀
𝑊 𝑠𝑖

)︀)︀)︀]︀
,

(6)

where 𝐺1 is the corresponding generator, i.e., the encoder,
which tries to minimize the following loss function:

ℒ𝐺1
= E

𝑊𝑠𝑖
∼𝑝𝑑𝑎𝑡𝑎(𝑊𝑠𝑖 )

[︀
log

(︀
1 − 𝐷1

(︀
𝐺1

(︀
𝑊 𝑠𝑖

)︀)︀)︀]︀
(7)

Existing GAN learning strategies pursue convergence to
Nash equilibria [1, 10, 41]. In contrast, we incorporate the
concept of social awareness into the training process and aim
at improving the social welfare of the generator and discrimi-
nator under self-play rather than pursuing Nash equilibrium
solutions. Considering that social welfare is the common in-
terests or goals between the generator and discriminator, we
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sum up their objectives, max{ℒ𝐷1} and min{ℒ𝐺1}.
max

{︀
ℒ𝐷1

}︀
+ min

{︀
ℒ𝐺1

}︀
= max

{︀
E

𝑧∼𝑝(𝑧)
[log (𝐷1(𝑧))]

+ E
𝑊𝑠𝑖

∼𝑝𝑑𝑎𝑡𝑎(𝑊𝑠𝑖 )

[︀
log

(︀
1 − 𝐷1

(︀
𝐺1

(︀
𝑊 𝑠𝑖

)︀)︀)︀]︀ }︀
+ min

{︀
E

𝑊𝑠𝑖
∼𝑝𝑑𝑎𝑡𝑎(𝑊𝑠𝑖 )

[︀
log

(︀
1 − 𝐷1

(︀
𝐺1

(︀
𝑊 𝑠𝑖

)︀)︀)︀]︀ }︀
(8)

Given that min{ℒ𝐺1}= max{−ℒ𝐺1}, we get

max
{︀
ℒ𝐷1

}︀
+ min

{︀
ℒ𝐺1

}︀
= max

{︀
E

𝑧∼𝑝(𝑧)
[log (𝐷1(𝑧))]

}︀
(9)

Equation 9 aims to maximize the probability of recognizing
a real sample, which is regarded as the common goal of the
generator and discriminator, called a socially aware goal. For
the discriminator, we can see from Equation 6 that the socially
aware goal is also its individual goal. The generator can
generate high-quality fake samples with the social goal since
it aims to generate fake samples to fool the discriminator.

Let SG1 denote E
𝑧∼𝑝(𝑧)

[log (𝐷1(𝑧))] and IG1 denote

E
𝑊 𝑠𝑖

∼𝑝data(𝑊 𝑠𝑖)
[log (1−𝐷1 (𝐺1 (𝑊 𝑠𝑖)))]. Based on a regular

GAN framework [10], we train the SA-GAN with a two-
player min-max game by introducing the socially aware degree
sa1 ∈ (0, 1), which reflects the socially aware degree of the
generator and discriminator, as shown in Equation 10.

min
𝐺1

max
𝐷1

{︀
sa1 · SG1 + (1 − sa1) · IG1

}︀
, (10)

where sa1 can be adjusted adaptively based on the relative
performance between the generator and discriminator. Dur-
ing each training round, if SG1 exceeds IG1 , sa1 increases;
otherwise, sa1 decreases. We adopt two strategies for up-
dating sa1, namely a random strategy (Equation 11) and a
learning rate based strategy (Equation 12).

sa1 =

⎧⎨⎩ 𝑟𝑎𝑛𝑑𝑜𝑚(sa1, 1) if SG1 > IG1

𝑟𝑎𝑛𝑑𝑜𝑚(0, sa1) if SG1 < IG1

sa1 otherwise
(11)

sa1 = sa1 + 𝛼 ·
SG1 − IG1

SG1 + IG1

, (12)

where random(𝑎, 𝑏) is a random number from range (𝑎, 𝑏),
and 𝛼 is the learning rate of sa1, which is usually set to 0.001.

Reconstruction-based GAN Training. In this SA-
GAN, the autoencoder is regarded as the generator (de-
noted as 𝐺2), which generates the reconstructed time series,
𝑊 ′

𝑠𝑖 = 𝐺2(𝐺1(𝑊 𝑠𝑖)). A reconstruction-based discriminator
𝐷2 that compares the difference between the original and
reconstructed time series is proposed to avoid overfitting.
Similarly, the reconstruction-based SA-GAN can be trained
with the following socially aware two-player minimax game:

min
𝐺2

max
𝐷2

{︀
sa2 · 𝑆𝐺2 + (1 − sa2) · 𝐼𝐺2

}︀
(13)

𝑆𝐺2 = E
𝑊𝑠𝑖

∼𝑝data(𝑊𝑠𝑖 )

[︀
log

(︀
𝐷2(𝑊 𝑠𝑖

)
)︀]︀

(14)

𝐼𝐺2 = E
𝑊𝑠𝑖

∼𝑝data(𝑊𝑠𝑖 )

[︀
log

(︀
1 − 𝐷2

(︀
𝐺2

(︀
𝐺1(𝑊 𝑠𝑖

)
)︀)︀)︀]︀

, (15)

where sa2 is the socially aware degree of the Reconstruction-
based SA-GAN.

Autoencoder Training. For the autoencoder training,
we use the loss functions of the encoder and decoder, i.e.,
ℒ𝐺1 and ℒ𝐺2 , as the adversarial regularization to achieve
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Figure 3: Worker-Task Bipartite Graph

robustness of the autoencoder, where ℒ𝐺2 = E
𝑊 𝑠𝑖

∼𝑝data(𝑊 𝑠𝑖)
[log (1−𝐷2 (𝐺2 (𝐺1(𝑊 𝑠𝑖))))]. The loss function of the au-
toencoder is shown in Equation 16.

ℒ = ℒ0 + 𝜆1ℒ𝐺1
+ 𝜆2ℒ𝐺2

(16)

ℒ0 = E𝑊𝑠𝑖
∼𝑝data(𝑊𝑠𝑖 )

⃦⃦
𝑊 𝑠𝑖

− 𝐺2

(︀
𝐺1(𝑊 𝑠𝑖

)
)︀⃦⃦

1
, (17)

where ℒ0 is the reconstruction loss, and 𝜆1 and 𝜆2 are pa-
rameters that control the contributions of ℒ𝐺1 and ℒ𝐺2 .

To achieve stability during the training, we employ feature
matching loss [22] to replace the adversarial regulations, ℒ𝐺1

and ℒ𝐺2 . Let 𝐹 (·) be a function of an intermediate layer in
the discriminator, which can be regarded as a feature function.
The feature matching measures the 𝐿2 distance between the
feature representation of the original and generated data.
Thereby, the adversarial regulations, ℒ𝐺1 and ℒ𝐺2 , can be
recomputed as follows:

ℒ𝐺1
= ‖E𝑊𝑠𝑖

∼𝑝data (𝑊𝑠𝑖
)𝐹1(𝐺1(𝑊 𝑠𝑖

)) − E𝑧∼𝑝(𝑧)𝐹1(𝑧)‖2

ℒ𝐺2
=‖E𝑊𝑠𝑖

∼𝑝data(𝑊𝑠𝑖 )
(︀
𝐹2

(︀
𝑊 𝑠𝑖

)︀
−𝐹2

(︀
𝐺2

(︀
𝐺1

(︀
𝑊 𝑠𝑖

)︀)︀)︀)︀
‖2,

(18)

where 𝐹1(·) and 𝐹2(·) are the functions of the intermediate
layer of 𝐷1 and 𝐷2, respectively. The autoencoder and the
two discriminators are trained simultaneously.

3.5 Outlier Detection

Upon training we can use the SA-GAN model to detect out-
liers. Taking the time series subsequence 𝑊 𝑠𝑖 = ⟨𝑠𝑖−|𝑊 |+1,
𝑠𝑖−|𝑊 |+2, ..., 𝑠𝑖⟩ as input, the detector aims to reconstruct
𝑠𝑖 and uses the reconstruction error to compute its outlier
score Score(𝑠𝑖), which can be calculated as follows:

Score(𝑠𝑖) =
⃦⃦
𝑠𝑖 − 𝑠

′
𝑖

⃦⃦
1
, (19)

where 𝑠′
𝑖 is the reconstruction of 𝑠𝑖. A higher outlier score

means that 𝑠𝑖 is more likely to be an outlier.

4 TASK ASSIGNMENT

We propose a greedy algorithm based on degree reduction by
transforming task assignment into a bipartite graph matching.

4.1 Bipartite Graph Generation

We first transform the task assignment problem in time in-
stance 𝒯 into a bipartite graph. The graph is represented
by 𝐺 = (𝑉,𝐸), where 𝑉 includes a left node set 𝑊 (that
is the worker set in time instance 𝒯 ) and a right node set
𝑇 (that is the task set in time instance 𝒯 ), and 𝐸 denotes
the set of edges. Each node 𝑤 ∈ 𝑊 (𝑡 ∈ 𝑇 ) has an arrival
time denoted by 𝑤.𝑎 (𝑡.𝑎), and a deadline denoted by 𝑤.𝑑
(𝑡.𝑑). Each edge 𝑒(𝑤, 𝑡) ∈ 𝐸 has a basic utility denoted by
𝑈(𝑤, 𝑡), which is application-specific and can be set by task
reward, spatial distance, etc. Inevitably, in crowdsourcing
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Figure 4: The Process of Greedy Algorithm

applications, malicious workers and invalid tasks may exist.
In such situations, workers cannot finish the assigned tasks
on time or cannot complete the tasks correctly. Therefore, we
consider the outlier factor in task assignment. More specifi-
cally, each (𝑤, 𝑡) pair has an outlier-based utility, denoted by
𝒰(𝑤, 𝑡) = (1−max{Score(w .𝑤),Score(t .𝑡)})*𝑈(𝑤, 𝑡), where
𝑚𝑎𝑥{Score(w .𝑤),Score(t .𝑡)} denotes the maximum outlier
score among worker 𝑤 and task 𝑡 that can be calculated by
the SA-GAN outlier detector in Section 3. A worker-task
pair with a lower outlier score is more likely to have a higher
outlier-based utility. Note that there is no need to consider
the edges 𝑒(𝑤, 𝑡) with [𝑤.𝑎,𝑤.𝑑) ∩ [𝑡.𝑎, 𝑡.𝑑) = ∅ for matching
since in this case one node expires before the other arrives.
A task assignment on a bipartite graph 𝐺 is denoted by
𝐴 = {(𝑤, 𝑡)|𝑤 ∈ 𝑊, 𝑡 ∈ 𝑇}. It is a set of node pairs where
each node appears at most once.

Figure 3 shows a worker-task bipartite graph, where {𝑤1, 𝑤2,
𝑤3} is the left node set, and {𝑡1, 𝑡2, 𝑡3, 𝑡4} is the right node set.
An edge exists between 𝑤𝑖 (𝑖 = 1, 2, 3) and 𝑡𝑗 (𝑗 = 1, 2, 3, 4)
when [𝑤𝑖.𝑎, 𝑤𝑖.𝑑)∩[𝑡𝑗 .𝑎, 𝑡𝑗 .𝑑) ̸= ∅. For example, 𝑤1 and 𝑡2 has
an edge (with the outlier-based utility (1− 0.8) * 0.3 = 0.06)
between them as [1, 3) ∩ [1, 2) ̸= ∅.

To optimize the total utility of normal workers and tasks,
we aim to maximize the total outlier-based utility, which gives
priority to normal workers and tasks during task assignment.

4.2 Degree-Reduction-based Greedy
Algorithm

The greedy algorithm is to utilize a degree reduction strategy,
which consists of the following steps.

Step 1. Calculate the degree of each node.
Step 2. Find the node 𝑣 ∈ 𝑊 ∪𝑇 with the minimal degree,

and denote the nodes that are connected with 𝑣 as 𝐶(𝑣), i.e.,
∀𝑢 ∈ 𝐶(𝑣), 𝑒(𝑣, 𝑢) exists. Then perform the following actions.

1) If node 𝑢 ∈ 𝐶(𝑣) with the maximal weight can be
found, (𝑣, 𝑢) is a worker-task matching and added into task
assignment 𝐴. Nodes 𝑣 and 𝑢 are then removed from 𝑊 ∪ 𝑇 .
Update the degree of nodes in 𝐶(𝑣) and 𝐶(𝑢), i.e., the degree
of all the nodes in 𝐶(𝑣) and 𝐶(𝑢) should be reduced by 1.

2) Otherwise (i.e., 𝐶(𝑣) = ∅), node 𝑣 is removed from
𝑊 ∪ 𝑇 . Update the degree of nodes in 𝐶(𝑣).

Step 3. Repeat Step 2 until 𝑊 ∪ 𝑇 = ∅.
The intuition of the above algorithm is that the nodes

with less edges are more likely to be assigned unsuccessfully
when they are assigned later, so we give priority to them. The
time complexity for this algorithm is 𝑂((|𝑊 |+ |𝑇 |)*|max𝐶|),
where |max𝐶| = max𝑣∈𝑊∪𝑇 |𝐶(𝑣)|.

Figure 4 illustrates the degree reduction process for the
worker-task bipartite graph in Figure 3, which first removes
nodes 𝑤3 and 𝑡4 since 𝑤3 is the node with the minimal degree
and 𝑡4 ∈ 𝐶(𝑤3) (𝐶(𝑤3) = {𝑡4}) has the maximal outlier-
based utility. Then we add the worker-task pair (𝑤3, 𝑡4) into
the task assignment 𝐴, i.e., 𝐴 = {(𝑤3, 𝑡4)}. Accordingly,
𝑤3 and 𝑡4 are removed from the graph, and the degree of
nodes in 𝐶(𝑤3) and 𝐶(𝑡4) are reduced by 1. Subsequently,
nodes 𝑤2, 𝑡3, 𝑡1, 𝑤1, 𝑡2 are removed, respectively, following the
principle of Step 2. Finally, we obtain the task assignment
𝐴 = {(𝑤3, 𝑡4), (𝑤2, 𝑡3), (𝑤1, 𝑡1)}.

5 EXPERIMENTAL EVALUATION

We evaluate the performance of the malicious workers and
invalid tasks detection, and the task assignment. Due to the
lack of benchmark for streaming crowsourcing task assign-
ment algorithms, we use two real multivariate time series
datasets, MSL and SMAP [12], to simulate the streaming
crowdsourcing scenario. The consecutive points with multiple
dimensions in the real time series data are good candidates for
workers and tasks (with multiple features) which appear con-
tinuously and in time sequences on crowdsourcing platforms.
The datasets are described in Appendix B.1.

5.1 Performance of Malicious Workers
and Invalid Tasks Detection

Evaluation Methods. We evaluate the following methods:
VAE [15], EncDec-AD [19], GANomaly [1], BeatGAN [41],
SA-GAN-Random (our SA-GAN model using the random
strategy to update the socially aware degree), and SA-GAN-
Learn (our SA-GAN model using the learning rate based
strategy to update the socially aware degree), where the
details are given in Appendix B.2.

Metrics. We adopt the commonly-used metric, F1-score
(F1), to evaluate the accuracy of the six methods, where the
outlier threshold selection is shown in Appendix B.3. The
larger the F1 is, the more accurate the method is. We also
evaluate the efficiency, including the training and testing
time. The parameter settings are shown in Appendix B.4.

Table 1: F1-score on Two Datasets

Models
F1

MSL SMAP Total
VAE 0.361 0.332 0.336

EncDec-AD 0.243 0.193 0.199
GANomaly 0.317 0.327 0.325
BeatGAN 0.308 0.304 0.323

SA-GAN-Random 0.335 0.349 0.354
SA-GAN-Learn 0.363 0.357 0.331

Accuracy. We report the F1 values in Table 1. The
best performance by an existing method (VAE, EncDec-AD,
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Figure 5: Training Time and Testing Time

GANomaly, and BeatGAN) is underlined, and the overall
best performance is marked in bold. We also calculate the
total F1 values, which is computed based on the total num-
ber of correctly detected outliers, the total number of falsely
detected outliers, and the total number of falsely assigned
normal entities on the two datasets. For both datasets, SA-
GAN-Learn achieves the highest F1-score, which outperforms
the best among the baseline methods by 0.55% and 7.53%
in MSL and SMAP, respectively. SA-GAN-Random achieves
competitive accuracy in MSL and has a higher F1 -score than
other start-of-the-art methods in SMAP. When considering
the total accuracy, SA-GAN-Random shows the best perfor-
mance. Overall, the SA-GANs can achieve high accuracy.

Efficiency. As efficiency is important for online outlier
detection, we study the training time (of each epoch) and test-
ing time (of each entity) for all the methods on two datasets.
From Figure 5, we can see that although VAE, GANoma-
ly, and BeatGAN take less time for training and testing,
they perform worse than the SA-GANs in terms of accuracy,
shown in Table 1. Figure 5 also shows that SA-GAN methods
run in less than a millisecond when detecting outliers, which
indicates their feasibility in real outlier detection scenarios.

5.2 Performance of Task Assignment

Evaluation Methods. We study the following algorithms
1) KM: The Kuhn-Munkras algorithm [16] that achieves

the optimal assignment without considering outliers, i.e.,
malicious workers and invalid tasks.

2) DR: The Degree-Reduction-based greedy algorithm
without considering outliers.

3) KM-Outlier: The KM algorithm considering outliers.
4) DR-Outlier: The DR algorithm considering outliers.
Metrics. Four main metrics are compared for the above

algorithms, i.e., total utility of the correct task assignments
(marked as total utility), assignment accuracy of workers
that is the ratio between the number of correct assigned
workers and the total number of assigned workers (marked as
worker assignment accuracy), assignment accuracy of tasks
that is the ratio between the number of correct assigned
tasks and the total number of assigned tasks (marked as
task assignment accuracy), and CPU time for finding task
assignments. A correct assigned worker or task means that
the assigned worker or task is normal. A larger worker or
task assignment accuracy implies more accurate assignments.

Effect of |𝑊 |. We first study the effect of |𝑊 |. In Fig-
ures 6(a) and 7(a), the utilities for all methods naturally
increase as |𝑊 | gets larger. Although DR and DR-Outlier
generate less utility than KM and KM-Outlier, they run
much faster than KM and KM-Outlier (cf. Figures 6(d) and
7(d)). The CPU time of DR is only 6.79%–34.09% of those
of KM and KM-Outlier, and the CPU time of DR-Outlier is
only 7.90%–38.03% of those of KM and KM-Outlier, which
demonstrate the superiority of DR and DR-Outlier for solving
the streaming task assignment problem. For worker and task
assignment accuracy—cf. Figures 6(b), 6(c), 7(b), and 7(c),
the outlier-based methods (i.e., KM-Outlier and DR-Outlier)
outperform their counterparts (i.e., KM and DR) in most
situations. In some cases when |𝑊 | is small, the outlier-based
methods have similar or same assignment accuracy with their
counterparts since there are fewer outliers with fewer workers,
where the outlier-based methods fail to show their superiority.
To save space, in the following experiments, we do not report
results for SMAP, as these are similar to those obtained for
MSL. The results for SMAP are given Appendix C.

Effect of |𝑆|. In Figure 8(a), the utilities of all methods
increase when |𝑆| grows. The reason behind it is self-evident,
that is, with more tasks to be assigned, each worker receives
more available tasks such that a worker has more chance
to be assigned a task with higher utility. Apparently, KM
achieves the highest total utility, followed by KM-Outlier, DR,
and DR-Outlier. In Figures 8(b) and 8(c), the outlier-based
methods perform better than their counterparts or perform
similar with them in terms of worker and task assignment
accuracy. This is mainly because outliers are much fewer
than the normal data points (i.e., normal workers and tasks),
which is less likely to be assigned. Besides, it is difficult to
detect all the outliers correctly by outlier detection methods
including our SA-GAN outlier detector, which also leads to
the above results. For efficiency, the DR-related methods still
run much faster than the KM-related methods in Figure 8(d).
Besides, the CPU time of DR and DR-Outlier remain almost
unchanged regardless of |𝑆|, demonstrating the adaptability
of DR-related methods in different data-intensive scenarios.

Effect of 𝑥. We proceed to consider the effect of 𝑥, the
valid time of workers and tasks. As expected, the total utili-
ties of all methods increase gradually as 𝑥 grows, shown in
Figure 9(a). This is because when 𝑥 increases, there will be
more available tasks for each worker. Workers then have more
choices, which may lead to the increasing utilities. For work-
er and task assignment accuracy, KM-Outlier (DR-Outlier)
clearly outperforms KM (DR) in Figures 9(b) and 9(c). Fig-
ure 9(d) shows that the CPU time of KM and KM-Outlier
exhibit an increasing trend when increasing 𝑥, and become
more and more time-consuming compared to the others.

6 RELATED WORK

Recent studies in crowdsourcing provide solutions to a variety
of task assignment problems [3–5, 17, 18, 25, 26, 29, 30, 32–
39]. However, none of these studies target robustness towards
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Figure 6: Effect of |𝑊 | on MSL
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Figure 7: Effect of |𝑊 | on SMAP
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Figure 8: Effect of |𝑆| on MSL
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Figure 9: Effect of 𝑥 on MSL
malicious actors, including malicious workers and task re-
questers, thus making them vulnerable to malicious behavior.
Quality assurance is a major challenge in crowdsourcing.
Specifically, tasks may be completed with poor results if
workers are malicious or if tasks cannot reasonably be com-
pleted by their deadlines or if completions carry little benefit
to workers. A few studies consider malicious user behav-
ior [8, 13, 20, 28]. However, these studies either focus on
a specific task type or rely solely on the error rate of task
results to detect malicious workers and do not consider other
factors. Moreover, these studies do not consider malicious
task requesters and thus do not account for the combination
of malicious workers and tasks submitted by such requesters
in task assignment.

To better ensure the task assignment quality, it is attractive
to integrate mechanisms that can estimate worker and task
quality accurately, so that low-quality workers and tasks can
be disregarded. Complementing existing studies, our study
aims to detect both malicious workers and task requesters to
enable more robust task assignment in crowdsourcing.

7 CONCLUSION

We propose a general efficient outlier detection framework
for streaming task assignment in crowdsourcing, that aims
to achieve high utility among normal workers and tasks
while considering outliers including malicious workers and
invalid tasks. Specifically, we propose an unsupervised outlier
detection architecture that enables the capture of complex
patterns and distributions in the worker and task multivariate
time series to detect malicious workers and invalid tasks.
Besides, we propose a greedy algorithm based on degree
reduction to assign tasks to suitable workers to adapt to
the real streaming corwdsourcing applications. An extensive
empirical study offers evidence that the framework is capable
of advancing the state of the art in terms of outlier detection
accuracy, assignment accuracy, and computational efficiency.

ACKNOWLEDGMENTS

This work is partially supported by NSFC (No. 61972069,
61836007 and 61832017), and Shenzhen Municipal Science
and Technology R&D Funding Basic Research Program (J-
CYJ20210324133607021).



Outlier Detection for Streaming Task Assignment in Crowdsourcing WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES
[1] Samet Akcay, Amir Atapour-Abarghouei, and Toby P Breckon.

2018. Ganomaly: Semi-supervised anomaly detection via adver-
sarial training. In ACCV. 622–637.

[2] Xuanhao Chen, Liwei Deng, Feiteng Huang, Chengwei Zhang,
Zongquan Zhang, Yan Zhao, and Kai Zheng. 2021. DAEMON:
Unsupervised Anomaly Detection and Interpretation for Multi-
variate Time Series. In ICDE. 2225–2230.

[3] Peng Cheng, Xiang Lian, Lei Chen, and Cyrus Shahabi. 2017.
Prediction-Based Task Assignment in Spatial Crowdsourcing. In
ICDE. 997–1008.

[4] Peng Cheng, Xiang Lian, Zhao Chen, Rui Fu, Lei Chen, Jinsong
Han, and Jizhong Zhao. 2015. Reliable Diversity-based Spatial
Crowdsourcing by Moving Workers. VLDBJ 8, 10 (2015), 1022–
1033.

[5] Yue Cui, Liwei Deng, Yan Zhao, Bin Yao, Vincent W Zheng, and
Kai Zheng. [n. d.]. Hidden poi ranking with spatial crowdsourcing.
In KDD.

[6] C. Eickhoff and A. de Vries. 2011. How crowdsourcable is your
task. In WSDM. 11–14.

[7] Lee Erickson, Irene Petrick, and Eileen Trauth. 2012. Hanging
with the right crowd: Matching crowdsourcing need to crowd
characteristics.. In AMCIS. 1–9.

[8] Ujwal Gadiraju, Ricardo Kawase, Stefan Dietze, and Gianluca De-
martini. 2015. Understanding malicious behavior in crowdsourcing
platforms: The case of online surveys. In CHI. 1631–1640.

[9] R. Gennaro, C. Gentry, and B. Parno. 2010. Non-interactive veri-
fiable computing: Outsourcing computation to untrusted workers.
In CRYPTO. 465–482.

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. 2014. Generative adversarial nets. NIPS 27 (2014),
2672–2680.

[11] Chien-Ju Ho and Jennifer Vaughan. 2012. Online task assignment
in crowdsourcing markets. In AAAI. 45–51.

[12] Kyle Hundman, Valentino Constantinou, Christopher Laporte,
Ian Colwell, and Tom Soderstrom. 2018. Detecting spacecraft
anomalies using lstms and nonparametric dynamic thresholding.
In SIGKDD. 387–395.

[13] P. G. Ipeirotis, F. Provost, and J. Wang. 2010. Quality man-
agement on amazon mechanical turk. In SIGMOD Workshops.
64–67.

[14] Tung Kieu, Bin Yang, Chenjuan Guo, Razvan-Gabriel Cirstea,
Yan Zhao, Yale Song, and Christian S. Jensen. 2022. Anomaly
Detection in Time Series with Robust Variational Quasi-Recurrent
Autoencoders.. In ICDE.

[15] Diederik P Kingma and Max Welling. 2013. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114 (2013).

[16] Harold W Kuhn. 1955. The Hungarian method for the assignment
problem. Naval research logistics quarterly 2, 1-2 (1955), 83–97.

[17] Xiang Li, Yan Zhao, Jiannan Guo, and Kai Zheng. 2020. Group
task assignment with social impact-based preference in spatial
crowdsourcing. In DASFAA. 677–693.

[18] Xiang Li, Yan Zhao, Xiaofang Zhou, and Kai Zheng. 2020.
Consensus-Based Group Task Assignment with Social Impact
in Spatial Crowdsourcing. Data Science and Engineering 5, 4
(2020), 375–390.

[19] Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand,
Lovekesh Vig, Puneet Agarwal, and Gautam Shroff. 2016. LSTM-
based encoder-decoder for multi-sensor anomaly detection. arXiv
preprint arXiv:1607.00148 (2016).

[20] David Oleson, Alexander Sorokin, Greg Laughlin, Vaughn Hester,
John Le, and Lukas Biewald. 2011. Programmatic gold: Target-
ed and scalable quality assurance in crowdsourcing. In AAAI
Workshops. 43–48.

[21] Pranav Rajpurkar, Awni Y Hannun, Masoumeh Haghpanahi,
Codie Bourn, and Andrew Y Ng. 2017. Cardiologist-level ar-
rhythmia detection with convolutional neural networks. arXiv
preprint arXiv:1707.01836 (2017).

[22] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung,
Alec Radford, and Xi Chen. 2016. Improved techniques for training
gans. arXiv preprint arXiv:1606.03498 (2016).

[23] Sreelekshmy Selvin, R Vinayakumar, EA Gopalakrishnan, Vi-
jay Krishna Menon, and KP Soman. 2017. Stock price prediction
using LSTM, RNN and CNN-sliding window model. In ICACCI.
1643–1647.

[24] John Sipple. 2020. Interpretable, multidimensional, multimodal
anomaly detection with negative sampling for detection of device
failure. In ICML. 9016–9025.

[25] Yongxin Tong, Jieying She, Bolin Ding, and Libin Wang. 2016.
Online Mobile Micro-Task Allocation in Spatial Crowdsourcing.
In ICDE. 49–60.

[26] Yongxin Tong, Libin Wang, Zimu Zhou, Bolin Ding, Lei Chen,
Jieping Ye, and Ke Xu. 2017. Flexible Online Task Assignment
in Real-time Spatial Data. PVLDB 10, 11 (2017), 1334–1345.

[27] Yongxin Tong, Zimu Zhou, Yuxiang Zeng, Lei Chen, and Cyrus
Shahabi. 2019. Spatial Crowdsourcing: A Survey. VLDBJ 29, 1
(2019), 217–250.

[28] Jing Wang, Panagiotis G Ipeirotis, and Foster Provost. 2011.
Managing crowdsourcing workers. In Conference on Business
Intelligence. 10–12.

[29] Ziwei Wang, Yan Zhao, Xuanhao Chen, and Kai Zheng. 2021.
Task Assignment with Worker Churn Prediction in Spatial Crowd-
sourcing. In CIKM.

[30] Jinfu Xia, Yan Zhao, Guanfeng Liu, Jiajie Xu, Min Zhang, and
Kai Zheng. 2019. Profit-driven Task Assignment in Spatial Crowd-
sourcing.. In IJCAI. 1914–1920.

[31] Yan Xia, Xudong Cao, Fang Wen, Gang Hua, and Jian Sun. 2015.
Learning discriminative reconstructions for unsupervised outlier
removal. In ICCV. 1511–1519.

[32] Guanyu Ye, Yan Zhao, Xuanhao Chen, and Kai Zheng. 2021. Task
Allocation with Geographic Partition in Spatial Crowdsourcing.
In CIKM.

[33] Yan Zhao, Jiannan Guo, Xuanhao Chen, Jianye Hao, Xiaofang
Zhou, and Kai Zheng. 2021. Coalition-based task assignment in
spatial crowdsourcing. In ICDE. 241–252.

[34] Yan Zhao, Yang Li, Yu Wang, Han Su, and Kai Zheng. 2017.
Destination-aware Task Assignment in Spatial Crowdsourcing. In
CIKM. 297–306.

[35] Yan Zhao, Jinfu Xia, Guanfeng Liu, Han Su, Defu Lian, Shuo
Shang, and Kai Zheng. 2019. Preference-aware task assignment
in spatial crowdsourcing. In AAAI. 2629–2636.

[36] Yan Zhao, Kai Zheng, Yue Cui, Han Su, Feida Zhu, and Xiaofang
Zhou. 2020. Predictive task assignment in spatial crowdsourcing:
a data-driven approach. In ICDE. 13–24.

[37] Yan Zhao, Kai Zheng, Jiannan Guo, Bin Yang, Torben Bach
Pedersen, and Christian S Jensen. 2021. Fairness-aware Task As-
signment in Spatial Crowdsourcing: Game-Theoretic Approaches.
In ICDE. 265–276.

[38] Yan Zhao, Kai Zheng, Yang Li, Han Su, Jiajun Liu, and Xiaofang
Zhou. 2019. Destination-aware Task Assignment in Spatial Crowd-
sourcing: A Worker Decomposition Approach. TKDE (2019),
2336–2350.

[39] Yan Zhao, Kai Zheng, Hongzhi Yin, Guanfeng Liu, Junhua Fang,
and Xiaofang Zhou. 2020. Preference-aware task assignment in
spatial crowdsourcing: from individuals to groups. TKDE (2020).

[40] Yudian Zheng, Jiannan Wang, Guoliang Li, Reynold Cheng, and
Jianhua Feng. 2015. QASCA: A quality-aware task assignment
system for crowdsourcing applications. In SIGMOD. 1031–1046.

[41] Bin Zhou, Shenghua Liu, Bryan Hooi, Xueqi Cheng, and Jing Ye.
2019. BeatGAN: Anomalous Rhythm Detection using Adversari-
ally Generated Time Series.. In IJCAI. 4433–4439.



WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Zhao, et al.

A NOTATION

Table 2 lists notation used throughout the paper.

Table 2: Summary of Notation

Symbol Definition

𝑤 A worker
𝑤.𝑤 𝑘-dimensional vector describing the features of worker 𝑤
𝑤.𝑎 Arrival time of worker 𝑤
𝑤.𝑑 Deadline of worker 𝑤
𝑊 A worker set
𝑡 A task

𝑡.𝑡 𝑘′-dimensional vector describing the features of task 𝑡
𝑡.𝑎 Arrival time of task 𝑡
𝑡.𝑑 Deadline of task 𝑡
𝑇 A task set
𝑆 A 𝑘-dimensional (𝑘 > 1) time series
𝑠 A 𝑘-dimensional (𝑘 > 1) vector
𝒯 A time instant
𝑊 A worker multivariate time series
𝑇 A task multivariate time series
(𝑤, 𝑡) A pair of a worker 𝑤 and a task 𝑡
𝐴 A task assignment
𝑈(𝑤, 𝑡) Utility of worker-task pair (𝑤, 𝑡)
𝐴.𝑈 The total utility in task assignment 𝐴
𝐴𝑜𝑝𝑡 The optimal task assignment
A A task assignment set

B EXPERIMENTAL SETUP

We conduct the experiments using PyTorch (v1.0.0 with
Python 3.6.4) on a Linux (EulerOS 4.8.5) machine with
NVIDIA Tesla P100 16GB HBM2 GPU and 64G memory.

B.1 Datasets

We perform experiments to evaluate the malicious workers
and invalid tasks detection on two datasets: MSL (Mars
Science Laboratory rover), and SMAP (Soil Moisture Active
Passive satellite) [12]. MSL and SMAP include training and
testing sets, where outliers in each testing sets are labeled.
We train models on each dataset, the statistics of which are
shown in Table 3 including the subset number, dimension
number, training set size, testing set size, and outlier ratio.

For evaluating the performance of task assignment, we
choose two time series (i.e., two subsets) with the similar
length from MSL and SMAP to represent the worker and task
time series, respectively. Specifically, we use the subset “T-5”
(“E-3”) in MSL (SMAP) to represent a worker time series
and the subset “T-4” (“E-6”) in MSL (SMAP) to represent
a task time series, each point denoting a worker or a task
and the vector denoting the feature vector of the worker
or the task accordingly. Since the original datasets do not
contain the arrival time and deadline of workers and tasks,
we synchronize the worker and task time series, i.e., the first
point is set to 0𝑠, and the time gap between two consecutive
points is set to 1𝑠, so that each point has a time instance that
is regarded as the arrival time of the corresponding worker or
task. Then we generate the deadline of each worker or task
from (𝑎, 𝑎+ 𝑥] randomly, where 𝑎 is the arrival time of the

Table 3: Statistics of Datasets

Dataset
name

Subset
number

Dimension
number

Training
set size

Testing
set size

Outlier
ratio

MSL 27 55 58,317 73,729 10.72%
SMAP 55 25 135,183 427,617 13.13%

Table 4: Negative Sampling Settings

Datasets 𝑅 𝛿 Sampling manners
MSL 0.03 0.05 local
SMAP 0.04 0.01 global

worker or task, and 𝑥 (𝑥 = 2𝑠, 4𝑠, 6𝑠, 8𝑠, 10𝑠 with a default
value of 10𝑠) denotes the valid time of the worker or task. The
basic utility of each worker or task is generated randomly
from [10, 20]. Moreover, we set the granularity of a time
instance as 2000𝑠 (2500𝑠) in MSL (SMAP), during which
the available workers and tasks will be packed and input
to our framework. We run the task assignment algorithms
over 2000𝑠 (7500𝑠) in MSL (SMAP), and report the average
results.

B.2 Evaluation Methods of Malicious
Workers and Invalid Tasks Detection

We evaluate the following methods when evaluating the per-
formance of malicious workers and invalid tasks detection.

1) VAE: a Variational Autoencoder [15], where the network
structure of VAE is same with that of SA-GANs.

2) EncDec-AD: an encoder-decoder-based seq2seq mod-
el [19], where the hidden layer is composed of LSTM units.

3) GANomaly: a conditional GAN model [1], which jointly
learns the generation of data and the latent space.

4) BeatGAN: a GAN model [41], which employs an adver-
sarial generation approach to reconstructed data.

5) SA-GAN-Random: our SA-GAN model using the ran-
dom strategy to update the socially aware degree.

6) SA-GAN-Learn: our SA-GAN model using the learning
rate based strategy to update the socially aware degree.

B.3 Outlier Threshold Selection

The outlier threshold is generated from the range [0, 1] with
the initial value 0 and step 0.01, which means the thresh-
old is 0, 0.01, 0.02, ..., 1. The outlier score of each method is
normalized to the unit interval using min-max scaling. We
compute the F1 value with each threshold and report the
best F1 value.

B.4 Parameter Settings

Parameter settings of Malicious Workers and Invalid
Tasks Detection. For all models, we use Adam as the opti-
mizer, of which the momentums 𝛽1 is set to 0.9 and 𝛽2 is set
to 0.999. The batch size, sequence length, and the number of
training iterations are set to 50, 128, and 20, respectively. The
settings (including sampling ratio 𝑅, deviation of negative
samples 𝛿, and sampling manners) of negative sampling is
shown in Table 4.

For SA-GANs, the learning rate of two discriminators are
set to 0.0003, and that of the autoencoder is set to 0.001.
We set 𝜆1 = 1 and 𝜆2 = 1 in MSL, and 𝜆1 = 1 and 𝜆2 = 0.1
in SMAP. Next, we elaborate the detailed settings of the
autoencoder and two discriminators in SA-GANs.

In the autoencoder, 𝐺1 consists of three parts: the basic
encoder part, the mean part, and the standard deviation
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Table 5: Parameters Settings in Task Assignment

Parameter Value

Number of workers |𝑊 | (MSL) 500, 1000, 1500, 2000
Number of workers |𝑊 | (SMAP) 500, 1000, 1500, 2000, 2500
Number of tasks |𝑆| (MSL) 500, 1000, 1500, 2000
Number of tasks |𝑆| (SMAP) 500, 1000, 1500, 2000, 2500
Valid time 𝑥 of workers and tasks
(MSL/SMAP)

2s, 4s, 6s, 8s, 10s

part. The kernel’s size and number of each layer of the ba-
sic encoder part are 32(4/2/1)− 64(4/2/1)− 128(4/2/1)−
256(4/2/1)−512(4/2/1), along with the mean part 128(4/1/0)
and the standard deviation part 128(4/1/0), where 32(4/2/1)
means that the number of filters is 32, the size of each
filter is 4, the stride is 2, and the padding is 1. 𝐺2 con-
sists of six one-dimensional transposed convolutional layers,
i.e., 512(4/1/0) − 256(4/2/1) − 128(4/2/1) − 64(4/2/1) −
32(4/2/1)−𝑀(4/2/1), where 𝑀 is the number of dimensions
of the input data. For two discriminators, 𝐷1 and 𝐷2 have
the same structure with the basic encoder part, and have a
layer with the structure of 1(4/1/0) and Sigmoid activation.
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Figure 10: Effect of |𝑆| on SMAP

Parameter settings of Task Assignment. Table 5
shows the parameter settings of the task assignment phase,
where the default values are underlined on both MSL and
SMAP.

C EXPERIMENTAL RESULTS FOR
SMAP

We give the results of effect of |𝑆| and 𝑥 for SMAP in Fig-
ures 10 and 11.

Effect of |𝑆|. As expected, the total utilities of all methods
increase as |𝑆| grows (see Figure 10(a)). This is because that
with more tasks to be assigned, workers tend to have more
available tasks to choose to increase the total utilities of
of the correct task assignments. Figures 10(b) and 10(c)
show that the methods considering outliers, i.e., KM-Outlier
and DR-Outlier, perform better than their counterparts in
terms of worker and task assignment accuracy. For efficiency,
Figure 10(d) shows that our DR-related methods have great
superiority compared with the others.

Effect of 𝑥. We also study the effect of 𝑥 for SMAP. As
can be seen in Figures 11(a), 11(b), and 11(c), KM-Outlier
and DR-Outlier can achieve higher worker/task assignment
accuracy than KM and DR, respectively, while sacrificing
some utilities. The efficiency of DR-related methods is stable
regardless of 𝑥, while KM-related methods deteriorate at a sig-
nificantly faster pace in respect of efficiency, which are shown
in Figure 11(d). Overall, our proposed DR-Outlier method
can provide an excellent trade-off between effectiveness and
efficiency.
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Figure 11: Effect of 𝑥 on SMAP
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